Recent Progress on AlGaN Based Deep Ultraviolet Light-Emitting Diodes below 250 nm
Abstract
:1. Introduction
2. Advances in DUV-LEDs below 250 nm
3. Key Issues and Challenges
3.1. Material Crystal Quality
- Two-step growth method [40,41,42,43]. It is used to alleviate the mismatch between AlN and sapphire substrate and improve the AlN quality. The first step is to form AlN crystal islands under high V/III ratio and low temperature. The second step is to grow AlN buffer layer with low threading dislocation density (TDD) and smooth surface through enhanced Al atom surface migration and lateral growth. The mechanism for reducing TDD is the transition from 3D to 2D growth mode that facilitates dislocation bending and annihilation along the growth direction. Hasan et al. [40] recently reported 4 um-thick AlN layers with total dislocation density of 1.1 × 109 cm−2. Two-step growth exists the issue that the crystal islands may change their crystal orientation under the actions of airflow and rotation, etc., and thus generate threading screw dislocations. Three-step growth based on two-step growth was proposed [42]. The additional growth step is inserting a morphology control layer between the buffer layer and the step-flow-growth layer by adjusting the ammonia gas flow rate to a certain value. The twist angle of island could be controlled and the threading edge dislocation lines are more likely to form a loop and annihilate. The edge dislocation can drop to the order of 107 cm−2;
- Epitaxial lateral overgrowth (ELOG) method [44,45,46,47,48,49,50]. To be specific, the low DD is caused by filtration related to patterns on sapphire substrate and annihilation related to the formation of a loop structure during growth [47]. Nakano et al. [49] first demonstrated the ELOG-AlN layers on trenched-patterned sapphire substrates and achieved a dislocation density of 6.7 × 108 cm−2. To further enhanced the coalescence of ELOG-AlN, Imura et al. [48] grew ELOG-AlN layers on patterned AlN templates grown on sapphire substrates and achieved a TDD value of less than 107 cm−2. Recently, Liu et al. [50] proposed a preset strain modulation method on nano-patterned AlN templates by introducing HTA pretreatment. The XRC FWHM values of the (0002) and reflections were significantly dropped from 190 and 311 arcsec to 140 and 228 arcsec, respectively. At present, ELOG combined with HTA is believed to be the most effective approach for the growth of AlN layers in terms of crystal quality, cost and stability;
- High-temperature annealing (HTA) of sputtered AlN on Sapphire [51,52,53,54,55,56]. Miyake et al. [55] first investigated the annealing of an AlN layer grown on a sapphire substrate and achieved a TDD of 4.7 × 108 cm−2. Annealing at temperatures above 1500 °C is effective in improving the quality of AlN layers. Due to the evolution mechanism of strains induced by HTA, it possesses high repeatability and stability and exhibits great potential in realizing mass production. The mechanism for reducing TDD after HTA was discussed in detail by Ben et al. [52]. Under TH, adjacent dislocations with different Burgers Vectors are more likely to form voids, which provide the inner surface for dislocations to terminate. The TDD below 107 cm−2 can be achieved through this method;
- Migration-enhanced epitaxy (MEE) method [57,58,59,60,61]. MEE is achieved by alternative supply of the TMAl and NH3 sources. The Al atom migration can be enhanced and the gas phase reaction can be prevented in the meantime. When NH3 is not supplied, there are few N atoms on the epitaxial surface and the migration of Al atoms can be enhanced. Based on this route, NH3 pulsed-flow method and modified MEE were proposed [58,59,60]. Hirayama et al. [58] fabricated a high-quality AlN buffer by NH3 pulse-flow growth technique for the first time. The NH3 pulse-flow growth is realized by firstly injecting continuous TMAl flow during the NH3 pulse-flow sequence, secondly introducing continuous-flow mode to reduce the surface roughness, and then repeating the pulse- and continuous-flow modes. Li et al. [56] recently realized growing AlN layers under a relatively fast growth rate of 0.98 μm/h and achieved flat surface morphology (RMS = 0.5 nm) by NH3-pulse flow mode with a small duty ratio of NH3. A modified MEE is characterized by a combination of simultaneous source supply and conventional MEE, consisting of three different growth sequences including simultaneous, alternating supply and a combination of the two. Banal et al. [61] utilized the modified MEE to control the initial nucleation and achieved the XRC FWHM values of ~45 and ~250 arcsec for the (0002) and planes;
- Interlayer method [62,63,64,65,66,67,68]. The inserting layers work by stress management and dislocation filter. Common insertion layers include medium-temperature (MT) interlayer [62,63,64,65], superlattices [66,67], graphene [68], etc. The introduction of a MT interlayer could lead to the formation of high-density self-organized nano-voids, which can alleviate tensile stress and reduce TDD due to promoting dislocation termination and bending at macrosteps at the same time. He et al. [64] recently successfully fabricated a 5.6 μm-thick AlN film by employing a MT interlayer (930 °C). The tensile stress in the AlN film had a reduction of 64% through this method and the TDD showed an extremely low value of 4.7 × 107 cm−2. Wang et al. [66] grew high quality thick AlGaN on sapphire by inserting ten periods AlN (8 nm)/Al0.2Ga0.8N superlattices (SLs), and the TDD was reduced by two orders of magnitude.
