New Insight into the Effects of Various Parameters on the Crystallization of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RuBisCO) from Alcaligenes eutrophus
Abstract
:1. Introduction
2. Material and Methods
2.1. Cell Cultivation and Purification of RuBisCO
2.2. Determination of RuBisCO Concentration
2.3. Determination of RuBisCO Activity
2.4. Crystallization of RuBisCO
3. Results and Discussion
3.1. Effect of Temperature and pH Values
3.2. Effect of Protein Concentration and Dependence on the Volume of the Crystallization Droplet
3.3. Effect of Precipitating Agents
3.4. Effect of Inhibitor and Dependence on RuBisCO Age
3.5. Effect of Metal Ions
3.6. Seeding with Crystal Nucleus
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schulz, G.E.; Schirmer, R.H. Principles of Protein Structure; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Doolittle, R.F. Proteins. Sci. Am. 1985, 253, 88. [Google Scholar] [CrossRef] [PubMed]
- Keene, J.D. Ribonucleoprotein infrastructure regulating the flow of genetic information between the genome and the proteome. Proc. Natl. Acad. Sci. USA 2001, 98, 7018–7024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fersht, A. Enzyme Structure and Mechanism; W. H. Freeman and Company: New York, NY, USA, 1977. [Google Scholar]
- Ilari, A.; Savino, C. Protein structure determination by X-ray crystallography. Bioinformatics 2008, 452, 63–87. [Google Scholar]
- Worldwide Protein Data Bank Consortium. Protein Data Bank: The single global archive for 3D macromolecular structure data. Nucleic Acids Res. 2019, 47, D520–D528. [Google Scholar] [CrossRef] [Green Version]
- Sainis, J.; Jawali, N. Channeling of the intermediates and catalytic facilitation to Rubisco in a multienzyme complex of Calvin cycle enzymes. Indian J. Biochem. Biophys. 1994, 31, 215–220. [Google Scholar] [PubMed]
- Ducat, D.C.; Silver, P.A. Improving carbon fixation pathways. Curr. Opin. Chem. Biol. 2012, 16, 337–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ślesak, I.; Ślesak, H. The activity of RubisCO and energy demands for its biosynthesis. Comparative studies with CO2-reductases. J. Plant Physiol. 2021, 257, 153337. [Google Scholar] [CrossRef] [PubMed]
- Andersson, I.; Backlund, A. Structure and function of Rubisco. Plant Physiol. Biochem. 2008, 46, 275–291. [Google Scholar] [CrossRef]
- Choe, H.-W.; Jakob, R.; Hahn, U.; Pal, G.P. Crystallization of the activated ternary complex of ribulose-1, 5-bisphosphate carboxylase-oxygenase isolated from Rhodospirillum rubrum and from an Escherichia coli clone. J. Mol. Biol. 1985, 185, 781–783. [Google Scholar] [CrossRef]
- Spreitzer, R.J. Role of the small subunit in ribulose-1, 5-bisphosphate carboxylase/oxygenase. Arch. Biochem. Biophys. 2003, 414, 141–149. [Google Scholar] [CrossRef]
- Warburg, O. Isolation and crystallization of enolase. Biochem. Z. 1942, 310, 384–421. [Google Scholar]
- Bowien, B.; Mayer, F.; Codd, G.; Schlegel, H. Purification, some properties and quaternary structure of the D-ribulose 1, 5-diphosphate carboxylase of Alcaligenes eutrophus. Arch. Microbiol. 1976, 110, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Racker, E. [29a] Ribulose diphosphate carboxylase from spinach leaves: Ribulose diphosphate + CO2 + H2O → 2 3-P-Glycerate. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1962; Volume 5, pp. 266–270. [Google Scholar]
- McPherson, A.; Gavira, J.A. Introduction to protein crystallization. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2014, 70, 2–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberger, F.; Howard, S.; Sowers, J.; Nyce, T. Temperature dependence of protein solubility—Determination and application to crystallization in X-ray capillaries. J. Cryst. Growth 1993, 129, 1–12. [Google Scholar] [CrossRef]
- Chernov, A.; Komatsu, H. Principles of crystal growth in protein crystallization. In Science and Technology of Crystal Growth; Springer: Berlin/Heidelberg, Germany, 1995; pp. 329–353. [Google Scholar]
