TimeMaxyne: A Shot-Noise Limited, Time-Resolved Pump-and-Probe Acquisition System Capable of 50 GHz Frequencies for Synchrotron-Based X-ray Microscopy
Abstract
:1. Introduction
2. Methods
2.1. STXM Imaging
2.2. The Synchrotron as a Stroboscopic Light Source
2.3. Single Photon Detection
2.4. Pump-and-Probe Scheme
2.4.1. Time-Domain
2.4.2. Frequency Domain
2.5. X-ray Probing
2.6. Electric Pumping
2.6.1. Frequency and Pulse Generators
2.6.2. Arbitrary Waveform Generators
3. Exemplary Results
4. Discussion and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rößler, U.K.; Bogdanov, A.N.; Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 2006, 442, 797–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloch, F. Zur Theorie des Ferromagnetismus. Z. Phys. 1930, 61, 206–219. [Google Scholar] [CrossRef]
- Shiroishi, Y.; Fukuda, K.; Tagawa, I.; Iwasaki, H.; Takenoiri, S.; Tanaka, H.; Mutoh, H.; Yshikawa, N. Future Options for HDD Storage. IEEE Trans. Magn. 2009, 45, 3816–3822. [Google Scholar] [CrossRef]
- Katine, J.A.; Fullerton, E.E. Device implications of spin-transfer torques. J. Magn. Magn. Mater. 2008, 320, 1217–1226. [Google Scholar] [CrossRef]
- Tehrani, S.; Slaughter, J.M.; Chen, E.; Durlam, M.; Shi, J.; DeHerrera, M. Progress and outlook for MRAM technology. IEEE Trans. Magn. 1999, 35, 2814–2819. [Google Scholar] [CrossRef]
- Parkin, S.S.P.; Hayashi, M.; Thomas, L. Magnetic domain-wall racetrack memory. Science 2008, 320, 190–194. [Google Scholar] [CrossRef]
- Chumak, A.V.; Kabos, P.; Wu, M.; Abert, C.; Adelmann, C.; Adeyeye, A.O.; Akerman, J.; Aliev, F.G.; Anane, A.; Awad, A.; et al. Roadmap on Spin-Wave Computing. IEEE Trans. Magn. 2022, 58, 0800172. [Google Scholar] [CrossRef]
- Lee, K.D.; Kim, J.-W.; Jeong, J.-W.; Kim, D.-H.; Shin, S.-C.; Hong, K.-H.; Lee, Y.S.; Nam, C.H.; Son, M.H.; Hwang, S.W. Femtosecond pump-probe MOKE microscopy for an ultrafast spin dynamics study. J. Korean Phys. Soc. 2006, 49, 2402–2407. [Google Scholar]
- Raabe, J.; Pulwey, R.; Sattler, R.; Schweinböck, T.; Zweck, J.; Weiss, D. Magnetization pattern of ferromagnetic nanodisks. J. Appl. Phys. 2000, 88, 4437–4439. [Google Scholar] [CrossRef]
- Wachowiak, A.; Wiebe, J.; Bode, M.; Pietzsch, O.; Morgenstern, M.; Wiesendanger, R. Direct observation of internal spin structure of magnetic vortex cores. Science 2002, 298, 577–580. [Google Scholar] [CrossRef]
- Schütz, G.; Wagner, W.; Wilhelm, W.; Kienle, P.; Zeller, R.; Frahm, R.; Materlik, G. Absorption of Circularly Polarized X-Rays in Iron. Phys. Rev. Lett. 1987, 58, 737–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stöhr, J.; Wu, Y.; Hermsmeier, B.D.; Samant, M.G.; Harp, G.R.; Koranda, S.; Dunham, D.; Tonner, B.P. Element-Specific Magnetic Microscopy with Circularly Polarized X-rays. Science 1993, 259, 658–661. [Google Scholar] [CrossRef]