3.2. n-AlGaN with High Al Composition
3.3. Carrier Confinement and Transport
3.4. p-AlGaN with High Al Composition
- The solubility of Mg in GaN and AlN is low. The solubility of Mg replacing Ga or Al atoms in AlGaN is limited by the positive formation enthalpies. The influence of formation enthalpies on the solubility of Mg can be expressed as the following Equation (4)
- Self-compensation of intrinsic defects [101]. Figure 8b–e show the formation energies as a function of Fermi level for different defects in GaN and AlN [102,103]. The compensation of VN is an important mechanism resulting in hole concentration decreasing. VN can provide one, two, or three electrons, and only the charge states of and are stable. Since has smaller formation energy than , is believed to be the main compensating defects in Mg-doped AlGaN alloys [104]. Stampfl et al. [101] found that VN was more easily formed in AlN than in GaN. The compensation of natural defects requires to be controlled especially in Al-rich AlGaN alloys;
- The acceptor Ea is very high and gradually increase with Al content, as shown in Figure 8f [105,106]. Mg is generally used as the p-type dopant in AlGaN epilayer. The Ea of Mg in p-GaN films is in the range from 120 to 200 meV, generating a hole concentration of 1017–1018 cm−3 [107]. However, when the Al content changes from 0 to 100%, the Ea of Mg increases from 160 meV to over 500 meV [99,105]. The hole concentration (p) in wide-bandgap semiconductors can be estimated by the following Formula (5) [108]
3.5. Light Extraction
4. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zollner, C.J.; DenBaars, S.P.; Speck, J.S.; Nakamura, S. Germicidal ultraviolet LEDs: A review of applications and semiconductor technologies. Semicond. Sci. Technol. 2021, 36, 123001. [Google Scholar] [CrossRef]
- Mehnke, F.; Guttmann, M.; Enslin, J.; Kuhn, C.; Reich, C.; Jordan, J.; Kapanke, S.; Knauer, A.; Lapeyrade, M.; Zeimer, U.; et al. Gas Sensing of Nitrogen Oxide Utilizing Spectrally Pure Deep UV LEDs. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 29–36. [Google Scholar] [CrossRef]
- Mellqvist, J.M.; Rosén, A. DOAS for flue gas monitoring—I. Temperature effects in the U.V./visible absorption spectra of NO, NO2, SO2 and NH3. J. Quant. Spectrosc. Radiat. Transf. 1996, 56, 187–208. [Google Scholar] [CrossRef] [Green Version]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2012, 24, 012004. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Sadler, B.M. Ultraviolet Communications: Potential and State-Of-The-Art. IEEE Commun. Mag. 2008, 46, 67–73. [Google Scholar]
- Sun, K.X.; Allard, B.; Buchman, S.; Williams, S.; Byer, R.L. LED deep UV source for charge management of gravitational reference sensors. Class. Quantum Gravity 2006, 23, S141–S150. [Google Scholar] [CrossRef]
- Narita, K.; Asano, K.; Morimoto, Y.; Igarashi, T.; Hamblin, M.R.; Dai, T.; Nakane, A. Disinfection and healing effects of 222-nm UVC light on methicillin-resistant Staphylococcus aureus infection in mouse wounds. J. Photochem. Photobiol. B Biol. 2018, 178, 10–18. [Google Scholar] [CrossRef]
- Zwicker, P.; Schleusener, J.; Lohan, S.B.; Busch, L.; Sicher, C.; Einfeldt, S.; Kneissl, M.; Kühl, A.A.; Keck, C.M.; Witzel, C.; et al. Application of 233 nm far-UVC LEDs for eradication of MRSA and MSSA and risk assessment on skin models. Sci. Rep. 2022, 12, 2587. [Google Scholar] [CrossRef]
- Guttmann, M.; Lobo-Ploch, N.; Gundlach, H.; Mehnke, F.; Sulmoni, L.; Wernicke, T.; Cho, H.K.; Hilbrich, K.; Külberg, A.; Friedler, M.; et al. Spectrally pure far-UVC emission from AlGaN-based LEDs with dielectric band pass filters. J. Phys. D Appl. Phys. 2022, 55, 205105. [Google Scholar] [CrossRef]
- Guttmann, M.; Mehnke, F.; Belde, B.; Wolf, F.; Reich, C.; Sulmoni, L.; Wernicke, T.; Kneissl, M. Optical light polarization and light extraction efficiency of AlGaN-based LEDs emitting between 264 and 220 nm. Jpn. J. Appl. Phys. 2019, 58, SCCB20. [Google Scholar] [CrossRef]
- Mehnke, F.; Sulmoni, L.; Guttmann, M.; Wernicke, T.; Kneissl, M. Influence of light absorption on the performance characteristics of UV LEDs with emission between 239 and 217 nm. Appl. Phys. Express 2019, 12, 012008. [Google Scholar] [CrossRef]
- Kneissl, M.; Rass, J. III-Nitride Ultraviolet Emitters: Technology and Applications, 1st ed.; Springer: Berlin, Germany, 2016; pp. 90–92. [Google Scholar]
- Takano, T.; Mino, T.; Sakai, J.; Noguchi, N.; Tsubaki, K.; Hirayama, H. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl. Phys. Express 2017, 10, 031002. [Google Scholar] [CrossRef]
- Inoue, S.i.; Tamari, N.; Taniguchi, M. 150 mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonic light-extraction structure emitting at 265 nm. Appl. Phys. Lett. 2017, 110, 141106. [Google Scholar] [CrossRef] [Green Version]
- Taniyasu, Y.; Kasu, M.; Makimoto, T. An Aluminium Nitride Light-Emitting Diode with a Wavelength of 210 Nanometres. Nature 2006, 441, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, H.; Noguchi, N.; Fujikawa, S.; Norimatsu, J.; Kamata, N.; Takano, T.; Tsubaki, K. 222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. Phys. Status Solidi Appl. Res. 2009, 206, 1176–1182. [Google Scholar] [CrossRef]
- Hirayama, H.; Tsukada, Y.; Maeda, T.; Kamata, N. Marked Enhancement in the Efficiency of Deep-Ultraviolet AlGaN Light-Emitting Diodes by Using a Multiquantum-Barrier Electron Blocking Layer. Appl. Phys. Express 2010, 3, 031002. [Google Scholar] [CrossRef]
