Structural Degradation of O3-NaMnO2 Positive Electrodes in Sodium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Characterization Methods
2.3. Electrochemical Methods
3. Results and Discussion
3.1. Synthesis of O3-NMO
3.2. Electrochemical Performance
3.3. Analysis of the Capacity Fading Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, D. Li-ion batteries: Basics, progress, and challenges. Energy Sci. Eng. 2015, 3, 385–418. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, C.Z.; Yuan, H.; Chen, Y.; Zhang, W.; Huang, J.Q.; Yu, D.; Liu, Y.; Titirici, M.M.; Chueh, Y.L.; et al. A review of rechargeable batteries for portable electronic devices. InfoMat 2019, 1, 6–32. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Dai, Q.; Gaines, L.; Hu, M.; Tukker, A.; Steubing, B. Future material demand for automotive lithium-based batteries. Commun. Mater. 2020, 1, 99. [Google Scholar] [CrossRef]
- Aneke, M.; Wang, M. Energy storage technologies and real life applications—A state of the art review. Appl. Energy 2016, 179, 350–377. [Google Scholar] [CrossRef] [Green Version]
- Stievano, L.; de Meatza, I.; Bitenc, J.; Cavallo, C.; Brutti, S.; Navarra, M.A. Emerging calcium batteries. J. Power Sources 2021, 482, 228875. [Google Scholar] [CrossRef]
- Wang, S.; Sun, C.; Wang, N.; Zhang, Q. Ni- and/or Mn-based layered transition metal oxides as cathode materials for sodium ion batteries: Status, challenges and countermeasures. J. Mater. Chem. A 2019, 7, 10138–10158. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, Z.; Chen, M.; Zou, C.; Jin, H.; Wang, S.; Chou, S.L.; Dou, S.X. Recent Progress of Layered Transition Metal Oxide Cathodes for Sodium-Ion Batteries. Small 2019, 15, 1805381. [Google Scholar] [CrossRef]
- Eftekhari, A.; Kim, D.W. Sodium-ion batteries: New opportunities beyond energy storage by lithium. J. Power Sources 2018, 395, 336–348. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, R.; Huang, Y. Air-Stable NaxTMO2 Cathodes for Sodium Storage. Front. Chem. 2019, 7, 335. [Google Scholar] [CrossRef] [Green Version]
- Parant, J.P.; Olazcuaga, R.; Devalette, M.; Fouassier, C.; Hagenmuller, P. Sur quelques nouvelles phases de formule NaxMnO2 (x≤1). J. Solid State Chem. 1971, 3, 1–11. [Google Scholar] [CrossRef]
- Mendiboure, A.; Delmas, C.; Hagenmuller, P. Electrochemical intercalation and deintercalation of NaxMnO2 bronzes. J. Solid State Chem. 1985, 57, 323–331. [Google Scholar] [CrossRef]
- Delmas, C.; Fouassier, C.; Hagenmuller, P. Structural classification and properties of the layered oxides. Physica B+C 1980, 99, 81–85. [Google Scholar] [CrossRef]
- Caballero, A.; Hernán, L.; Morales, J.; Sánchez, L.; Santos Peña, J.; Aranda, M.A.G. Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells. J. Mater. Chem. 2002, 12, 1142–1147. [Google Scholar] [CrossRef]
- Su, D.; Wang, C.; Ahn, H.j.; Wang, G. Single Crystalline Na0.7MnO2 Nanoplates as Cathode Materials for Sodium-Ion Batteries with Enhanced Performance. Chem. Eur. J. 2013, 19, 10884–10889. [Google Scholar] [CrossRef]
- Jung, E.; Park, Y.; Park, K.; Kwon, M.S.; Park, M.; Sinha, A.K.; Lee, B.H.; Kim, J.; Lee, H.S.; Chae, S.I.; et al. Synthesis of nanostructured P2-Na2/3MnO2 for high performance sodium-ion batteries. Chem. Commun. 2019, 55, 4757–4760. [Google Scholar] [CrossRef]
