Conventional Biophotonic Sensing Approach for Sensing and Detection of Normal and Infected Samples Containing Different Blood Components
Abstract
:1. Introduction
2. Theoretical Formulation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bijalwan, A.; Singh, B.K.; Rastogi, V. Analysis of one-dimensional photonic crystal based sensor for detection of blood plasma and cancer cells. Optik 2021, 226, 165994. [Google Scholar] [CrossRef]
- Hsiao, F.L.; Lee, C. Novel biosensor based on photonic crystal nano ring resonator. Procedia Chem. 2009, 1, 417–420. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Fauchet, P.M. Two-dimensional silicon photonic crystal based bio sensing platform for protein detection. Opt. Express 2007, 15, 4530–4535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059–2062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, S. Strong localization of photons in certain disordered dielectric super lattices. Phys. Rev. Lett. 1987, 58, 2486–2489. [Google Scholar] [CrossRef] [Green Version]
- Robinson, S.; Nakkeeran, R. Photonic crystal ring resonator-based add drop filters: A review. SPIE 2013, 52, 060901. [Google Scholar] [CrossRef] [Green Version]
- Kuma, V.D. Analysis and Simulations of Photonic Crystal Components for Optical Communication. Ph.D. Thesis, Helsinki University of Technology, Helsinki, Finland, 2003. [Google Scholar]
- Awasthi, S.K.; Malaviya, U.; Ojha, S.P. Enhancement of omnidirectional total reflection wavelength range by using one- dimensional ternary photonic band-gap material. JOSA B 2006, 23, 2566–2571. [Google Scholar] [CrossRef]
- Awasthi, S.K.; Malaviya, U.; Ojha, S.P. Enhancement of omnidirectional high-reflection wavelength range in 1D ternary periodic structures: A comparative study. J. Nanophotonics 2006, 2, 023505. [Google Scholar]
- Yeh, P. Optical Waves in Layered Media; Wiley: New York, NY, USA, 1988; Chapter 4. [Google Scholar]
- Parandin, F.; Heidari, F.; Rahimi, Z.; Olyaee, S. Two-Dimensional photonic crystal biosensors: A review. Opt. Laser Technol. 2021, 144, 107397. [Google Scholar] [CrossRef]
- Gowdhami, D.; Balaji, V.R.; Murugan, M.; Robinson, S.; Hegde, G. Photonic crystal based biosensors: An overview. ISSS J. Micro Smart Syst. 2022, 1–21. [Google Scholar] [CrossRef]
- Skivesen, N.; Tetu, A.; Kristensen, M. Photonic-Crystal waveguide biosensor. Opt. Exp. 2007, 15, 3169. [Google Scholar] [CrossRef] [PubMed]
- Bahabady, A.M.; Olyaee, S. Two-Curve-Shaped Biosensor for Detecting Glucose Concentration and Salinity of Seawater Based on Photonic Crystal Nano-Ring Resonator. Sens. Lett. 2015, 13, 774–777. [Google Scholar] [CrossRef]
- Liu, Y.; Salemink, H.W.M. Photonic crystal-based all-optical on-chip sensor. Opt. Express 2012, 20, 19912–19920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanthi, K.V.; Robinson, S. Two-Dimensional photonic crystal based sensor for pressure sensing. Photonic Sens. 2014, 4, 248–253. [Google Scholar] [CrossRef] [Green Version]
- Radhouene, M.; Chhipa, M.K.; Najjar, M.; Robinson, S.; Suthar, B. Novel design of ring resonator based temperature sensor using photonics technology. Photonic Sens. 2017, 7, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Zouache, T.; Hocini, A.; Harhouz, A.; Mokhtari, R. Design of pressure sensor based on two-dimensional photonic crystal. Acta Phys. Pol. 2017, 131, 68–70. [Google Scholar]
- Nguyen, T.D.; Yeo, L.P.; Ong, A.J.; Zhiwei, W.; Mandler, D.; Magdassi, S.; Tok, A.l.Y. Electrochromic smart glass coating on functional nano-frameworks for effective building energy conservation. Mater. Today Energy 2020, 18, 100496. [Google Scholar] [CrossRef]