- Lobo-Ploch, N.; Mehnke, F.; Sulmoni, L.; Cho, H.K.; Guttmann, M.; Glaab, J.; Hilbrich, K.; Wernicke, T.; Einfeldt, S.; Kneissl, M. Milliwatt power 233nm AlGaN-based deep UV-LEDs on sapphire substrates. Appl. Phys. Lett. 2020, 117, 111102. [Google Scholar] [CrossRef]
- Jo, M.; Itokazu, Y.; Hirayama, H. Milliwatt-power far-UVC AlGaN LEDs on sapphire substrates. Appl. Phys. Lett. 2022, 120, 211105. [Google Scholar] [CrossRef]
- Taniyasu, Y.; Kasu, M. Surface 210 nm light emission from an AlN p–n junction light-emitting diode enhanced by A-plane growth orientation. Appl. Phys. Lett. 2010, 96, 221110. [Google Scholar] [CrossRef]
- Liu, D.; Cho, S.J.; Park, J.; Seo, J.H.; Dalmau, R.; Zhao, D.; Kim, K.; Gong, J.; Kim, M.; Lee, I.K.; et al. 229nm UV LEDs on aluminum nitride single crystal substrates using p-type silicon for increased hole injection. Appl. Phys. Lett. 2018, 112, 081101. [Google Scholar] [CrossRef]
- Liu, D.; Cho, S.J.; Park, J.; Gong, J.; Seo, J.H.; Dalmau, R.; Zhao, D.; Kim, K.; Kim, M.; Kalapala, A.R.K.; et al. 226nm AlGaN/AlN UV LEDs using p-type Si for hole injection and UV reflection. Appl. Phys. Lett. 2018, 113, 011111. [Google Scholar] [CrossRef]
- Liu, C.; Ooi, Y.K.; Islam, S.M.; Xing, H.G.; Jena, D.; Zhang, J. 234nm and 246nm AlN-Delta-GaN quantum well deep ultraviolet light-emitting diodes. Appl. Phys. Lett. 2018, 112, 011101. [Google Scholar] [CrossRef]
- Islam, S.M.; Protasenko, V.; Lee, K.; Rouvimov, S.; Verma, J.; Xing, H.G.; Jena, D. Deep-UV emission at 219nm from ultrathin MBE GaN/AlN quantum heterostructures. Appl. Phys. Lett. 2017, 111, 091104. [Google Scholar] [CrossRef] [Green Version]
- Nishida, T.; Makimoto, T.; Saito, H.; Ban, T. AlGaN-based ultraviolet light-emitting diodes grown on bulk AlN substrates. Appl. Phys. Lett. 2004, 84, 1002–1003. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Hasegawa, R.; Morishita, T.; Nagase, K.; Yamada, S.; Grandusky, J.; Mann, J.; Miller, A.; Schowalter, L.J. Improve efficiency and long lifetime UVC LEDs with wavelengths between 230 and 237 nm. Appl. Phys. Express 2020, 13, 022001. [Google Scholar] [CrossRef]
- Yin, X.; Zhao, S. High Internal Quantum Efficiency AlGaN Epilayer Grown by Molecular Beam Epitaxy on Si Substrate. ECS J. Solid State Sci. Technol. 2021, 10, 076001. [Google Scholar] [CrossRef]
- Zhang, Q.; Parimoo, H.; Martel, E.; Zhao, S. Vertical semiconductor deep ultraviolet light emitting diodes on a nanowire-assisted aluminum nitride buffer layer. Sci. Rep. 2022, 12, 7230. [Google Scholar] [CrossRef]
- Zhao, S.; Connie, A.; Tavakoli Dastjerdi, H.; Kong, X.; Wang, Q.; Djavid, M.; Sadaf, S.; Liu, X.; Shih, I.; Guo, H.; et al. Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources. Sci. Rep. 2015, 5, 8332. [Google Scholar] [CrossRef] [Green Version]
- Amano, H.; Collazo, R.; Santi, C.D.; Einfeldt, S.; Funato, M.; Glaab, J.; Hagedorn, S.; Hirano, A.; Hirayama, H.; Ishii, R.; et al. The 2020 UV emitter roadmap. J. Phys. D Appl. Phys. 2020, 53, 503001. [Google Scholar] [CrossRef]
- Ruschel, J.; Glaab, J.; Susilo, N.; Hagedorn, S.; Walde, S.; Ziffer, E.; Cho, H.K.; Ploch, N.L.; Wernicke, T.; Weyers, M.; et al. Reliability of UVC LEDs fabricated on AlN/sapphire templates with different threading dislocation densities. Appl. Phys. Lett. 2020, 117, 241104. [Google Scholar] [CrossRef]
- Glaab, J.; Haefke, J.; Ruschel, J.; Brendel, M.; Rass, J.; Kolbe, T.; Knauer, A.; Weyers, M.; Einfeldt, S.; Guttmann, M.; et al. Degradation effects of the active region in UV-C light-emitting diodes. J. Appl. Phys. 2018, 123, 104502. [Google Scholar] [CrossRef]
- Meneghini, M.; Pavesi, M.; Trivellin, N.; Gaska, R.; Zanoni, E.; Meneghesso, G. Reliability of Deep-UV Light-Emitting Diodes. IEEE Trans. Device Mater. Reliab. 2008, 8, 248–254. [Google Scholar] [CrossRef]
- Glaab, J.; Ruschel, J.; Lobo Ploch, N.; Cho, H.; Mehnke, F.; Sulmoni, L.; Guttmann, M.; Wernicke, T.; Weyers, M.; Einfeldt, S.; et al. Impact of operation parameters on the degradation of 233 nm AlGaN-based far-UVC LEDs. J. Appl. Phys. 2022, 131, 014501. [Google Scholar] [CrossRef]
- Moe, C.G.; Sugiyama, S.; Kasai, J.; Grandusky, J.R.; Schowalter, L.J. AlGaN Light-Emitting Diodes on AlN Substrates Emitting at 230 nm. Phys. Status Solidi Appl. Res. 2018, 215, 1700660. [Google Scholar] [CrossRef]
- Pandey, A.; Gim, J.; Hovden, R.; Mi, Z. Electron overflow of AlGaN deep ultraviolet light emitting diodes. Appl. Phys. Lett. 2021, 118, 241109. [Google Scholar] [CrossRef]
- Mehnke, F.; Kuhn, C.; Guttmann, M.; Reich, C.; Kolbe, T.; Kueller, V.; Knauer, A.; Lapeyrade, M.; Einfeldt, S.; Rass, J.; et al. Efficient charge carrier injection into sub-250nm AlGaN multiple quantum well light emitting diodes. Appl. Phys. Lett. 2014, 105, 051113. [Google Scholar] [CrossRef]
- Piprek, J. Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi 2010, 207, 2217–2225. [Google Scholar] [CrossRef]
- Ban, K.; Yamamoto, J.I.; Takeda, K.; Ide, K.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I.; Amano, H. Internal Quantum Efficiency of Whole-Composition-Range AlGaN Multiquantum Wells. Appl. Phys. Express 2011, 4, 052101. [Google Scholar] [CrossRef]
- Hasan, S.; Mamun, A.; Hussain, K.; Gaevski, M.; Ahmad, I.; Khan, A. Growth evolution of high-quality MOCVD aluminum nitride using nitrogen as carrier gas on the sapphire substrate. J. Mater. Res. 2021, 36, 4360–4369. [Google Scholar] [CrossRef]