- Bucher, N.; Hartung, S.; Nagasubramanian, A.; Cheah, Y.; Hoster, H.; Madhavi, S. Layered NaxMnO2+z in Sodium Ion Batteries-Influence of Morphology on Cycle Performance. ACS Appl. Mater. Interfaces 2014. [Google Scholar] [CrossRef]
- Kulka, A.; Marino, C.; Walczak, K.; Borca, C.; Bolli, C.; Novák, P.; Villevieille, C. Influence of Na/Mn arrangements and P2/P′2 phase ratio on the electrochemical performance of NaxMnO2 cathodes for sodium-ion batteries. J. Mater. Chem. A 2020, 8, 6022–6033. [Google Scholar] [CrossRef]
- Ma, T.; Xu, G.L.; Zeng, X.; Li, Y.; Ren, Y.; Sun, C.; Heald, S.; Jorne, J.; Amine, K.; Chen, Z. Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ high energy X-ray diffraction and X-ray absorption near edge spectroscopy. J. Power Sources 2017, 341, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Sehrawat, D.; Rawal, A.; Cheong, S.; Avdeev, M.; Ling, C.D.; Kimpton, J.A.; Sharma, N. Alkali Metal-Modified P2 NaxMnO2: Crystal Structure and Application in Sodium-Ion Batteries. Inorg. Chem. 2020, 59, 12143–12155. [Google Scholar] [CrossRef]
- Shibata, T.; Kobayashi, W.; Moritomo, Y. Sodium ion diffusion in layered NaxMnO2 (0.49 ≤ x ≤ 0.75): Comparison with NaxCoO2. Appl. Phys. Express 2014, 7, 067101. [Google Scholar] [CrossRef]
- Chen, T.R.; Wu, Z.; Xiang, W.; Wang, E.H.; Wu, C.J.; Chen, M.; Guo, X.; Zhong, B.H. The influences of sodium sources on the structure evolution and electrochemical performances of layered-tunnel hybrid Na0.6MnO2 cathode. Ceram. Int. 2017, 43, 6303–6311. [Google Scholar] [CrossRef]
- Li, J.Y.; Lü, H.Y.; Zhang, X.H.; Xing, Y.M.; Wang, G.; Guan, H.Y.; Wu, X.L. P2-type Na0.53MnO2 nanorods with superior rate capabilities as advanced cathode material for sodium ion batteries. Chem. Eng. J. 2017, 316, 499–505. [Google Scholar] [CrossRef]
- Bucher, N.; Hartung, S.; Franklin, J.B.; Wise, A.M.; Lim, L.Y.; Chen, H.Y.; Weker, J.N.; Toney, M.F.; Srinivasan, M. P2–NaxCoyMn1–yO2 (y = 0, 0.1) as Cathode Materials in Sodium-Ion Batteries—Effects of Doping and Morphology To Enhance Cycling Stability. Chem. Mater. 2016, 28, 2041–2051. [Google Scholar] [CrossRef]
- Konarov, A.; Choi, J.U.; Bakenov, Z.; Myung, S.T. Revisit of layered sodium manganese oxides: Achievement of high energy by Ni incorporation. J. Mater. Chem. A 2018, 6, 8558–8567. [Google Scholar] [CrossRef]
- Billaud, J.; Singh, G.; Armstrong, A.R.; Gonzalo, E.; Roddatis, V.; Armand, M.; Rojo, T.; Bruce, P.G. Na0.67Mn1−xMgxO2 (0≤x≤0.2): A high capacity cathode for sodium-ion batteries. Energy Environ. Sci. 2014, 7, 1387–1391. [Google Scholar] [CrossRef]
- Lin, Z.; Zhao, S.; Wu, F. Structure and electrochemical properties of layered sodium manganese oxide NaxMnO2. Mater. Res. Express 2019, 6, 095509. [Google Scholar] [CrossRef]
- Liang, X.; Yu, T.Y.; Ryu, H.H.; Sun, Y.K. Hierarchical O3/P2 heterostructured cathode materials for advanced sodium-ion batteries. Energy Storage Mater. 2022, 47, 515–525. [Google Scholar] [CrossRef]
- Bach, S.; Henry, M.; Baffier, N.; Livage, J. Sol-gel synthesis of manganese oxides. J. Solid State Chem. 1990, 88, 325–333. [Google Scholar] [CrossRef]
- Billaud, J.; Clément, R.J.; Armstrong, A.R.; Canales-Vázquez, J.; Rozier, P.; Grey, C.P.; Bruce, P.G. β-NaMnO2: A High-Performance Cathode for Sodium-Ion Batteries. J. Am. Chem. Soc. 2014, 136, 17243–17248. [Google Scholar] [CrossRef] [Green Version]
