Morphology Transition of Te-Doped InAs Nanowire on InP(111)B Grown Using MOCVD Method
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khanal, D.R.; Wu, J. Gate coupling and charge distribution in nanowire field effect transistors. Nano Lett. 2007, 7, 2778–2783. [Google Scholar] [CrossRef]
- Breuer, S.; Pfüller, C.; Flissikowski, T.; Brandt, O.; Grahn, H.T.; Geelhaar, L.; Riechert, H. Suitability of au- and self-assisted GaAs nanowires for optoelectronic applications. Nano Lett. 2011, 11, 1276–1279. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Qing, Q.; Xie, P.; Gao, R.; Lieber, C.M. Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 2012, 12, 1711–1716. [Google Scholar] [CrossRef] [PubMed]
- Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M.H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B.; et al. InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit. Science 2013, 339, 1057–1060. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Zhang, S.; Wang, Z.; Adamo, G.; Liu, H.; Huang, Y.; Couteau, C.; Soci, C. GaAs/AlGaAs nanowire photodetector. Nano Lett. 2014, 14, 2688–2693. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, M.; Banerjee, A.; Bhattacharya, P. Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. Nano Lett. 2010, 10, 3355–3359. [Google Scholar] [CrossRef]
- Konar, A.; Mathew, J.; Nayak, K.; Bajaj, M.; Pandey, R.K.; Dhara, S.; Murali, K.V.R.M.; Deshmukh, M.M. Carrier transport in high mobility InAs nanowire junctionless transistors. Nano Lett. 2015, 15, 1684–1690. [Google Scholar] [CrossRef]
- Güsken, N.A.; Rieger, T.; Mussler, G.; Lepsa, M.I.; Grützmacher, D. Influence of Te-doping on catalyst-free VS InAs nanowires. Nanoscale Res. Lett. 2019, 14, 179. [Google Scholar] [CrossRef]
- Lubow, A.; Ismail-Beigi, S.; Ma, T. Comparison of drive currents in metal-oxide-semiconductor field-effect transistors made of Si, Ge, GaAs, InGaAs, And InAs channels. Appl. Phys. Lett. 2010, 96, 122105. [Google Scholar] [CrossRef]
- Takagi, S.; Zhang, R.; Suh, J.; Kim, S.; Yokoyama, M.; Nishi, K.; Takenaka, M. III–V/Ge Channel MOS Device Technologies in Nano CMOS Era. Jpn. J. Appl. Phys. 2015, 54, 06FA01. [Google Scholar] [CrossRef]
- del Alamo, J. Nanometre-Scale Electronics With III–V Compound Semiconductors. Nature 2011, 479, 317–323. [Google Scholar] [CrossRef]
- Morral, A. Gold-free GaAs nanowire synthesis and optical properties. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 819–828. [Google Scholar] [CrossRef]
- Koblmüller, G.; Abstreiter, G. Growth and properties of InGaAs nanowires on silicon. Phys. Status Solidi RRL 2014, 8, 11–30. [Google Scholar] [CrossRef]
- Dong, R.; Yang, W.; Wu, P.; Hussain, M.; Xiu, Z.; Wu, G.; Wang, P. Microstructure characterization of SiC nanowires as reinforcements in composites. Mater. Charact. 2015, 103, 37–41. [Google Scholar] [CrossRef]
- Utama, M.I.B.; de la Mata, M.; Magen, C.; Arbiol, J.; Xiong, Q. Twinning-, Polytypism-, and Polarity-Induced Morphological Modulation in Nonplanar Nanostructures with van Der Waals Epitaxy. Adv. Funct. Mater. 2013, 23, 1636–1646. [Google Scholar] [CrossRef]
- Galvão Tizei, L.H.; Amato, M. Electronic Structure and Optical Properties of Semiconductor Nanowires Polytypes. Eur. Phys. J. B 2020, 93, 16. [Google Scholar] [CrossRef]
- Thelander, C.; Caroff, P.; Plissard, S.; Dey, A.W.; Dick, K.A. Effects of Crystal Phase Mixing on the Electrical Properties of InAs Nanowires. Nano Lett. 2011, 11, 2424–2429. [Google Scholar] [CrossRef]
- Schroer, M.D.; Petta, J.R. Correlating the Nanostructure and Electronic Properties of InAs Nanowires. Nano Lett. 2010, 10, 1618–1622. [Google Scholar] [CrossRef]