- Fischer, P.; Schütz, G.; Schmahl, G.; Guttmann, P.; Raasch, D. Imaging of magnetic domains with the X-ray microscope at BESSY using X-ray magnetic circular dichroism. Z. Phys. B-Condens. Matter 1996, 101, 313–316. [Google Scholar] [CrossRef]
- Kortright, J.B.; Kim, S.-K.; Ohldag, H.; Meigs, G.; Warwick, A. Magnetization imaging using scanning transmission x-ray microscopy. X-ray Microsc. Proc. 2000, 507, 49–54. [Google Scholar]
- Stoll, H.; Puzic, A.; Van Waeyenberge, B.; Fischer, P.; Raabe, J.; Buess, M.; Haug, T.; Höllinger, R.; Back, C.; Weiss, D.; et al. High-resolution imaging of fast magnetization dynamics in magnetic nanostructures. Appl. Phys. Lett. 2004, 84, 3328–3330. [Google Scholar] [CrossRef]
- Choe, S.B.; Acremann, A.; Scholl, A.; Bauer, A.; Doran, A.; Stöhr, J.; Padmore, H.A. Vortex core-driven magnetization dynamics. Science 2004, 304, 420–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Waeyenberge, B.; Puzic, A.; Stoll, H.; Chou, K.W.; Tyliszczak, T.; Hertel, R.; Fähnle, M.; Brückl, H.; Rott, K.; Reiss, G.; et al. Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature 2006, 444, 461–464. [Google Scholar] [CrossRef]
- Acremann, Y.; Strachan, J.P.; Chembrolu, V.; Andrews, S.D.; Tyliszczak, T.; Katine, J.A.; Carey, M.J.; Clemens, B.M.; Siegmann, H.C.; Stöhr, J. Time-resolved imaging of spin transfer switching: Beyond the macrospin concept. Phys. Rev. Lett. 2006, 96, 217202. [Google Scholar] [CrossRef]
- Acremann, Y.; Chembrolu, V.; Strachan, J.P.; Tyliszczak, T.; Stöhr, J. Software defined photon counting system for time resolved X-ray experiments. Rev. Sci. Instrum. 2007, 78, 014702. [Google Scholar] [CrossRef]
- Yu, X.W.; Pribiag, V.S.; Acremann, Y.; Tulapurkar, A.A.; Tyliszczak, T.; Chou, K.W.; Bräuer, B.; Li, Z.-P.; Lee, O.J.; Gowtham, P.G.; et al. Images of a Spin-Torque-Driven Magnetic Nano-Oscillator. Phys. Rev. Lett. 2011, 106, 167202. [Google Scholar] [CrossRef]
- Weigand, M.; Van Vaeyenberge, B.; Vansteenkiste, A.; Curcic, M.; Sackmann, V.; Stoll, H.; Tyliszczak, T.; Kaznatcheev, K.; Bertwistle, D.; Woltersdorf, G.; et al. Vortex Core Switching by Coherent Excitation with Single In-Plane Magnetic Field Pulses. Phys. Rev. Lett. 2009, 102, 077201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoll, H.; Noske, M.; Weigand, M.; Richter, K.; Krüger, B.; Reeve, R.M.; Hänze, M.; Adolff, C.F.; Stein, F.-U.; Meier, G.; et al. Imaging spin dynamics on the nanoscale using X-ray microscopy. Front. Phys. 2015, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Bonetti, S.; Kukreja, R.; Chen, Z.; Spoddig, D.; Ollefs, K.; Schöppner, C.; Meckenstock, R.; Ney, A.; Pinto, J.; Houanche, R.; et al. Microwave soft X-ray microscopy for nanoscale magnetization dynamics in the 5–10 GHz frequency range. Rev. Sci. Instrum. 2015, 86, 093703. [Google Scholar] [CrossRef]