- Sun, X.; Li, D.; Chen, Y.; Song, H.; Jiang, H.; Li, Z.; Miao, G.; Zhiwei, Z. In situ observation of two-step growth of AlN on sapphire using high-temperature metal–organic chemical vapour deposition. CrystEngComm 2013, 15, 6066–6073. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Zhao, D.; Liang, F.; Chen, P.; Liu, Z. High-quality AlN growth on flat sapphire at relatively low temperature by crystal island shape control method. Appl. Surf. Sci. 2022, 606, 154919. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Zhao, D.; Liang, F.; Chen, P.; Liu, Z. Adjustment of Al atom migration ability and its effect on the surface morphology of AlN grown on sapphire by metal–organic chemical vapor deposition. Semicond. Sci. Technol. 2021, 36, 105010. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, F.; Wang, J.; He, C.; Guo, W.; Wang, M.; Sheng, B.; Lu, L.; Qin, Z.; Wang, X.Q.; et al. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Lee, J.W.; Jang, J.; Shin, I.S.; Jin, L.; Park, J.H.; Kim, J.; Lee, J.; Noh, H.S.; Kim, Y.I.; et al. Improved performance of AlGaN-based deep ultraviolet light-emitting diodes with nano-patterned AlN/sapphire substrates. Appl. Phys. Lett. 2017, 110, 191103. [Google Scholar] [CrossRef]
- Okada, N.; Saito, T.; Fujikawa, S.; Maeda, N.; Jo, M.; Hirayama, H.; Tadatomo, K. Investigation of off-cut angle of sapphire for epitaxial lateral overgrowth of AlN and fabrication of high-quality AlN template. J. Cryst. Growth 2022, 588, 126640. [Google Scholar] [CrossRef]
- Imura, M.; Nakano, K.; Narita, G.; Fujimoto, N.; Okada, N.; Balakrishnan, K.; Iwaya, M.; Kamiyama, S.; Amano, H.; Akasaki, I.; et al. Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers. J. Cryst. Growth 2007, 298, 257–260. [Google Scholar] [CrossRef]
- Imura, M.; Nakano, K.; Kitano, T.; Fujimoto, N.; Narita, G.; Okada, N.; Balakrishnan, K.; Iwaya, M.; Kamiyama, S.; Amano, H.; et al. Microstructure of epitaxial lateral overgrown AlN on trench-patterned AlN template by high-temperature metal-organic vapor phase epitaxy. Appl. Phys. Lett. 2006, 89, 221901. [Google Scholar] [CrossRef]
- Nakano, K.; Imura, M.; Narita, G.; Kitano, T.; Hirose, Y.; Fujimoto, N.; Okada, N.; Kawashima, T.; Iida, K.; Balakrishnan, K.; et al. Epitaxial lateral overgrowth of AlN layers on patterned sapphire substrates. Phys. Status Solidi 2006, 203, 1632–1635. [Google Scholar] [CrossRef]
- Liu, B.; Xu, F.; Wang, J.; Lang, J.; Zhang, N.; Fang, X.; Wang, L.; Yang, X.; Kang, X.; Wang, X.; et al. High quality AlN with uniform in-plane strain on nano-patterned AlN templates achieved by preset strain modulation. Jpn. J. Appl. Phys. 2021, 60, 120903. [Google Scholar] [CrossRef]
- Shojiki, K.; Ishii, R.; Uesugi, K.; Funato, M.; Kawakami, Y.; Miyake, H. Impact of face-to-face annealed sputtered AlN on the optical properties of AlGaN multiple quantum wells. AIP Adv. 2019, 9, 125342. [Google Scholar] [CrossRef]
- Ben, J.; Shi, Z.; Zang, H.; Sun, X.; Liu, X.; Lü, W.; Li, D. The formation mechanism of voids in physical vapor deposited AlN epilayer during high temperature annealing. Appl. Phys. Lett. 2020, 116, 251601. [Google Scholar] [CrossRef]
- Xiao, S.; Suzuki, R.; Miyake, H.; Harada, S.; Ujihara, T. Improvement mechanism of sputtered AlN films by high-temperature annealing. J. Cryst. Growth 2018, 502, 41–44. [Google Scholar] [CrossRef]
- Liu, S.; Yuan, Y.; Sheng, S.; Wang, T.; Zhang, J.; Huang, L.; Zhang, X.; Kang, J.; Luo, W.; Li, Y.; et al. Four-inch high quality crack-free AlN layer grown on a high-temperature annealed AlN template by MOCVD. J. Semicond. 2021, 42, 122804. [Google Scholar] [CrossRef]
- Miyake, H.; Nishio, G.; Suzuki, S.; Hiramatsu, K.; Fukuyama, H.; Kaur, J.; Kuwano, N. Annealing of an AlN buffer layer in N2–CO for growth of a high-quality AlN film on sapphire. Appl. Phys. Express 2016, 9, 025501. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.X.; Xu, F.J.; Xie, N.; Sun, Y.H.; Liu, B.Y.; Ge, W.K.; Kang, X.N.; Qin, Z.X.; Yang, X.L.; Wang, X.Q.; et al. High-temperature annealing induced evolution of strain in AlN epitaxial films grown on sapphire substrates. Appl. Phys. Lett. 2019, 114, 112105. [Google Scholar] [CrossRef]
- Koshelev, O.A.; Nechaev, D.V.; Brunkov, P.N.; Ivanov, S.V.; Jmerik, V.N. Stress control in thick AlN/c-Al2O3 templates grown by plasma-assisted molecular beam epitaxy. Semicond. Sci. Technol. 2021, 36, 035007. [Google Scholar] [CrossRef]
- Hirayama, H.; Yatabe, T.; Noguchi, N.; Ohashi, T.; Kamata, N. 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl. Phys. Lett. 2007, 91, 071901. [Google Scholar] [CrossRef]
- Hirayama, H.; Noguchi, N.; Yatabe, T.; Kamata, N. 227 nm AlGaN Light-Emitting Diode with 0.15 mW Output Power Realized using a Thin Quantum Well and AlN Buffer with Reduced Threading Dislocation Density. Appl. Phys. Express 2008, 1, 051101. [Google Scholar] [CrossRef]
- Li, F.; Wang, L.; Yao, W.; Meng, Y.; Yang, S.; Wang, Z. Analysis of growth rate and crystal quality of AlN epilayers by flow-modulated metal organic chemical vapor deposition. Superlattices Microstruct. 2020, 137, 106336. [Google Scholar] [CrossRef]
- Banal, R.G.; Funato, M.; Kawakami, Y. Initial nucleation of AlN grown directly on sapphire substrates by metal-organic vapor phase epitaxy. Appl. Phys. Lett. 2008, 92, 241905. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Li, Y.; Ding, Y.; Li, S.; Zhang, M.; Wu, Z.; Fang, Y.; Dai, J.; Chen, C. Defect Reduction in AlN Epilayers Grown by MOCVD via Intermediate-Temperature Interlayers. J. Electron. Mater. 2015, 44, 217–221. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Jiang, H.; Li, Z.; Miao, G.; Song, H. Optimized growth of AlN templates for back-illuminated AlGaN-based solar-blind ultraviolet photodetectors by MOCVD. J. Mater. Chem. C 2018, 6, 1201–1206. [Google Scholar] [CrossRef]