- Nanev, C.N. Recent insights into the crystallization process; protein crystal nucleation and growth peculiarities; Processes in the Presence of Electric Fields. Crystals 2017, 7, 310. [Google Scholar] [CrossRef] [Green Version]
- Dumetz, A.C.; Chockla, A.M.; Kaler, E.W.; Lenhoff, A.M. Effects of pH on protein–protein interactions and implications for protein phase behavior. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2008, 1784, 600–610. [Google Scholar] [CrossRef]
- Anderson, L.E.; Fuller, R. Photosynthesis in Rhodospirillum rubrum: IV. ISOLATION AND CHARACTERIZATION OF RIBULOSE 1, 5-DIPHOSPHATE CARBOXYLASE. J. Biol. Chem. 1969, 244, 3105–3109. [Google Scholar] [CrossRef]
- Bowien, B.; Mayer, F.; Spiess, E.; Pähler, A.; Englisch, U.; Saenger, W. On the structure of crystalline ribulosebisphosphate carboxylase from Alcaligenes eutrophus. Eur. J. Biochem. 1980, 106, 405–410. [Google Scholar] [CrossRef]
- Pal, G.P.; Jakob, R.; Hahn, U.; Bowien, B.; Saenger, W. Single and twinned crystals of ribulose-1, 5-bisphosphate carboxylase-oxygenase from Alcaligenes eutrophus. J. Biol. Chem. 1985, 260, 10768–10770. [Google Scholar] [CrossRef]
- Koruza, K.; Lafumat, B.; Nyblom, M.; Knecht, W.; Fisher, Z. From initial hit to crystal optimization with microseeding of human carbonic anhydrase IX—A case study for neutron protein crystallography. Crystals 2018, 8, 434. [Google Scholar] [CrossRef] [Green Version]
- Feher, G.; Kam, Z. [4] Nucleation and growth of protein crystals: General principles and assays. Methods Enzymol. 1985, 114, 77–112. [Google Scholar] [PubMed]
- Littlechild, J. Protein crystallization: Magical or logical: Can we establish some general rules? J. Phys. D Appl. Phys. 1991, 24, 111. [Google Scholar] [CrossRef]
- Hofmeister, F. Zur lehre von der wirkung der salze. Arch. Exp. Pathol. Pharmakol. 1888, 24, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Kunz, W.; Henle, J.; Ninham, B.W. ‘Zur Lehre von der Wirkung der Salze’ (about the science of the effect of salts): Franz Hofmeister’s historical papers. Curr. Opin. Colloid Interface Sci. 2004, 9, 19–37. [Google Scholar] [CrossRef]
- McPherson, A., Jr. Crystallization of proteins from polyethylene glycol. J. Biol. Chem. 1976, 251, 6300–6303. [Google Scholar] [CrossRef]
- Pierce, J.; Tolbert, N.; Barker, R. Interaction of ribulosebisphosphate carboxylase/oxygenase with transition-state analogs. Biochemistry 1980, 19, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Holzenburg, A.; Mayer, F.; Harauz, G.; Van Heel, M.; Tokuoka, R.; Ishida, T.; Harata, K.; Pal, G.; Saenger, W. Structure of D-ribulose-l, 5-bisphosphate carboxylase/oxygenase from Alcaligenes eutrophyus H16. Nature 1987, 325, 730–732. [Google Scholar] [CrossRef]
- Choe, H.-W.; Georgalis, Y.; Saenger, W. Comparative studies of ribulose-1, 5-biphosphate carboxylase/oxygenase from Alcaligenes eutrophus H16 cells, in the active and CABP-inhibited forms. J. Mol. Biol. 1989, 207, 621–623. [Google Scholar] [CrossRef]
- Hansen, S.; Vollan, V.B.; Hough, E.; Andersen, K. The crystal structure of Rubisco from Alcaligenes eutrophus reveals a novel central eight-stranded β-barrel formed by β-strands from four subunits. J. Mol. Biol. 1999, 288, 609–621. [Google Scholar] [CrossRef]
- Badger, M.; Andrews, T. Effects of CO2, O2 and temperature on a high-affinity form of ribulose diphosphate carboxylase-oxygenase from spinach. Biochem. Biophys. Res. Commun. 1974, 60, 204–210. [Google Scholar] [CrossRef]
- Lorimer, G.H.; Badger, M.R.; Andrews, T.J. The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry 1976, 15, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Paech, C.; Tolbert, N. Active site studies of ribulose-1,5-bisphosphate carboxylase/oxygenase with pyridoxal 5′-phosphate. J. Biol. Chem. 1978, 253, 7864–7873. [Google Scholar] [CrossRef]
