Penetration Failure Mechanism of Multi-Diameter Tungsten Fiber Reinforced Zr-Based Bulk Metallic Glasses Matrix Composite Rod
Abstract
:1. Introduction
2. Design and Preparation of MD-WF/Zr-MG
3. Experiment of MD-WF/Zr-MG Rod
3.1. Setup of Experiment
3.2. Experimental Results and Analysis
4. Penetration Failure Mechanism of the MD-WF/Zr-MG Rod
4.1. Ultimate Bending Diameter of WF
4.2. Penetration Failure Mode
5. Discussion
6. Conclusions
- When multi-diameter WFs are added to WF/Zr-MG, the WF/Zr-MG rod retains the penetration self-sharpening feature and increases penetration stability. The WF/Zr-MG makes use of the advantages and avoids the disadvantages of WFs when WF/Zr-MG is reinforced by multiple diameter WFs. The penetration ability of MD-WF/Zr-MG-II rods is better than that of MD-WF/Zr-MG-I rods.
- The arrangement of WFs in MD-WF/Zr-MG has an important influence on its penetration failure mode. When the diameters of WFs increase gradually from inside to outside (MD-WF/Zr-MG-I), the penetration failure mode of MD-WF/Zr-MG rods into RHA is the bending and backflow of WFs. When the diameters of WFs decrease gradually from inside to outside (MD-WF/Zr-MG-II), the penetration failure mode of MD-WF/Zr-MG rods into RHA is the shear failure.
- The penetration failure mode of MD-WF/Zr-MG rods is related to the bend spaces and the ultimate bending diameters of WFs in it. If the bend spaces of all WFs are equal or larger than their ultimate bending diameters, the penetration failure mode of the MD-WF/Zr-MG-I rod is the bending and backflow of WFs, oppositely the penetration failure mode of the MD-WF/Zr-MG-II rod is the shear failure.
- When designing MD-WF/Zr-MG, the bending space and ultimate bending diameter of WFs should be calculated to ensure that the bending space of most parts of WFs is larger than their ultimate bending diameter.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.H.; Dong, C.; Shek, C.H. Bulk metallic glasses. Mater. Sci. Eng. R Rep. 2004, 44, 45–89. [Google Scholar] [CrossRef]
- Schroers, J. Bulk Metallic Glasses. Phys. Today 2013, 66, 32–37. [Google Scholar] [CrossRef]
- Dandliker, R.B.; Conner, R.D.; Johnson, W.L. Melt infiltration casting of bulk metallic-glass matrix composites. J. Mater. Res. 1998, 13, 2896–2901. [Google Scholar] [CrossRef] [Green Version]
- Choi-Yim, H.; Conner, R.D.; Szuecs, F.; Johnson, W.L. Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites. Scr. Mater. 2001, 45, 1039–1045. [Google Scholar] [CrossRef]
- Conner, R.D.; Dandliker, R.B.; Scruggs, V.; Johnson, W.L. Dynamic deformation behavior of tungsten-fiber/metallic glass matrix composites. Int. J. Impact Eng. 2000, 24, 435–444. [Google Scholar] [CrossRef]
- Zhang, H.F.; Li, H.; Wang, A.M.; Fu, H.M.; Ding, B.Z.; Hu, Z.Q. Synthesis and characteristics of 80 vol.% tungsten (W) fibre/Zr based metallic glass composite. Intermetallics 2009, 17, 1070–1077. [Google Scholar] [CrossRef]
- Qiu, K.Q.; Wang, A.M.; Zhang, H.F.; Ding, B.Z.; Hu, Z.Q. Mechanical properties of tungsten fiber reinforced ZrAlNiCuSi metallic glass matrix composite. Intermetallics 2002, 10, 1283–1288. [Google Scholar] [CrossRef]