- Manzi, J.; Paolone, A.; Palumbo, O.; Corona, D.; Massaro, A.; Cavaliere, R.; Muñoz-García, A.B.; Trequattrini, F.; Pavone, M.; Brutti, S. Monoclinic and Orthorhombic NaMnO2 for Secondary Batteries: A Comparative Study. Energies 2021, 14, 1230. [Google Scholar] [CrossRef]
- Ma, X.; Chen, H.; Ceder, G. Electrochemical Properties of Monoclinic NaMnO2. J. Electrochem. Soc. 2011, 158, A1307. [Google Scholar] [CrossRef]
- Guo, S.; Li, Q.; Liu, P.; Chen, M.; Zhou, H. Environmentally stable interface of layered oxide cathodes for sodium-ion batteries. Nat. Commun. 2017, 8, 135. [Google Scholar] [CrossRef] [PubMed]
- Jo, I.H.; Ryu, H.S.; Gu, D.G.; Park, J.S.; Ahn, I.S.; Ahn, H.J.; Nam, T.H.; Kim, K.W. The effect of electrolyte on the electrochemical properties of Na/α-NaMnO2 batteries. Mater. Res. Bull. 2014, 58, 74–77. [Google Scholar] [CrossRef]
- Ma, T.; Xu, G.L.; Li, Y.; Song, B.; Zeng, X.; Su, C.C.; Mattis, W.L.; Guo, F.; Ren, Y.; Kou, R.; et al. Insights into the Performance Degradation of Oxygen-Type Manganese-Rich Layered Oxide Cathodes for High-Voltage Sodium-Ion Batteries. ACS Appl. Energy Mater. 2018, 1, 5735–5745. [Google Scholar] [CrossRef]
- Sato, T.; Sato, K.; Zhao, W.; Kajiya, Y.; Yabuuchi, N. Metastable and nanosize cation-disordered rocksalt-type oxides: Revisit of stoichiometric LiMnO2 and NaMnO2. J. Mater. Chem. A 2018, 6, 13943–13951. [Google Scholar] [CrossRef] [Green Version]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Terayama, K.; Ikeda, M.; Taniguchi, M. Phase Equilibria in the Mn2O3-Mn3O4-MnO System in CO2-H2 Mixtures. Trans. Jpn. Inst. Met. 1983, 24, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Vaitkus, A.; Merkys, A.; Gražulis, S. Validation of the Crystallography Open Database using the Crystallographic Information Framework. J. Appl. Crystallogr. 2021, 54, 661–672. [Google Scholar] [CrossRef]
- Khan, M.A.; Han, D.; Lee, G.; Kim, Y.I.; Kang, Y.M. P2/O3 phase-integrated Na0.7MnO2 cathode materials for sodium-ion rechargeable batteries. J. Alloy. Compd. 2019, 771, 987–993. [Google Scholar] [CrossRef]
- Database of Ionic Radii. Available online: http://abulafia.mt.ic.ac.uk/shannon/ptable.php (accessed on 18 May 2022).
- Larbi, T.; Doll, K.; Manoubi, T. Density functional theory study of ferromagnetically and ferrimagnetically ordered spinel oxide Mn3O4. A quantum mechanical simulation of their IR and Raman spectra. J. Alloy. Compd. 2016, 688, 692–698. [Google Scholar] [CrossRef]
- Persson, K. Materials Data on Mn3O4 (SG:141) by Materials Project. 2014. Available online: https://materialsproject.org/materials/mp-18759/ (accessed on 18 May 2022).
- Bernardini, S.; Bellatreccia, F.; Casanova Municchia, A.; Della Ventura, G.; Sodo, A. Raman spectra of natural manganese oxides. J. Raman Spectrosc. 2019, 50, 873–888. [Google Scholar] [CrossRef]
Stoichiometry | Space | i (mAg) | OCV | Q | Q | N. | Ref. |
---|---|---|---|---|---|---|---|
Group | C-Rate | (V) | (mAhg) | (mAhg) | of Cycles | ||
NaMnO | C2/m | 70 (A/cm) | ca.3.5–1.4 | ca.54 | [11] | ||
Pmmn | 70 (A/cm) | ca.3.5–1.7 | ca.37 | ||||
Pmnm | 10 | 2.0–4.2 | 190 | ca.170 | 100 | [29] | |
50 | 2.0–4.2 | ca.170 | ca.150 | 100 | |||
400 | 2.0–4.2 | 142 | ca.120 | 100 | |||
2000 | 2.0–4.2 | 90 | ca.80 | 100 | |||
C2/m | 10 | 2.0–3.8 | 175 | [30] | |||