- Laing, W.A.; Christeller, J.T. A model for the kinetics of activation and catalysis of ribulose 1,5-bisphosphate carboxylase. Biochem. J. 1976, 159, 563–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robison, P.D.; Martin, M.N.; Tabita, F.R. Differential effects of metal ions on Rhodospirillum rubrum ribulosebisphosphate carboxylase/oxygenase and stoichiometric incorporation of bicarbonate (1-) ion into a cobalt (III)-enzyme complex. Biochemistry 1979, 18, 4453–4458. [Google Scholar] [CrossRef]
- Wildner, G.F.; Henkel, J. Differential reactivation of ribulose 1,5-bisphosphate oxygenase with low carboxylase activity by Mn2+. FEBS Lett. 1978, 91, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Tomčová, I.; Branca, R.M.M.; Bodó, G.; Bagyinka, C.; Kutá Smatanová, I. Cross-crystallization method used for the crystallization and preliminary diffraction analysis of a novel di-haem cytochrome c4. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2006, 62, 820–824. [Google Scholar] [CrossRef] [Green Version]
- Tomčová, I.; Smatanová, I.K. Copper co-crystallization and divalent metal salts cross-influence effect: A new optimization tool improving crystal morphology and diffraction quality. J. Cryst. Growth 2007, 306, 383–389. [Google Scholar] [CrossRef]
- Hekmat, D.; Hebel, D.; Joswig, S.; Schmidt, M.; Weuster-Botz, D. Advanced protein crystallization using water-soluble ionic liquids as crystallization additives. Biotechnol. Lett. 2007, 29, 1703–1711. [Google Scholar] [CrossRef]
- Judge, R.A.; Takahashi, S.; Longenecker, K.L.; Fry, E.H.; Abad-Zapatero, C.; Chiu, M.L. The effect of ionic liquids on protein crystallization and X-ray diffraction resolution. Cryst. Growth Des. 2009, 9, 3463–3469. [Google Scholar] [CrossRef]
- Bergfors, T. Seeds to crystals. J. Struct. Biol. 2003, 142, 66–76. [Google Scholar] [CrossRef]
- Stura, E.A.; Wilson, I.A. Applications of the streak seeding technique in protein crystallization. J. Cryst. Growth 1991, 110, 270–282. [Google Scholar] [CrossRef]
- Fitzgerald, P.M.; Madsen, N.B. Improvement of limit of diffraction and useful X-ray lifetime of crystals of glycogen debranching enzyme. J. Cryst. Growth 1986, 76, 600–606. [Google Scholar] [CrossRef]
- Thaller, C.; Eichele, G.; Weaver, L.; Wilson, E.; Karlsson, R.; Jansonius, J. [9] Seed enlargement and repeated seeding. Methods Enzymol. 1985, 114, 132–135. [Google Scholar] [PubMed]
- Thaller, C.; Weaver, L.; Eichele, G.; Wilson, E.; Karlsson, R.; Jansonius, J. Repeated seeding technique for growing large single crystals of proteins. J. Mol. Biol. 1981, 147, 465–469. [Google Scholar] [CrossRef]
- Smit, J.D.G.; Winterhalter, K.H. Crystallographic data for haemoglobin from the lanceolate fluke Dicrocoelium dendriticum. J. Mol. Biol. 1981, 146, 641–647. [Google Scholar] [CrossRef]
Reagent | Volume |
---|---|
1M Tris/HCl | 50 µL |
6 mM NADH | 20 µL |
0.1 M GSH | 50 µL |
0.5 M KHCO3 | 150 µL |
25 mM RUBP | 20 µL |
0.1 M ATP | 120 µL |
0.5 M MgCI2 | 20 µL |
10 mg/mL GDH/TIM | 10 µL |
6 mg/mL GAP-DH/PGK | 20 µL |
Total | 460 µL |
Precipitating Agents | Range of Precipitating Agents | Methods |
---|---|---|
(NH4)2SO4 | 22–28% saturated in the isolation buffer | Sitting drop |
Na2SO4 | 20–25% in isolation buffer | Microdialysis |
MgSO4 | 22–28% in isolation buffer | Sitting drop |
MPD | 25–30% in isolation buffer | Microdialysis |
PEG 6000 | 10–15% in isolation buffer | Sitting drop |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choe, H.-W.; Kim, Y.J. New Insight into the Effects of Various Parameters on the Crystallization of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RuBisCO) from Alcaligenes eutrophus. Crystals 2022, 12, 196. https://doi.org/10.3390/cryst12020196
Choe H-W, Kim YJ. New Insight into the Effects of Various Parameters on the Crystallization of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RuBisCO) from Alcaligenes eutrophus. Crystals. 2022; 12(2):196. https://doi.org/10.3390/cryst12020196
Chicago/Turabian StyleChoe, Hui-Woog, and Yong Ju Kim. 2022. "New Insight into the Effects of Various Parameters on the Crystallization of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RuBisCO) from Alcaligenes eutrophus" Crystals 12, no. 2: 196. https://doi.org/10.3390/cryst12020196