- He, C.; Zhao, W.; Wu, H.; Liu, N.; Zhang, S.; Li, J.; Jia, C.; Zhang, K.; He, L.; Chen, Z.; et al. Fast growth of crack-free thick AlN film on sputtered AlN/sapphire by introducing high-density nano-voids. J. Phys. D Appl. Phys. 2020, 53, 405303. [Google Scholar] [CrossRef]
- Li, D.B.; Aoki, M.; Miyake, H.; Hiramatsu, K. Improved surface morphology of flow-modulated MOVPE grown AIN on sapphire using thin medium-temperature AIN buffer layer. Appl. Surf. Sci. 2007, 253, 9395–9399. [Google Scholar] [CrossRef]
- Wang, H.M.; Zhang, J.P.; Chen, C.Q.; Fareed, Q.; Yang, J.W.; Khan, M.A. AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire. Appl. Phys. Lett. 2002, 81, 604–606. [Google Scholar] [CrossRef]
- Kim, J.; Pyeon, J.; Jeon, M.; Nam, O. Growth and characterization of high quality AlN using combined structure of low temperature buffer and superlattices for applications in the deep ultraviolet. Jpn. J. Appl. Phys. 2015, 54, 081001. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, Y.; Pang, Z.; Dou, Z.; Wei, T.; Gao, P.; Zhang, S.; Xu, X.; Chang, Z.; Deng, B.; et al. Fast Growth of Strain-Free AlN on Graphene-Buffered Sapphire. J. Am. Chem. Soc. 2018, 140, 11935–11941. [Google Scholar] [CrossRef]
- Dalmau, R.; Moody, B.; Schlesser, R.; Mita, S.; Xie, J.; Feneberg, M.; Neuschl, B.; Thonke, K.; Collazo, R.; Rice, A.; et al. Growth and Characterization of AlN and AlGaN Epitaxial Films on AlN Single Crystal Substrates. J. Electrochem. Soc. 2011, 158, H530–H535. [Google Scholar] [CrossRef]
- Reddy, P.; Khachariya, D.; Mecouch, W.; Breckenridge, M.; Bagheri, P.; Guan, Y.; Kim, J.; Pavlidis, S.; Kirste, R.; Mita, S.; et al. Study on avalanche breakdown and Poole–Frenkel emission in Al-rich AlGaN grown on single crystal AlN. Appl. Phys. Lett. 2021, 119, 182104. [Google Scholar] [CrossRef]
- Bagheri, P.; Klump, A.; Washiyama, S.; Breckenridge, M.; Kim, J.; Guan, Y.; Khachariya, D.; Quiñones-García, C.; Sarkar, B.; Rathkanthiwar, S.; et al. Doping and compensation in heavily Mg doped Al-rich AlGaN films. Appl. Phys. Lett. 2022, 120, 082102. [Google Scholar] [CrossRef]
- Collazo, R.; Mita, S.; Xie, J.; Rice, A.; Tweedie, J.; Dalmau, R.; Sitar, Z. Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications. Phys. Status Solidi 2011, 8, 2031–2033. [Google Scholar] [CrossRef]
- Mehnke, F.; Trinh, X.; Pingel, H.; Wernicke, T.; Janzén, E.; Son, N.; Kneissl, M. Electronic properties of Si-doped AlxGa1-xN with aluminum mole fractions above 80%. J. Appl. Phys. 2016, 120, 145702. [Google Scholar] [CrossRef]
- Bryan, I.; Bryan, Z.; Washiyama, S.; Reddy, P.; Gaddy, B.; Sarkar, B.; Breckenridge, M.; Guo, Q.; Bobea, M.; Tweedie, J.; et al. Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD. Appl. Phys. Lett. 2018, 112, 062102. [Google Scholar] [CrossRef]
- Lang, D.V.; Logan, R.A.; Jaros, M. Trapping characteristics and a donor-complex (DX) model for the persistent-photoconductivity trapping center in Te-doped AlxGa1−xAs. Phys. Rev. B 1979, 19, 1015–1030. [Google Scholar] [CrossRef]
- Breckenridge, M.H.; Bagheri, P.; Guo, Q.; Sarkar, B.; Khachariya, D.; Pavlidis, S.; Tweedie, J.; Kirste, R.; Mita, S.; Reddy, P.; et al. High n-type conductivity and carrier concentration in Si-implanted homoepitaxial AlN. Appl. Phys. Lett. 2021, 118, 112104. [Google Scholar] [CrossRef]
- Washiyama, S.; Reddy, P.; Sarkar, B.; Breckenridge, M.H.; Guo, Q.; Bagheri, P.; Klump, A.; Kirste, R.; Tweedie, J.; Mita, S.; et al. The role of chemical potential in compensation control in Si:AlGaN. J. Appl. Phys. 2020, 127, 105702. [Google Scholar] [CrossRef]
- Almogbel, A.S.; Zollner, C.J.; Saifaddin, B.K.; Iza, M.; Wang, J.; Yao, Y.; Wang, M.; Foronda, H.; Prozheev, I.; Tuomisto, F.; et al. Growth of highly conductive Al-rich AlGaN:Si with low group-III vacancy concentration. AIP Adv. 2021, 11, 095119. [Google Scholar] [CrossRef]
- Hayden Breckenridge, M.; Guo, Q.; Klump, A.; Sarkar, B.; Guan, Y.; Tweedie, J.; Kirste, R.; Mita, S.; Reddy, P.; Collazo, R.; et al. Shallow Si donor in ion-implanted homoepitaxial AlN. Appl. Phys. Lett. 2020, 116, 172103. [Google Scholar] [CrossRef]
- Moses, P.; Miao, M.; Yan, Q.; Van de Walle, C. Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN. J. Chem. Phys. 2011, 134, 084703. [Google Scholar] [CrossRef] [Green Version]
- Sulmoni, L.; Mehnke, F.; Mogilatenko, A.; Guttmann, M.; Wernicke, T.; Kneissl, M. Electrical properties and microstructure formation of V/Al-based n-contacts on high Al mole fraction n-AlGaN layers. Photonics Res. 2020, 8, 1381–1387. [Google Scholar] [CrossRef]
- Schweitz, K.; Wang, P.; Mohney, S.; Gotthold, D. V/Al/Pt/Au Ohmic contact to n-AlGaN/GaN heterostructures. Appl. Phys. Lett. 2002, 80, 1954–1956. [Google Scholar] [CrossRef]
- Nagata, N.; Senga, T.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I. Reduction of contact resistance in V-based electrode for high AlN molar fraction n-type AlGaN by using thin SiNx intermediate layer. Phys. Status Solidi C 2017, 14, 1600243. [Google Scholar]
- Li, L.; Zhang, Y.; Xu, S.; Bi, W.; Zhang, Z.H.; Kuo, H.C. On the Hole Injection for III-Nitride Based Deep Ultraviolet Light-Emitting Diodes. Materials 2017, 10, 1221. [Google Scholar] [CrossRef] [Green Version]