100 | 2.0–3.8 | ca.85 | ca.60 | 50 | |||
Pmmn | 10 | 2.0–3.8 | 134 | ||||
100 | 2.0–3.8 | ca.95 | ca.80 | 50 | |||
C2/m | 24 | 2.0–3.8 | 185 | ca.130 | 20 | [31] | |
8 | 2.0–3.8 | 194 | 10 | ||||
C2/m | 100 | 1.5–4.2 | ca.125 | ca.75 | 50 | [32] | |
200 | 1.5–4.2 | 90 | |||||
1000 | 1.5–4.2 | 30 | |||||
C2/m | C/5 | 1.7–4.0 | 146 | ca.110 | 20 | [33] | |
C2/m | 12 | 2.0–3.8 | 169 | ca.110 | 20 | [34] | |
C2/m | 10 | ca.1.2–4.5 | ca.180 | ca.100 | 20 | [35] |
Sample ID | Synthesis | NaCO:Mn(AcO) | Nominal Na:Mn | Experimental |
---|---|---|---|---|
Condition | Ratio | Ratio | Stochiometry | |
NM-SS | Solid state method | 1:2 | 1:1 | NaMnO |
NM-SG | Sol–gel method | 1:2 | 1:1 | NaMnO |
NM5-SG | Sol–gel method | 1.05:2 | 1.05:1 | NaMnO |
NM10-SG | Sol–gel method | 1.1:2 | 1.1:1 | NaMnO |
Material | Cell | Atoms | Wyckoff | Atomic Positions | DW | Occupancies | ||
---|---|---|---|---|---|---|---|---|
Parameters | Positions | x | y | z | ||||
NM-SS (R = 2.2%; GOF = 1.47) | a = 5.660 Å | Mn | 2d | 0 | 0.5 | 0.5 | 1.0 | 1.0 |
b = 2.853 Å | Na | 2a | 0 | 0 | 0 | 1.0 | 0.87 | |
c = 5.796 Å | O | 4i | 0.787 | 0 | 0.254 | 1.0 | 1.0 | |
= 113.2° | ||||||||
NM-SG (R = 2.0%; GOF = 1.41) | a = 5.664 Å | Mn | 2d | 0 | 0.5 | 0.5 | 1.0 | 1.0 |
b = 2.858 Å | Na | 2a | 0 | 0 | 0 | 1.0 | 0.81 | |
c = 5.801 Å | O | 4i | 0.791 | 0 | 0.265 | 1.0 | 1.0 | |
= 113.2° | ||||||||
NM5-SG (R = 2.5%; GOF = 1.66) | a = 5.664 Å | Mn | 2d | 0 | 0.5 | 0.5 | 1.0 | 1.0 |
b = 2.859 Å | Na | 2a | 0 | 0 | 0 | 1.0 | 0.92 | |
c = 5.801 Å | O | 4i | 0.785 | 0 | 0.269 | 1.0 | 1.0 | |
= 113.1° | ||||||||
NM10-SG (R = 3.8%; GOF = 2.53) | a = 5.659 Å | Mn | 2d | 0 | 0.5 | 0.5 | 1.0 | 1.0 |
b = 2.858 Å | Na | 2a | 0 | 0 | 0 | 1.0 | 0.91 | |
c = 5.792 Å | O | 4i | 0.812 | 0 | 0.320 | 1.0 | 0.98 | |
= 113.1° |
Material | Volume | Antisite | Mn ox. | ||||
---|---|---|---|---|---|---|---|
(Å) | (Å) | (Å) | (nm) | (%) | Defects (%) | State | |
NM-SS | 2.042 (4×) | 2.226 (4×) | 86.03 | 70 | 0.029 | 19.7 | 3.13 |
2.552 (2×) | 2.237 (2×) | ||||||
NM-SG | 2.009 (4×) | 2.264 (4×) | 86.33 | 99 | 0.039 | 23.2 | 3.19 |
2.519 (2×) | 2.278 (2×) | ||||||
NM5-SG | 2.010 (4×) | 2.260 (4×) | 86.38 | 181 | 0.135 | 13.7 | 3.08 |
2.474 (2×) | 2.323 (2×) | ||||||
NM10-SG | 1.841 (4×) | 2.454 (4×) | 86.15 | 256 | 0.212 | 25.3 | 3.00 |
2.377 (2×) | 2.474 (2×) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palluzzi, M.; Silvestri, L.; Celeste, A.; Tuccillo, M.; Latini, A.; Brutti, S. Structural Degradation of O3-NaMnO2 Positive Electrodes in Sodium-Ion Batteries. Crystals 2022, 12, 885. https://doi.org/10.3390/cryst12070885
Palluzzi M, Silvestri L, Celeste A, Tuccillo M, Latini A, Brutti S. Structural Degradation of O3-NaMnO2 Positive Electrodes in Sodium-Ion Batteries. Crystals. 2022; 12(7):885. https://doi.org/10.3390/cryst12070885
Chicago/Turabian StylePalluzzi, Matteo, Laura Silvestri, Arcangelo Celeste, Mariarosaria Tuccillo, Alessandro Latini, and Sergio Brutti. 2022. "Structural Degradation of O3-NaMnO2 Positive Electrodes in Sodium-Ion Batteries" Crystals 12, no. 7: 885. https://doi.org/10.3390/cryst12070885
APA StylePalluzzi, M., Silvestri, L., Celeste, A., Tuccillo, M., Latini, A., & Brutti, S. (2022). Structural Degradation of O3-NaMnO2 Positive Electrodes in Sodium-Ion Batteries. Crystals, 12(7), 885. https://doi.org/10.3390/cryst12070885