- Bonetti, S.; Kukreja, R.; Chen, Z.; Macia, F.; Hernandez, J.M.; Eklund, A.; Bakckes, D.; Frisch, J.; Katine, J.; Malm, G.; et al. Direct observation and imaging of a spin-wave soliton with p-like symmetry. Nat. Commun. 2015, 6, 8889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.; Bailey, W.E. Sub-micron mapping of GHz magnetic susceptibility using scanning transmission X-ray microscopy. Appl. Phys. Lett. 2012, 101, 182407. [Google Scholar] [CrossRef] [Green Version]
- Puzic, A.; Korhonen, T.; Kalantari, B.; Raabe, J.; Quitmann, C.; Jüllig, P.; Bommer, L.; Goll, D.; Schütz, G.; Wintz, S.; et al. Photon Counting System for Time-resolved Experiments in Multibunch Mode. Synchrotron Radiat. News 2010, 23, 26–32. [Google Scholar] [CrossRef]
- Wohlhüter, P.; Bryan, M.T.; Warnicke, P.; Gliga, S.; Stevenson, S.E.; Heldt, G.; Saharan, L.; Suszka, A.K.; Moutafis, C.; Chopdekar, R.V.; et al. Nanoscale switch for vortex polarization mediated by Bloch core formation in magnetic hybrid systems. Nat. Commun. 2015, 6, 7836. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, M.; Garello, K.; Mendil, J.; Avci, C.O.; Grimaldi, E.; Murer, C.; Feng, J.; Gabureac, M.; Stamm, C.; Acremann, Y.; et al. Spatially and time-resolved magnetization dynamics driven by spin-orbit torques. Nat. Nanotechnol. 2017, 12, 980–986. [Google Scholar] [CrossRef]
- Finizio, S.; Watts, B.; Raabe, J. Why is my image noisy? A look into the terms contributing to a time-resolved X-ray microscopy image. J. Synchrotron Radiat. 2021, 28, 1146–1158. [Google Scholar] [CrossRef]
- Foerster, M.; Macia, F.; Statuto, N.; Finizio, S.; Hernandez-Minguez, A.; Lendinez, S.; Santos, P.V.; Fontcuberta, J.; Hernandez, J.M.; Kläui, M.; et al. Direct imaging of delayed magneto-dynamic modes induced by surface acoustic waves. Nat. Commun. 2017, 8, 407. [Google Scholar] [CrossRef] [Green Version]
- Im, M.Y.; Han, H.-S.; Jung, M.S.; Yu, Y.-S.; Lee, S.; Yoon, S.; Chao, W.; Fischer, P.; Hong, J.-I.; Lee, K.-S. Dynamics of the Bloch point in an asymmetric permalloy disk. Nat. Commun. 2019, 10, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Büttner, F.; Moutafis, C.; Schneider, M.; Krüger, B.; Günther, C.M.; Geilhufe, J.; Korff Schmising, C.v.; Mohanty, J.; Pfau, B.; Schaffert, S.; et al. Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 2015, 11, 225–228. [Google Scholar] [CrossRef]
- Donnelly, C.; Finizio, S.; Gliga, S.; Holler, M.; Hrabec, A.; Odstrcil, M.; Mayr, S.; Scagnoli, V.; Heyderman, L.J.; Guizar-Sicairos, M.; et al. Time-resolved imaging of three-dimensional nanoscale magnetization dynamics. Nat. Nanotechnol. 2020, 15, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Finizio, S.; Donnelly, C.; Mayr, S.; Hrabec, A.; Raabe, J. Three-dimensional Vortex Gyration Dynamics Unraveled by Time-Resolved Soft X-ray Laminography with freely selectable excitation frequencies. Nano Lett. 2022, 22, 1971–1977. [Google Scholar] [CrossRef] [PubMed]
- Langer, M. (unpublished).