- Heiss, M.; Conesa-Boj, S.; Ren, J.; Tseng, H.-H.; Gali, A.; Rudolph, A.; Uccelli, E.; Peiró, F.; Morante, J.R.; Schuh, D.; et al. Direct Correlation of Crystal Structure and Optical Properties in Wurtzite/Zinc-Blende GaAs Nanowire Heterostructures. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 83, 045303. [Google Scholar] [CrossRef]
- Schmid, H.; Moselund, K.E.; Bjork, M.T.; Richter, M.; Ghoneim, H.; Bessire, C.D.; Riel, H. Fabrication of Vertical InAs-Si Heterojunction Tunnel Field Effect Transistors. In Proceedings of the 69th Device Research Conference, Santa Barbara, CA, USA, 20–22 June 2011; IEEE: Piscataway, NJ, USA, 2011. [Google Scholar]
- Björk, M.T.; Knoch, J.; Schmid, H.; Riel, H.; Riess, W. Silicon Nanowire Tunneling Field-Effect Transistors. Appl. Phys. Lett. 2008, 92, 193504. [Google Scholar] [CrossRef]
- Suomalainen, S.; Hakkarainen, T.V.; Salminen, T.; Koskinen, R.; Honkanen, M.; Luna, E.; Guina, M. Te-Doping of Self-Catalyzed GaAs Nanowires. Appl. Phys. Lett. 2015, 107, 012101. [Google Scholar] [CrossRef]
- De-Sheng, J.; Makita, Y.; Ploog, K.; Queisser, H.J. Electrical Properties and Photoluminescence of Te-doped GaAs Grown by Molecular Beam Epitaxy. J. Appl. Phys. 1982, 53, 999–1006. [Google Scholar] [CrossRef]
- Grundmann, M. The Physics of Semiconductors: An Introduction Including Devices and Nanophysics, 1st ed.; Springer: Berlin, Germany, 2010. [Google Scholar]
- Ahmad, E.; Kasanaboina, P.K.; Karim, M.R.; Sharma, M.; Reynolds, C.L.; Liu, Y.; Iyer, S. Te Incorporation in GaAs1−xSbxnanowires and P-i-n Axial Structure. Semicond. Sci. Technol. 2016, 31, 125001. [Google Scholar] [CrossRef]
- Kennon, E.L.; Orzali, T.; Xin, Y.; Vert, A.; Lind, A.G.; Jones, K.S. Deactivation of Electrically Supersaturated Te-Doped InGaAs Grown by MOCVD. J. Mater. Sci. 2017, 52, 10879–10885. [Google Scholar] [CrossRef]
- LaPierre, R.R.; Chia, A.C.E.; Gibson, S.J.; Haapamaki, C.M.; Boulanger, J.; Yee, R.; Kuyanov, P.; Zhang, J.; Tajik, N.; Jewll, N.; et al. III–V nanowire photovoltaics: Review of design for high efficiency. Phys. Status Solidi RRL 2013, 7, 815–830. [Google Scholar] [CrossRef]
- Dimakis, E.; Ramsteiner, M.; Huang, C.-N.; Trampert, A.; Davydok, A.; Biermanns, A.; Pietsch, U.; Riechert, H.; Geelhaar, L. In Situ Doping of Catalyst-Free InAs Nanowires with Si: Growth, Polytypism, and Local Vibrational Modes of Si. Appl. Phys. Lett. 2013, 103, 143121. [Google Scholar] [CrossRef]
- Wirths, S.; Weis, K.; Winden, A.; Sladek, K.; Volk, C.; Alagha, S.; Weirich, T.E.; von der Ahe, M.; Hardtdegen, H.; Lüth, H.; et al. Effect of Si-Doping on InAs Nanowire Transport and Morphology. J. Appl. Phys. 2011, 110, 053709. [Google Scholar] [CrossRef]
- Wixom, R.R.; Rieth, L.W.; Stringfellow, G.B. Te Surfactant Effects on the Morphology of Patterned (001) GaAs Homoepitaxy. J. Cryst. Growth 2004, 269, 276–283. [Google Scholar] [CrossRef]
- Paquette, B.; Ilahi, B.; Aimez, V.; Arès, R. Inhibition of Te Surfactant Effect on Surface Morphology of Heavily Te-Doped GaAs. J. Cryst. Growth 2013, 383, 30–35. [Google Scholar] [CrossRef]
- Anyebe, E.A.; Rajpalke, M.K.; Veal, T.D.; Jin, C.J.; Wang, Z.M.; Zhuang, Q.D. Surfactant Effect of Antimony Addition to the Morphology of Self-Catalyzed InAs1−xSbx Nanowires. Nano Res. 2015, 8, 1309–1319. [Google Scholar] [CrossRef]
- Caroff, P.; Bolinsson, J.; Johansson, J. Crystal Phases in III--V Nanowires: From Random toward Engineered Polytypism. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 829–846. [Google Scholar] [CrossRef]
- Harris, J.S., Jr.; Yuen, H.; Bank, S.; Wistey, M.; Lordi, V.; Gugov, T.; Bae, H.; Goddard, L. MBE Growth and Characterization of Long Wavelength Dilute Nitride III–V Alloys. In Dilute Nitride Semiconductors; Elsevier: Amsterdam, The Netherlands, 2005; pp. 1–92. [Google Scholar] [CrossRef]