- Zhang, B.; Fu, H.; Sha, P.; Zhu, Z.; Dong, C.; Zhang, H.; Hu, Z. Anisotropic compressive deformation behaviors of tungsten fiber reinforced Zr-based metallic glass composites. Mater. Sci. Eng. A 2013, 566, 16–21. [Google Scholar] [CrossRef]
- Zhang, B.; Fu, H.; Li, Z.; Zhu, Z.; Zhang, H.; Hu, Z. Anisotropic tensile properties of tungsten fiber reinforced Zr based metallic glass composites. Mater. Sci. Eng. A 2014, 619, 165–170. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.F.; Wang, Z.G.; Zhang, H.F.; Zang, Q.S.; Qiu, K.Q. Effects of tungsten fiber on failure mode of zr-based bulk metallic glassy composite. Metall. Mater. Trans. A 2006, 37, 2459–2469. [Google Scholar] [CrossRef] [Green Version]
- Choi-Yim, H.; Schroers, J.; Johnson, W.L. Microstructures and mechanical properties of tungsten wire/particle reinforced Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix composites. Appl. Phys. Lett. 2002, 80, 1906–1908. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.H.; Chen, Y.; Jiang, M.Q.; Chen, X.W.; Zhang, H.F.; Dai, L.H. On the compressive failure of tungsten fiber reinforced Zr-based bulk metallic glass composite. Int. J. Solids Struct. 2015, 69, 428–441. [Google Scholar] [CrossRef]
- Ma, W.; Kou, H.; Chen, C.; LI, J.; Hu, R. Interfacial characteristics and dynamic mechanical properties of Wf/Zr-based metallic glass matrix composites. T. Nonferr. Met. Soc. 2008, 18, 77–81. [Google Scholar] [CrossRef]
- Ma, W.; Kou, H.; Chen, C.; Li, J.; Chang, H.; Zhou, L.; Fu, H. Compressive deformation behaviors of tungsten fiber reinforced Zr-based metallic glass composites. Mater. Sci. Eng. A 2008, 486, 308–312. [Google Scholar] [CrossRef]
- Chen, G.; Hao, Y.; Chen, X.; Hao, H. Compressive behaviour of tungsten fibre reinforced Zr-based metallic glass at different strain rates and temperatures. Int. J. Impact Eng. 2017, 106, 110–119. [Google Scholar] [CrossRef]
- Zhu, F.L.; Chen, Y.; Zhu, G.L. Numerical simulation study on penetration performance of depleted Uranium (DU) alloy fragments. Def. Technol. 2021, 17, 50–55. [Google Scholar] [CrossRef]
- Du, C.; Shu, D.; Du, Z.; Gao, G.; Wang, M.; Zhu, Z.; Gao, G.; Wang, M.; Zhu, Z.; Xu, L. Effect of L/D on penetration performance of tungsten fibre/Zr-based bulk metallic glass matrix composite rod. Int. J. Refract. Met. Hard Mater. 2019, 85, 105042. [Google Scholar] [CrossRef]
- Chen, X.W.; Chen, G. Experimental research on the penetration of tungsten-fiber/metallic-glass matrix composite material bullet into steel target. EPJ Web Conf. 2012, 26, 1049. [Google Scholar] [CrossRef]
- Chen, X.W.; Wei, L.M.; Li, J.C. Experimental research on the long rod penetration of tungsten-fiber/Zr-based metallic glass matrix composite into Q235 steel target. Int. J. Impact Eng. 2015, 79, 102–116. [Google Scholar] [CrossRef]
- Rong, G.; Huang, D.W.; Yang, M.C. Penetrating behaviors of Zr-based metallic glass composite rods reinforced by tungsten fibers. Theor. Appl. Fract Mec. 2012, 58, 21–27. [Google Scholar] [CrossRef]
- Guo, W.; Jiang, H.; Wang, S.; Wan, M.; Fang, X.; Tian, S. Self-sharpening ability enhanced by torque gradient in twisted tungsten-fiber-reinforced Cu-Zn matrix composite. J. Alloys Compd. 2019, 794, 396–401. [Google Scholar] [CrossRef]