- Aly, A.H.; Awasthi, S.K.; Mohamed, A.M.; Matar, Z.S.; Mohaseb, M.A.; Al-Dossari, M. Detection of Reproductive Hormones in Females by Using 1D Photonic Crystal-Based Simple Reconfigurable Biosensing Design. Crystals 2021, 11, 1533. [Google Scholar] [CrossRef]
- Malek, C.; Al-Dossari, M.; Awasthi, S.K.; Matar, Z.S.; Abd El-Gawaad, N.S.; Sabra, W.; Aly, A.H. Employing the Defective Photonic Crystal Composed of Nanocomposite Superconducting Material in Detection of Cancerous Brain Tumors Biosensor: Computational Study. Crystals 2022, 12, 540. [Google Scholar] [CrossRef]
- Boyd, R.W.; Heebner, J.E. Sensitive disk resonator photonic biosensor. Appl. Opt. 2001, 18, 15742–15747. [Google Scholar] [CrossRef]
- White, I.M.; Fan, X. On the performance quantification of resonant Refractive index sensors. Opt. Express 2008, 16, 1020–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gubler, D.J. Dengue, urbanization and globalization: The unholy trinity of the 21(st) century. Trop. Med. Health 2011, 39 (Suppl. 4), 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control; World Health Organization: Geneva, Switzerland, 2009; pp. 1–147. [Google Scholar]
- Anonymous. Dengue Hemorrhagic Fever, Diagnosis, Treatment and Control; World Health Organization: Geneva, Switzerland, 1986. [Google Scholar]
- Dietz, V.; Gubler, D.J.; Ortiz, S.; Kuno, G.; Casta-Velez, A.; Sather, G.E.; Gomez, I.; Vergne, E. The dengue and dengue hemorrhagic fever epidemic in Puerto Rico: Epidemiologic and clinical observations. Puerto Rico Health Sci. J. 1986, 15, 201–210. [Google Scholar]
- Chen, L.H.; Wilson, M.E. Dengue and chikungunya infections in travelers. Curr. Opin. Infect. Dis. 2010, 23, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Mahy, B.W.; Van Regenmortel, M.H. Desk Encyclopedia of Human and Medical Virology; Academic Press: Boston, MA, USA, 2009; p. 670. ISBN 978-0-12-375147-8. [Google Scholar]
- Aly, A.H.; Awasthi, S.K.; Mohaseb, A.M.; Matar, Z.S.; Amin, A.F. MATLAB Simulation-Based Theoretical Study for Detection of a Wide Range of Pathogens Using 1D Defective Photonic Structure. Crystals 2022, 12, 220. [Google Scholar] [CrossRef]
- Zaky, Z.A.; Moustafa, B.; Aly, A.H. Plasma cell sensor using photonic crystal cavity. Opt. Quantum Electron. 2021, 53, 1–13. [Google Scholar] [CrossRef]
- El-Ghany, S.E.-A.; Nouman, W.M.; Matar, Z.S.; Zaky, Z.A.; Aly, A.H. Optimized bio-photonic sensor using 1D-photonic crystals as a blood hemoglobin sensor. Phys. Scr. 2021, 96, 035501. [Google Scholar] [CrossRef]
- Noack, J.; Scheurell, K.; Kemnitz, E.; Garcia-Juan, P.; Rau, H.; Lacroix, M.; Eicher, J.; Lintner, B.; Sontheimer, T.; Hofmann, T.; et al. MgF2 antireflective coatings by sol–gel processing: Film preparation and thermal densification. J. Mater. Chem. 2012, 22, 18535. [Google Scholar] [CrossRef]
- Sadekar, H.K.; Ghule, A.V.; Sharma, R. Nanocrystalline ZnSe thin films prepared by solution growth technique for photo sensor application. Compos. Part B 2013, 44, 553–557. [Google Scholar] [CrossRef]
- Saravan, S.; Dubey, R.S. Performance enhancement of amorphous silicon solar cell using 1D photonic crystal as back reflector. Mater. Today Proc. 2022, 49, 2822–2825. [Google Scholar] [CrossRef]
- Abadla, M.M.; Elsayed, H.A.; Mehaney, A. Sensitivity enhancement of annular one dimensional photonic crystals temperature sensors with nematic liquid crystals. Phys. Scr. 2022, 95, 085508. [Google Scholar] [CrossRef]
- Aly, A.H.; Awasthi, S.K.; Mohamed, D.; Matar, Z.S.; Al-Dossari, M.; Amin, A.F. Study on A one-dimensional defective photonic crystal suitable for Organic compound sensing applications. RSC Adv. 2021, 11, 32973–32980. [Google Scholar] [CrossRef]