- Hirayama, H.; Maeda, N.; Fujikawa, S.; Toyoda, S.; Kamata, N. Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 2014, 53, 100209. [Google Scholar] [CrossRef]
- Iga, K.; Uenohara, H.; Koyama, F. Electron reflectance of multiquantum barrier (MQB). Electron. Lett. 1986, 22, 1008–1010. [Google Scholar] [CrossRef]
- Sumiya, S.; Zhu, Y.; Zhang, J.; Kosaka, K.; Miyoshi, M.; Shibata, T.; Tanaka, M.; Egawa, T. AlGaN-Based Deep Ultraviolet Light-Emitting Diodes Grown on Epitaxial AlN/Sapphire Templates. Jpn. J. Appl. Phys. 2008, 47, 43–46. [Google Scholar] [CrossRef]
- Chen, S.; Tian, W.; Wu, Z.; Fang, Y.; Dai, J.; Chen, C. Advantages of AlGaN-Based 310-nm UV Light-Emitting Diodes With Al Content Graded AlGaN Electron Blocking Layers. Photonics J. IEEE 2013, 5, 8200309. [Google Scholar]
- Kuo, Y.K.; Chen, F.M.; Chang, J.Y.; Huang, M.F.; Liou, B.T.; Shih, Y.H. Design and Optimization of Electron-Blocking Layer in Deep Ultraviolet Light-Emitting Diodes. IEEE J. Quantum Electron. 2020, 56, 1–6. [Google Scholar] [CrossRef]
- Velpula, R.T.; Jain, B.; Velpula, S.; Nguyen, H.D.; Nguyen, H.P.T. High-performance electron-blocking-layer-free deep ultraviolet light-emitting diodes implementing a strip-in-a-barrier structure. Opt. Lett. 2020, 45, 5125–5128. [Google Scholar] [CrossRef]
- Lang, J.; Xu, F.J.; Sun, Y.H.; Zhang, N.; Wang, J.M.; Liu, B.Y.; Wang, L.B.; Xie, N.; Fang, X.Z.; Kang, X.N.; et al. Carrier Velocity Modulation by Asymmetrical Concave Quantum Barriers to Improve the Performance of AlGaN-Based Deep Ultraviolet Light Emitting Diodes. IEEE Photonics J. 2021, 13, 1–8. [Google Scholar] [CrossRef]
- Lang, J.; Xu, F.J.; Ge, W.K.; Liu, B.Y.; Zhang, N.; Sun, Y.H.; Wang, M.X.; Xie, N.; Fang, X.Z.; Kang, X.N.; et al. High performance of AlGaN deep-ultraviolet light emitting diodes due to improved vertical carrier transport by delta-accelerating quantum barriers. Appl. Phys. Lett. 2019, 114, 172105. [Google Scholar] [CrossRef]
- Velpula, R.T.; Jain, B.; Bui, H.Q.T.; Shakiba, F.M.; Jude, J.; Tumuna, M.; Nguyen, H.D.; Lenka, T.R.; Nguyen, H.P.T. Improving carrier transport in AlGaN deep-ultraviolet light-emitting diodes using a strip-in-a-barrier structure. Appl. Opt. 2020, 59, 5276. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, P.; Zhou, X.; Wu, J.; Hao, Y. Increasing the Carrier Injection Efficiency of GaN-Based Ultraviolet Light-Emitting Diodes by Double Al Composition Gradient Last Quantum Barrier and p-Type Hole Supply Layer. IEEE Photonics J. 2021, 13, 1–8. [Google Scholar] [CrossRef]
- He, L.; Zhao, W.; Zhang, K.; He, C.; Wu, H.; Liu, X.; Luo, X.; Li, S.; Chen, Z. Marked enhancement in the efficiency of deep ultraviolet light-emitting diodes by using a AlxGa1-xN carrier reservoir layer. Appl. Phys. Express 2019, 12, 062013. [Google Scholar] [CrossRef]
- Chu, C.; Tian, K.; Che, J.; Shao, H.; Kou, J.; Zhang, Y.; Li, Y.; Wang, M.; Zhu, Y.; Zhang, Z.H. On the origin of enhanced hole injection for AlGaN-based deep ultraviolet light-emitting diodes with AlN insertion layer in p-electron blocking layer. Opt. Express 2019, 27, A620. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Du, P.; Guoyi, T.; Liu, Z.; Luo, W.; Liu, S.; Zhou, S. High efficiency electron-blocking-layer-free deep ultraviolet LEDs with graded Al-content AlGaN insertion layer. Superlattices Microstruct. 2021, 158, 107020. [Google Scholar] [CrossRef]
- Bremser, M.D.; Perry, W.G.; Zheleva, T.; Edwards, N.V.; Nam, O.H.; Parikh, N.; Aspnes, D.E.; Davis, R.F. Growth, doping and characterization of AlxGa1-xN thin film alloys on 6H-SiC(0001) substrates. Diam. Relat. Mater. 1997, 6, 196–201. [Google Scholar] [CrossRef]
- Kinoshita, T.; Obata, T.; Yanagi, H.; Inoue, S.i. High p-type conduction in high-Al content Mg-doped AlGaN. Appl. Phys. Lett. 2013, 102, 012105. [Google Scholar] [CrossRef]
- Zheng, T.; Lin, W.; Cai, D.; Weihuang, Y.; Jiang, W.; Chen, H.; Li, J.; Li, S.; Kang, J. High Mg effective incorporation in Al-rich AlxGa1-xN by periodic repetition of ultimate V/III ratio conditions. Nanoscale Res. Lett. 2014, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Stampfl, C.; Neugebauer, J.; Van de Walle, C.G. Doping of AlxGa1xN alloys. Mater. Sci. Eng. B 1999, 59, 253–257. [Google Scholar] [CrossRef]
- Yan, Q.; Janotti, A.; Scheffler, M.; Van de Walle, C.G. Role of nitrogen vacancies in the luminescence of Mg-doped GaN. Appl. Phys. Lett. 2012, 100, 142110. [Google Scholar] [CrossRef]
- Yan, Q.; Janotti, A.; Scheffler, M.; Van de Walle, C.G. Origins of optical absorption and emission lines in AlN. Appl. Phys. Lett. 2014, 105, 111104. [Google Scholar] [CrossRef] [Green Version]
- Nakarmi, M.L.; Nepal, N.; Lin, J.Y.; Jiang, H.X. Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys. Appl. Phys. Lett. 2009, 94, 091903. [Google Scholar] [CrossRef]
- Liang, Y.H.; Towe, E. Progress in efficient doping of high aluminum-containing group III-nitrides. Appl. Phys. Rev. 2018, 5, 011107. [Google Scholar] [CrossRef]
- Jiang, K.; Sun, X.; Shi, Z.; Zang, H.; Ben, J.; Deng, H.X.; Li, D. Quantum engineering of non-equilibrium efficient p-doping in ultra-wide band-gap nitrides. Light Sci. Appl. 2021, 10, 69. [Google Scholar] [CrossRef]
- Bryan, Z.; Hoffmann, M.; Tweedie, J.; Kirste, R.; Callsen, G.; Bryan, I.; Rice, A.; Bobea, M.; Mita, S.; Xie, J.; et al. Fermi Level Control of Point Defects During Growth of Mg-Doped GaN. J. Electron. Mater. 2012, 42, 815–819. [Google Scholar] [CrossRef]