- Weigand, M. Realization of a New Magnetic Scanning X-ray Microscope and Investiga- Tion of Landau Structures under Pulsed Field Excitation; Cuvillier: Göttingen, Germany, 2015. [Google Scholar]
- Bisig, A.; Mawass, M.A.; Stärk, M.; Moutafis, C.; Rhensius, J.; Heidler, J.; Gliga, S.; Weigand, M.; Tyliszczak, T.; Van Waeyenberge, B.; et al. Dynamic domain wall chirality rectification by rotating magnetic fields. Appl. Phys. Lett. 2015, 106, 122401. [Google Scholar] [CrossRef] [Green Version]
- Noske, M. Ultraschnelles Vortexkernschalten; Cuvillier: Göttingen, Germany, 2015. [Google Scholar]
- Groß, F.; Träger, N.; Schulz, F.; Weigand, M.; Dippon, T.; Gräfe, J. A high frequency builder software for arbitrary radio frequency signals. Rev. Sci. Instrum. 2022, 93, 034704. [Google Scholar] [CrossRef]
- Kammerer, M.; Weigand, M.; Curcic, M.; Noske, M.; Sproll, M.; Vansteenkiste, A.; Van Waeyenberge, B.; Stoll, H.; Woltersdorf, G.; Back, C.H.; et al. Magnetic vortex core reversal by excitation of spin waves. Nat. Commun. 2011, 2, 279. [Google Scholar] [CrossRef] [Green Version]
- Noske, M.; Gangwar, A.; Stoll, H.; Kammerer, M.; Sproll, M.; Dieterle, G.; Weigand, M.; Fähnle, M.; Woltersdorf, G.; Back, C.H.; et al. Unidirectional sub-100-ps magnetic vortex core reversal. Phys. Rev. B 2014, 90, 104415. [Google Scholar] [CrossRef] [Green Version]
- Litzius, K.; Lemesh, I.; Krüger, B.; Bassirian, P.; Caretta, L.; Richter, K.; Büttner, F.; Sato, K.; Tretiakov, O.A.; Förster, J.; et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 2017, 13, 170–175. [Google Scholar] [CrossRef]
- Wintz, S.; Tiberkevich, V.; Weigand, M.; Raabe, J.; Lindner, J.; Erbe, A.; Slavin, A.; Fassbender, J. Magnetic vortex cores as tunable spin-wave emitters. Nat. Nanotechnol. 2016, 11, 948–953. [Google Scholar] [CrossRef]
- Sluka, V.; Schneider, T.; Gallardo, R.A.; Kakay, A.; Weigand, M.; Warnatz, T.; Mattheis, R.; Roldan-Molina, A.; Landeros, P.; Tiberkevich, V.; et al. Emission and propagation of 1D and 2D spin waves with nanoscale wavelengths in anisotropic spin textures. Nat. Nanotechnol. 2019, 14, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Dieterle, G.; Förster, J.; Stoll, H.; Semisalova, A.S.; Finizio, S.; Gangwar, A.; Weigand, M.; Noske, M.; Fähnle, M.; Bykova, I.; et al. Coherent Excitation of Heterosymmetric Spin Waves with Ultrashort Wavelengths. Phys. Rev. Lett. 2019, 122, 117202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behncke, C.; Adolff, C.F.; Lenzing, N.; Hänze, M.; Schulte, B.; Weigand, M.; Schütz, G.; Meier, G. Spin-wave interference in magnetic vortex stacks. Commun. Phys. 2018, 1, 50. [Google Scholar] [CrossRef]
- Förster, J.; Gräfe, J.; Bailey, J.; Finizio, S.; Träger, N.; Groß, F.; Mayr, S.; Stoll, H.; Dubs, C.; Surzhenko, O.; et al. Direct observation of coherent magnons with suboptical wavelengths in a single-crystalline ferrimagnetic insulator. Phys. Rev. B 2019, 100, 214416. [Google Scholar] [CrossRef] [Green Version]
- Mayr, S.; Flajsman, L.; Finizio, S.; Hrabec, A.; Weigand, M.; Förster, J.; Stoll, H.; Heyderman, L.J.; Urbanek, M.; Wintz, S.; et al. Spin-Wave Emission from Vortex Cores under Static Magnetic Bias Fields. Nano Lett. 2021, 21, 1584–1590. [Google Scholar] [CrossRef] [PubMed]
- Gräfe, J.; Gruszecki, P.; Zelent, M.; Decker, M.; Keskinbora, K.; Noske, M.; Gawronski, P.; Stoll, H.; Weigand, M.; Krawczyk, M.; et al. Direct observation of spin-wave focusing by a Fresnel lens. Phys. Rev. B 2020, 102, 024420. [Google Scholar] [CrossRef]