- Lee, K.; Lee, S.; Lee, S.; Lee, S. Compressive and Tensile Properties of Tungsten-Continuous-Fiber-Reinforced Zr-Based Amorphous Alloy Matrix Composite Fabricated by Liquid Pressing Process. Metall. Mater. Trans. A 2008, 39, 1319–1326. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Lee, S.; Lee, S.; Kim, N.J. Microstructure and Mechanical Properties of Two Continuous-Fiber-Reinforced Zr-Based Amorphous Alloy Composites Fabricated by Liquid Pressing Process. Metall. Mater. Trans. A 2008, 39, 763–771. [Google Scholar] [CrossRef] [Green Version]
- Li, J.C.; Chen, X.W.; Huang, F.L. FEM analysis on the deformation and failure of fiber reinforced metallic glass matrix composite. Mater. Sci. Eng. A 2016, 652, 145–166. [Google Scholar] [CrossRef]
- Li, J.C.; Chen, X.W.; Huang, F.L. FEM analysis on the ‘’self-sharpening’’ behavior of tungsten fiber/metallic glass matrix composite long rod. Int. J. Impact Eng. 2015, 86, 67–83. [Google Scholar] [CrossRef]
- Xue, Y.; Zhong, X.; Wang, L.; Fan, Q.; Zhu, L.; Fan, B.; Zhang, H.; Fu, H. Effect of W volume fraction on dynamic mechanical behaviors of W fiber/Zr-based bulk metallic glass composites. Mater. Sci. Eng. A 2015, 639, 417–424. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, L.; Fu, H.M.; Li, Z.K.; Zhu, Z.W.; Li, H.; Zhang, H.W.; Wang, A.M.; Wang, Y.D.; Zhang, H.F. Compressive mechanical properties and failure modes of Zr-based bulk metallic glass composites containing tungsten springs. Mater. Des. 2018, 160, 652–660. [Google Scholar] [CrossRef]
- Chen, S.; Li, W.Q.; Zhang, L.; Fu, H.M.; Li, Z.K.; Zhu, Z.W.; Li, H.; Zhang, H.W.; Wang, A.M.; Wang, Y.D.; et al. Dynamic compressive mechanical properties of the spiral tungsten wire reinforced Zr-based bulk metallic glass composites. Compos. Part B Eng. 2020, 199, 108219. [Google Scholar] [CrossRef]
- Zhang, Z.; Kong, J.; Liu, X.; Song, X.; Dong, K. Preparation, microstructure and mechanical properties of tungsten fiber reinforced LaAlCuNi metallic glass matrix composites. Intermetallics 2021, 132, 107139. [Google Scholar] [CrossRef]
- Zhang, B.; Fu, H.M.; Zhu, Z.W.; Zhang, H.F.; Dong, C.; Hu, Z.Q. Effect of W fiber diameter on the compressive mechanical properties of the Zr-based metallic glass composites. Acta Metall. Sin. 2013, 49, 1191–1200. [Google Scholar] [CrossRef]
- Du, C.X.; Du, Z.H.; Zhu, Z.W. Effect of impact velocity and diameter of tungsten fiber on penetration ability of Wf/Zr-based metallic glass composite penetrator. Rare Met. Mater. Eng. 2017, 46, 1632–1637. [Google Scholar]
- Magness, L.S. High strain rate deformation behaviors of kinetic energy penetrator materials during ballistic impact. Mech. Mater. 1994, 17, 147–154. [Google Scholar] [CrossRef]
- Terentyev, D.; Van Renterghem, W.; Tanure, L.; Dubinko, A.; Riesch, J.; Lebediev, S.; Khvan, T.; Verbeken, K.; Coenen, J.W.; Zhurkin, E.E. Correlation of microstructural and mechanical properties of K-doped tungsten fibers used as reinforcement of tungsten matrix for high temperature applications. Int. J. Refract. Met. Hard Mater. 2019, 79, 204–216. [Google Scholar] [CrossRef] [Green Version]
- Terentyev, D.; Riesch, J.; Lebediev, S.; Bakaeva, A.; Coenen, J.W. Mechanical properties of as-fabricated and 2300 °C annealed tungsten wire tested up to 600 °C. Int. J. Refract. Met. Hard Mater. 2017, 66, 127–134. [Google Scholar] [CrossRef]