- Ramanujam, N.R.; El-Khozondar, H.J.; Dhasarathan, V.; Taya, S.A.; Aly, A.H. Design of one dimensional defect based photonic crystal by composited superconducting material for bio sensing applications. Phys. B Condens. Matter. 2019, 572, 42–55. [Google Scholar] [CrossRef]
- El-Khozondar, H.J.; Mahalakshmi, P.; El-Khozondar, R.J.; Ramanujam, N.R.; Amirie, I.S.; Yupapin, P. Design of one dimensional refractive index sensor using ternary photonic crystal waveguide for plasma blood samples applications. Phys. E Low Dimens. Syst. 2019, 111, 29–36. [Google Scholar] [CrossRef]
- Lidiyaa, A.E.; Rajaa, R.V.J.; Pham, V.D.; Ngo, Q.M.; Vigneswaran, D. Detecting hemoglobin content blood glucose using surface plasmon resonance in D-shaped photonic crystal fiber. Opt. Fiber Technol. 2019, 50, 132–138. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, A. Design of biosensor for the detection of dengue virus using 1D photonic crystals. Plasmonics 2022, 17, 675–680. [Google Scholar] [CrossRef]
Blood Component | Classification | nD (RIU) | λD | FWHM (nm) | S (nm/RIU) | FoM | Qf |
---|---|---|---|---|---|---|---|
Platelet | Normal | 1.390 | 650.6 | 0.075 | 166.6 | 2221.3 | 8674.6 |
Infected | 1.357 | 645.2 | 0.050 | 170.0 | 3400.0 | 12,904.0 | |
Plasma | Normal | 1.350 | 644.0 | 0.055 | 157.1 | 3090.9 | 11,709.1 |
Infected | 1.337 | 641.7 | 0.050 | 170.0 | 3142.0 | 12,834.0 | |
Hemoglobin | Normal | 1.360 | 645.7 | 0.055 | 166.0 | 3018.2 | 11,740.0 |
Infected | 1.400 | 652.2 | 0.075 | 165.7 | 2209.3 | 8696.0 |
Blood Component | Classifications | Refractive Index | Senstivity (nm/RIU) |
---|---|---|---|
Platelet | Normal | 1.390 | 300.0 |
Infected | 1.357 | 329.6 | |
Plasma | Normal | 1.350 | 345.0 |
Infected | 1.337 | 428.6 | |
Hemoglobin | Normal | 1.360 | 277.1 |
Infected | 1.400 | 292.9 |
Year | S (nm/RIU) | Q-Factor | FoM (RIU) | Sample Type | Reference |
---|---|---|---|---|---|
2019 | 48.6–90.9 | Not mentioned | Not mentioned | Blood | [38] |
2019 | 25.75–51.49 | Not mentioned | Not mentioned | Blood | [39] |
2019 | 0.83 | Not mentioned | Not mentioned | Blood | [40] |
2021 | 203.09 | 1569 | Not mentioned | Blood | [41] |
2021 | 71–75 | Not mentioned | Not mentioned | Blood | [1] |
This work | 277.1–428.6 | 103–104 | 104 | Blood |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matar, Z.S.; Al-Dossari, M.; Awasthi, S.K.; Mohamed, D.; Abd El-Gawaad, N.S.; Aly, A.H. Conventional Biophotonic Sensing Approach for Sensing and Detection of Normal and Infected Samples Containing Different Blood Components. Crystals 2022, 12, 650. https://doi.org/10.3390/cryst12050650
Matar ZS, Al-Dossari M, Awasthi SK, Mohamed D, Abd El-Gawaad NS, Aly AH. Conventional Biophotonic Sensing Approach for Sensing and Detection of Normal and Infected Samples Containing Different Blood Components. Crystals. 2022; 12(5):650. https://doi.org/10.3390/cryst12050650
Chicago/Turabian StyleMatar, Z. S., M. Al-Dossari, S. K. Awasthi, D. Mohamed, N. S. Abd El-Gawaad, and A. H. Aly. 2022. "Conventional Biophotonic Sensing Approach for Sensing and Detection of Normal and Infected Samples Containing Different Blood Components" Crystals 12, no. 5: 650. https://doi.org/10.3390/cryst12050650
APA StyleMatar, Z. S., Al-Dossari, M., Awasthi, S. K., Mohamed, D., Abd El-Gawaad, N. S., & Aly, A. H. (2022). Conventional Biophotonic Sensing Approach for Sensing and Detection of Normal and Infected Samples Containing Different Blood Components. Crystals, 12(5), 650. https://doi.org/10.3390/cryst12050650