- Schubert, E.F.; Grieshaber, W.; Goepfert, I.D. Enhancement of deep acceptor activation in semiconductors by superlattice doping. Appl. Phys. Lett. 1996, 69, 3737–3739. [Google Scholar] [CrossRef] [Green Version]
- Tersoff, J. Enhanced Solubility of Impurities and Enhanced Diffusion near Crystal Surfaces. Phys. Rev. Lett. 1995, 74, 5080–5083. [Google Scholar] [CrossRef]
- Klump, A.; Hoffmann, M.P.; Kaess, F.; Tweedie, J.; Reddy, P.; Kirste, R.; Sitar, Z.; Collazo, R. Control of passivation and compensation in Mg-doped GaN by defect quasi Fermi level control. J. Appl. Phys. 2020, 127, 045702. [Google Scholar] [CrossRef]
- Wu, R.; Shen, L.; Yang, M.; Sha, Z.; Cai, Y.; Feng, Y.; Huang, Z.; Wu, Q. Enhancing hole concentration in AlN by Mg:O codoping: Ab initio study. Phys. Rev. B 2008, 77, 073203. [Google Scholar] [CrossRef]
- Aoyagi, Y.; Takeuchi, M.; Iwai, S.; Hirayama, H. High hole carrier concentration realized by alternative co-doping technique in metal organic chemical vapor deposition. Appl. Phys. Lett. 2011, 99, 112110. [Google Scholar] [CrossRef]
- Aoyagi, Y.; Takeuchi, M.; Iwai, S.; Hirayama, H. Formation of AlGaN and GaN epitaxial layer with high p-carrier concentration by pulse supply of source gases. AIP Adv. 2012, 2, 012177. [Google Scholar] [CrossRef]
- Al tahtamouni, T.M.; Lin, J.Y.; Jiang, H.X. Effects of Mg-doped AlN/AlGaN superlattices on properties of p-GaN contact layer and performance of deep ultraviolet light emitting diodes. AIP Adv. 2014, 4, 047122. [Google Scholar] [CrossRef]
- Nakarmi, M.L.; Kim, K.H.; Li, J.; Lin, J.Y.; Jiang, H.X. Enhanced p-type conduction in GaN and AlGaN by Mg--doping. Appl. Phys. Lett. 2003, 82, 3041–3043. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, H.; Han, E.; Yue, G.; Chen, Z.; Wu, Z.; Wang, G.; Jiang, H. High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping. Appl. Phys. Lett. 2015, 106, 162102. [Google Scholar] [CrossRef]
- Kim, K.; Li, J.; Jin, S.; Lin, J.Y.; Jiang, H. III-nitride ultraviolet light-emitting diodes with delta doping. Appl. Phys. Lett. 2003, 83, 566–568. [Google Scholar] [CrossRef]
- Bayram, C.; Pau, J.; McClintock, R.; Razeghi, M. Performance enhancement of GaN ultraviolet avalanche photodiodes with p-type -doping. Appl. Phys. Lett. 2008, 92, 241103. [Google Scholar] [CrossRef]
- Li, T.; Simbrunner, C.; Wegscheider, M.; Navarro-Quezada, A.; Quast, M.; Schmidegg, K.; Bonanni, A. GaN:-Mg grown by MOVPE: Structural properties and their effect on the electronic and optical behavior. J. Cryst. Growth 2008, 310, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Ambacher, O.; Smart, J.; Shealy, J.R.; Weimann, N.G.; Chu, K.; Murphy, M.; Schaff, W.J.; Eastman, L.F.; Dimitrov, R.; Wittmer, L.; et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 1999, 85, 3222–3233. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Ware, M.; Wu, J.; Minor, P.; Wang, Z.; Wu, Z.; Jiang, Y.; Salamo, G.J. Polarization induced pn-junction without dopant in graded AlGaN coherently strained on GaN. Appl. Phys. Lett. 2012, 101, 122103. [Google Scholar] [CrossRef]
- Simon, J.; Protasenko, V.; Lian, C.; Xing, H.; Jena, D. Polarization-Induced Hole Doping in Wide–Band-Gap Uniaxial Semiconductor Heterostructures. Science 2010, 327, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Xi, Y.; Chen, K.; Mont, F.; Kim, J.K.; Schubert, E.; Liu, W.; Li, X.; Smart, J. Comparative study of n-type AlGaN grown on sapphire by using a superlattice layer and a low-temperature AlN interlayer. J. Cryst. Growth 2007, 299, 59–62. [Google Scholar] [CrossRef]
- Kozodoy, P.; Hansen, M.; DenBaars, S.P.; Mishra, U.K. Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices. Appl. Phys. Lett. 1999, 74, 3681–3683. [Google Scholar] [CrossRef]
- Kumakura, K.; Makimoto, T.; Kobayashi, N. Enhanced Hole Generation in Mg-Doped AlGaN/GaN Superlattices Due to Piezoelectric Field. Jpn. J. Appl. Phys. 2000, 39, 2428–2430. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, Y.; Zhou, L.; Gil, Y.U.; Kim, K.M. Surface hole gas enabled transparent deep ultraviolet light-emitting diode. Semicond. Sci. Technol. 2018, 33, 07LT01. [Google Scholar] [CrossRef]
- Zheng, T.; Lin, W.; Liu, R.; Cai, D.; Li, J.; Li, S.; Kang, J. Improved p-type conductivity in Al-rich AlGaN using multidimensional Mg-doped superlattices. Sci. Rep. 2016, 6, 21897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebata, K.; Nishinaka, J.; Taniyasu, Y.; Kumakura, K. High hole concentration in Mg-doped AlN/AlGaN superlattices with high Al content. Jpn. J. Appl. Phys. 2018, 57, 04FH09. [Google Scholar] [CrossRef]
- Allerman, A.; Crawford, M.; Miller, M.; Lee, S.R. Growth and characterization of Mg-doped AlGaN–AlN short-period superlattices for deep-UV optoelectronic devices. J. Cryst. Growth 2010, 312, 756–761. [Google Scholar] [CrossRef]
- Wang, J.; Wang, M.; Xu, F.; Liu, B.; Lang, J.; Zhang, N.; Kang, X.; Qin, Z.; Yang, X.; Wang, X.Q.; et al. Sub-nanometer ultrathin epitaxy of AlGaN and its application in efficient doping. Light Sci. Appl. 2022, 11, 71. [Google Scholar] [CrossRef]
- Nam, K.B.; Li, J.; Nakarmi, M.L.; Lin, J.Y.; Jiang, H.X. Unique optical properties of AlGaN alloys and related ultraviolet emitters. Appl. Phys. Lett. 2004, 84, 5264–5266. [Google Scholar] [CrossRef] [Green Version]