- Groß, F.; Träger, N.; Förster, J.; Weigand, M.; Schütz, G.; Gräfe, J. Nanoscale detection of spin wave deflection angles in permalloy. Appl. Phys. Lett. 2019, 114, 012406. [Google Scholar] [CrossRef]
- Groß, F.; Zelent, M.; Träger, N.; Förster, J.; Sanli, U.T.; Sauter, R.; Decker, M.; Back., C.H.; Weigand, M.; Keskinbora, K.; et al. Building Blocks for Magnon Optics: Emission and Conversion of Short Spin Waves. Acs Nano 2020, 14, 17184–17193. [Google Scholar] [CrossRef]
- Träger, N.; Gruszecki, P.; Lisiecki, F.; Förster, J.; Weigand, M.; Wintz, S.; Stoll, H.; Glowinski, H.; Kuswik, P.; Krawszyk, M.; et al. Direct Imaging of High-Frequency Multimode Spin Wave Propagation in Cobalt-Iron Waveguides Using X-ray Microscopy beyond 10 GHz. Phys. Status Solidi-Rapid Res. Lett. 2020, 14, 2000373. [Google Scholar] [CrossRef]
- Träger, N.; Gruszecki, P.; Lisiecki, F.; Groß, F.; Förster, J.; Weigand, M.; Glowinski, H.; Kuswik, P.; Dubowik, J.; Schütz, G.; et al. Real-Space Observation of Magnon Interaction with Driven Space-Time Crystals. Phys. Rev. Lett. 2021, 126, 057201. [Google Scholar] [CrossRef]
- Nolle, D.; Weigand, M.; Audehm, P.; Georing, E.; Wiesemann, U.; Wolter, C.; Nolle, E.; Schütz, G. Note: Unique characterization possibilities in the ultra high vacuum scanning transmission X-ray microscope (UHV-STXM) “MAXYMUS” using a rotatable permanent magnetic field up to 0.22 T. Rev. Sci. Instrum. 2012, 83, 046112. [Google Scholar] [CrossRef] [PubMed]
- Simmendinger, J.; Ruoss, S.; Stahl, C.; Weigand, M.; Gräfe, J.; Schütz, G.; Albrecht, J. Transmission X-ray microscopy at low temperatures: Irregular supercurrent flow at small length scales. Phys. Rev. B 2018, 97, 134515. [Google Scholar] [CrossRef] [Green Version]
- Kern, L.-M.; Pfau, B.; Deinhart, V.; Schneider, M.; Klose, C.; Gerlinger, K.; Wittrock, S.; Engel, D.; Will, I.; Günther, C.M.; et al. Deterministic Generation and Guided Motion of Magnetic Skyrmions by Focused He+-Ion Irradiation. Nano Lett. 2022, 22, 4028. [Google Scholar] [CrossRef] [PubMed]
- Finizio, S.; Mayr, S.; Raabe, J. Time-of-arrival detection for time-resolved scanning transmission X-ray microscopy imaging. J. Synchrotron Radiat. 2020, 27, 1320–1325. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weigand, M.; Wintz, S.; Gräfe, J.; Noske, M.; Stoll, H.; Van Waeyenberge, B.; Schütz, G. TimeMaxyne: A Shot-Noise Limited, Time-Resolved Pump-and-Probe Acquisition System Capable of 50 GHz Frequencies for Synchrotron-Based X-ray Microscopy. Crystals 2022, 12, 1029. https://doi.org/10.3390/cryst12081029
Weigand M, Wintz S, Gräfe J, Noske M, Stoll H, Van Waeyenberge B, Schütz G. TimeMaxyne: A Shot-Noise Limited, Time-Resolved Pump-and-Probe Acquisition System Capable of 50 GHz Frequencies for Synchrotron-Based X-ray Microscopy. Crystals. 2022; 12(8):1029. https://doi.org/10.3390/cryst12081029
Chicago/Turabian StyleWeigand, Markus, Sebastian Wintz, Joachim Gräfe, Matthias Noske, Hermann Stoll, Bartel Van Waeyenberge, and Gisela Schütz. 2022. "TimeMaxyne: A Shot-Noise Limited, Time-Resolved Pump-and-Probe Acquisition System Capable of 50 GHz Frequencies for Synchrotron-Based X-ray Microscopy" Crystals 12, no. 8: 1029. https://doi.org/10.3390/cryst12081029
APA StyleWeigand, M., Wintz, S., Gräfe, J., Noske, M., Stoll, H., Van Waeyenberge, B., & Schütz, G. (2022). TimeMaxyne: A Shot-Noise Limited, Time-Resolved Pump-and-Probe Acquisition System Capable of 50 GHz Frequencies for Synchrotron-Based X-ray Microscopy. Crystals, 12(8), 1029. https://doi.org/10.3390/cryst12081029