- Terentyev, D.; Riesch, J.; Lebediev, S.; Khvan, T.; Dubinko, A.; Bakaeva, A. Strength and deformation mechanism of tungsten wires exposed to high temperature annealing: Impact of potassium doping. Int. J. Refract. Met. Hard Mater. 2018, 76, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Wilbeck, J.S.; Charles, E.; Anderson, J.; John, P.; Riegel, I.; Lankford, J.; Mullin, S.A.; Bodner, S.R. A Short Course on Penetration Mechanics; Southwest Research Institute: San Antonio, TX, USA, 1986. [Google Scholar]
- Rosenberg, Z.; Kositski, R. The hole diameter in metallic plates impacted by hypervelocity projectiles. Int. J. Impact Eng. 2017, 102, 147–155. [Google Scholar] [CrossRef]
No. | Material | Mass of Projectile | Mass of Rod |
---|---|---|---|
I-1 | MD-WF/Zr-MG-I | 108.1 ± 0.05 g | 61.2 ± 0.05 g |
I-2 | 107.8 ± 0.05 g | 61.6 ± 0.05 g | |
I-3 | 107.9 ± 0.05 g | 61.6 ± 0.05 g | |
II-1 | MD-WF/Zr-MG-II | 105.3 ± 0.05 g | 59.1 ± 0.05 g |
II-2 | 107.3 ± 0.05 g | 61.0 ± 0.05 g | |
II-3 | 107.7 ± 0.05 g | 60.7 ± 0.05 g |
Diameter of WF | Bending Space | Ultimate Bending Diameter | |
---|---|---|---|
Ø0.3 mm | 4.15 mm~4.85 mm | 0.255 mm~1.445 mm | <0.4 mm |
Ø0.5 mm | 2.75 mm~3.75 mm | 2.125 mm~3.825 mm | <0.6 mm |
Ø1.0 mm | 0~2 mm | 5.1 mm~8.5 mm | 2 mm~4 mm |
Diameter of WF | Bending Space | Ultimate Bending Diameter | |
---|---|---|---|
Ø0.3 mm | 0~1.8 mm | 5.44 mm~8.5 mm | <0.4 mm |
Ø0.5 mm | 2.2 mm~2.7 mm | 3.91 mm~4.76 mm | <0.6 mm |
Ø1.0 mm | 3.5 mm~4.5 mm | 0.85 mm~2.55 mm | 2 mm~4 mm |
Materials | Diameter | Volume Fraction | |
---|---|---|---|
MD-WF/Zr-MG-I | 0.3 | >0.6375 | 8.05% |
>2.125 | 7.08% | ||
>3.6125 | 6.43% | ||
0.5 | >3.542 | 15.42% | |
>4.958 | 13.41% | ||
>6.375 | 11.40% | ||
1 | 1.275~2.55 | 12.69% | |
1.7~3.4 | 6.35% | ||
2.125~4.25 | 1.06% | ||
MD-WF/Zr-MG-II | 0.3 | >13.6 | 4.46% |
>14.875 | 3.74% | ||
>16.15 | 3.02% | ||
>17.425 | 2.29% | ||
>18.7 | 1.45% | ||
>19.975 | 0.60% | ||
>21.25 | 0.12% | ||
0.5 | >6.517 | 10.54% | |
>7.933 | 6.68% | ||
1 | 0.213~0.425 | 26.92% | |
0.638~1.275 | 19.23% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, C.; Fu, H.; Zhu, Z.; Wang, K.; Gao, G.; Zhou, F.; Xu, L.; Du, Z. Penetration Failure Mechanism of Multi-Diameter Tungsten Fiber Reinforced Zr-Based Bulk Metallic Glasses Matrix Composite Rod. Crystals 2022, 12, 124. https://doi.org/10.3390/cryst12020124
Du C, Fu H, Zhu Z, Wang K, Gao G, Zhou F, Xu L, Du Z. Penetration Failure Mechanism of Multi-Diameter Tungsten Fiber Reinforced Zr-Based Bulk Metallic Glasses Matrix Composite Rod. Crystals. 2022; 12(2):124. https://doi.org/10.3390/cryst12020124
Chicago/Turabian StyleDu, Chengxin, Huameng Fu, Zhengwang Zhu, Kehong Wang, Guangfa Gao, Feng Zhou, Lizhi Xu, and Zhonghua Du. 2022. "Penetration Failure Mechanism of Multi-Diameter Tungsten Fiber Reinforced Zr-Based Bulk Metallic Glasses Matrix Composite Rod" Crystals 12, no. 2: 124. https://doi.org/10.3390/cryst12020124
APA StyleDu, C., Fu, H., Zhu, Z., Wang, K., Gao, G., Zhou, F., Xu, L., & Du, Z. (2022). Penetration Failure Mechanism of Multi-Diameter Tungsten Fiber Reinforced Zr-Based Bulk Metallic Glasses Matrix Composite Rod. Crystals, 12(2), 124. https://doi.org/10.3390/cryst12020124