- Kolbe, T.; Knauer, A.; Chua, C.; Yang, Z.; Einfeldt, S.; Vogt, P.; Johnson, N.M.; Weyers, M.; Kneissl, M. Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes. Appl. Phys. Lett. 2010, 97, 171105. [Google Scholar] [CrossRef]
- Ryu, H.Y.; Choi, I.G.; Choi, H.S.; Shim, J.I. Investigation of Light Extraction Efficiency in AlGaN Deep-Ultraviolet Light-Emitting Diodes. Appl. Phys. Express 2013, 6, 062101. [Google Scholar] [CrossRef]
- Muhin, A.; Guttmann, M.; Kuhn, C.; Mickein, E.; Aparici, J.R.; Ziffer, E.; Susilo, N.; Sulmoni, L.; Wernicke, T.; Kneissl, M. Vertical conductivity and Poole–Frenkel-ionization of Mg acceptorsin AlGaN short-period superlattices with high Al mole fraction. Appl. Phys. Lett. 2020, 117, 252101. [Google Scholar] [CrossRef]
- Guttmann, M.; Susilo, A.; Sulmoni, L.; Susilo, N.; Ziffer, E.; Wernicke, T.; Kneissl, M. Light extraction efficiency and internal quantum efficiency of fully UVC-transparent AlGaN based LEDs. J. Phys. D: Appl. Phys. 2021, 54, 335101. [Google Scholar] [CrossRef]
- Khan, M.A.; Maeda, N.; Jo, M.; Akamatsu, Y.; Tanabe, R.; Yamada, Y.; Hirayama, H. 13 mW operation of a 295–310 nm AlGaN UV-B LED with a p-AlGaN transparent contact layer for real world applications. J. Mater. Chem. C 2018, 7, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, T.; Takeda, K.; Shinzato, H.; Iwaya, M.; Kamiyama, S.; Takeuchi, T.; Akasaki, I.; Amano, H. Combination of Indium–Tin Oxide and SiO2/AlN Dielectric Multilayer Reflective Electrodes for Ultraviolet-Light-Emitting Diodes. Jpn. J. Appl. Phys. 2013, 52, 08JG07. [Google Scholar] [CrossRef]
- Kashima, Y.; Maeda, N.; Matsuura, E.; Jo, M.; Iwai, T.; Morita, T.; Kokubo, M.; Tashiro, T.; Kamimura, R.; Osada, Y.; et al. High external quantum efficiency (10%) AlGaN-based deep-ultraviolet light-emitting diodes achieved by using highly reflective photonic crystal on p-AlGaN contact layer. Appl. Phys. Express 2017, 11, 012101. [Google Scholar] [CrossRef]
- Matsukura, Y.; Inazu, T.; Pernot, C.; Shibata, N.; Kushimoto, M.; Deki, M.; Honda, Y.; Amano, H. Improving light output power of AlGaN-based deep-ultraviolet light-emitting diodes by optimizing the optical thickness of p-layers. Appl. Phys. Express 2021, 14, 084004. [Google Scholar] [CrossRef]
- Schubert, M.F. Interband tunnel junctions for wurtzite III-nitride semiconductors based on heterointerface polarization charges. Phys. Rev. B 2010, 81, 035303. [Google Scholar] [CrossRef]
- Mehnke, F.; Kuhn, C.; Guttmann, M.; Sulmoni, L.; Montag, V.; Glaab, J.; Wernicke, T.; Kneissl, M. Electrical and optical characteristics of highly transparent MOVPE-grown AlGaN-based tunnel heterojunction LEDs emitting at 232 nm. Photon. Res. 2021, 9, 1117–1123. [Google Scholar] [CrossRef]
- Banal, R.G.; Funato, M.; Kawakami, Y. Optical anisotropy in [0001]-oriented AlxGa1−xN/AlN quantum wells (x > 0.69). Phys. Rev. B 2009, 79, 121308. [Google Scholar] [CrossRef] [Green Version]
- Reich, C.; Guttmann, M.; Feneberg, M.; Wernicke, T.; Mehnke, F.; Kuhn, C.; Rass, J.; Lapeyrade, M.; Einfeldt, S.; Knauer, A.; et al. Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes. Appl. Phys. Lett. 2015, 107, 142101. [Google Scholar] [CrossRef]
- Zheng, J.; Li, J.; Zhong, Z.; Lin, W.; Chen, L.; Li, K.; Wang, X.; Chou, C.; Li, S.; Kang, J. Effect of electrical injection-induced stress on interband transitions in high Al content AlGaN MQWs. RSC Adv. 2017, 7, 55157–55162. [Google Scholar] [CrossRef]
- Bryan, Z.; Bryan, I.; Mita, S.; Tweedie, J.; Sitar, Z.; Collazo, R. Strain dependence on polarization properties of AlGaN and AlGaN-based ultraviolet lasers grown on AlN substrates. Appl. Phys. Lett. 2015, 106, 232101. [Google Scholar] [CrossRef]
- Long, H.; Wang, S.; Dai, J.; Wu, F.; Zhang, J.; Chen, J.; Liang, R.; Feng, Z.; Chen, C. Internal strain induced significant enhancement of deep ultraviolet light extraction efficiency for AlGaN multiple quantum wells grown by MOCVD. Opt. Express 2018, 26, 680. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Tang, N.; Wang, W.; Chen, X.; Fu, L.; He, C.; Lv, Y.; Feng, Z.; Xu, F.; et al. Compressive strain induced enhancement of transverse-electric polarized ultraviolet light emission for AlGaN quantum wells. Superlattices Microstruct. 2020, 150, 106749. [Google Scholar] [CrossRef]
- Bayerl, D.; Islam, S.; Jones, C.M.; Protasenko, V.; Jena, D.; Kioupakis, E. Deep ultraviolet emission from ultra-thin GaN/AlN heterostructures. Appl. Phys. Lett. 2016, 109, 241102. [Google Scholar] [CrossRef]
- Gao, N.; Chen, J.; Feng, X.; Lu, S.; Lin, W.; Li, J.; Chen, H.; Huang, K.; Kang, J. Strain engineering of digitally alloyed AlN/GaN nanorods for far-UVC emission as short as 220 nm. Opt. Mater. Express 2021, 11, 1282. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Jiang, K.; Sun, X.; Li, D. Recent Progress on AlGaN Based Deep Ultraviolet Light-Emitting Diodes below 250 nm. Crystals 2022, 12, 1812. https://doi.org/10.3390/cryst12121812
Zhang C, Jiang K, Sun X, Li D. Recent Progress on AlGaN Based Deep Ultraviolet Light-Emitting Diodes below 250 nm. Crystals. 2022; 12(12):1812. https://doi.org/10.3390/cryst12121812
Chicago/Turabian StyleZhang, Chunyue, Ke Jiang, Xiaojuan Sun, and Dabing Li. 2022. "Recent Progress on AlGaN Based Deep Ultraviolet Light-Emitting Diodes below 250 nm" Crystals 12, no. 12: 1812. https://doi.org/10.3390/cryst12121812
APA StyleZhang, C., Jiang, K., Sun, X., & Li, D. (2022). Recent Progress on AlGaN Based Deep Ultraviolet Light-Emitting Diodes below 250 nm. Crystals, 12(12), 1812. https://doi.org/10.3390/cryst12121812