- Jacobsson, D.; Panciera, F.; Tersoff, J.; Reuter, M.C.; Lehmann, S.; Hofmann, S.; Dick, K.A.; Ross, F.M. Interface Dynamics and Crystal Phase Switching in GaAs Nanowires. Nature 2016, 531, 317–322. [Google Scholar] [CrossRef]
- Guniat, L.; Caroff, P.; Fontcuberta i Morral, A. Vapor Phase Growth of Semiconductor Nanowires: Key Developments and Open Questions. Chem. Rev. 2019, 119, 8958–8971. [Google Scholar] [CrossRef]
- Tomioka, K.; Mohan, P.; Noborisaka, J.; Hara, S.; Motohisa, J.; Fukui, T. Growth of Highly Uniform InAs Nanowire Arrays by Selective-Area MOVPE. J. Cryst. Growth 2007, 298, 644–647. [Google Scholar] [CrossRef]
- Kodaira, R.; Hara, S.; Kabamoto, K.; Fujimagari, H. Synthesis and Structural Characterization of Vertical Ferromagnetic MnAs/Semiconducting InAs Heterojunction Nanowires. Jpn. J. Appl. Phys. 2016, 55, 075503. [Google Scholar] [CrossRef]
- Hertenberger, S.; Rudolph, D.; Bichler, M.; Finley, J.J.; Abstreiter, G.; Koblmüller, G. Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy. J. Appl. Phys. 2010, 108, 114316. [Google Scholar] [CrossRef]
- Fathi Aghdam, F.; Liao, H.; Huang, Q. Modeling Interaction in Nanowire Growth Process Toward Improved Yield. IEEE Trans. Autom. Sci. Eng. 2017, 14, 1139–1149. [Google Scholar] [CrossRef]
- Hara, S.; Elm, M.T.; Klar, P.J. Selective-Area Growth and Transport Properties of MnAs/InAs Heterojunction Nanowires. J. Mater. Res. 2019, 34, 3863–3876. [Google Scholar] [CrossRef]
- Wang, X.; Bai, X.; Yang, X.; Liu, X.; Du, W.; Yang, T. A Theoretical and Experimental Study on Effect of Growth Time on Self-Catalyzed InAs Nanowires. Appl. Surf. Sci. 2020, 518, 146174. [Google Scholar] [CrossRef]
- Song, C.-H.; Kong, M.; Jang, H.; Tae Lee, S.; Park, H.-H.; Zoo Kim, C.; Hyun Jung, S.; Choi, Y.; Kim, S.; Ko, D.-H.; et al. Vertical Growth Characterization of InAs Nanowires Grown by Selective Area Growth on Patterned InP(1 1 1)B Substrate by a MOCVD Method. Solid State Electron. 2021, 175, 107939. [Google Scholar] [CrossRef]
- Lewis, R.B.; Corfdir, P.; Herranz, J.; Küpers, H.; Jahn, U.; Brandt, O.; Geelhaar, L. Self-Assembly of InAs Nanostructures on the Sidewalls of GaAs Nanowires Directed by a Bi Surfactant. Nano Lett. 2017, 17, 4255–4260. [Google Scholar] [CrossRef] [PubMed]
- Massies, J.; Grandjean, N. Surfactant Effect on the Surface Diffusion Length in Epitaxial Growth. Phys. Rev. B Condens. Matter. 1993, 48, 8502–8505. [Google Scholar] [CrossRef] [PubMed]
- Jeong, I.-Y.; Choi, M.; Kim, J.; Kim, Y.H.; Shin, J.C.; Kim, E.K.; Kim, C.-S.; Song, S. Mixed Phase Confirmation of InAsxP1−x Nanowire Array Using Modified Reciprocal Space Mapping. Electron. Mater. Lett. 2022, 18, 79–86. [Google Scholar] [CrossRef]





Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.-H.; Kong, M.; Jang, H.; Lee, S.T.; Park, H.-H.; Kim, D.; Song, K.; Ko, D.-H.; Shin, C.-S. Morphology Transition of Te-Doped InAs Nanowire on InP(111)B Grown Using MOCVD Method. Crystals 2022, 12, 1846. https://doi.org/10.3390/cryst12121846
Song C-H, Kong M, Jang H, Lee ST, Park H-H, Kim D, Song K, Ko D-H, Shin C-S. Morphology Transition of Te-Doped InAs Nanowire on InP(111)B Grown Using MOCVD Method. Crystals. 2022; 12(12):1846. https://doi.org/10.3390/cryst12121846
Chicago/Turabian StyleSong, Chang-Hun, Minwoo Kong, Hyunchul Jang, Sang Tae Lee, Hyeong-Ho Park, Donghyun Kim, Keunman Song, Dae-Hong Ko, and Chan-Soo Shin. 2022. "Morphology Transition of Te-Doped InAs Nanowire on InP(111)B Grown Using MOCVD Method" Crystals 12, no. 12: 1846. https://doi.org/10.3390/cryst12121846
APA StyleSong, C.-H., Kong, M., Jang, H., Lee, S. T., Park, H.-H., Kim, D., Song, K., Ko, D.-H., & Shin, C.-S. (2022). Morphology Transition of Te-Doped InAs Nanowire on InP(111)B Grown Using MOCVD Method. Crystals, 12(12), 1846. https://doi.org/10.3390/cryst12121846

