Conversion of Nastrophites to Fibrous Strontium Apatites and Their Crystallographic Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of SrHPO4 and Ba-Substituted SrHPO4
2.2. Synthesis of Nastrophite Intermediates
2.3. Synthesis of Fibrous Strontium Apatites
2.4. Characterization
2.5. Determination of Lattice Parameters
2.5.1. Least-Squares Method (LSM)
2.5.2. Sequential Stepwise Improvement of Standard Deviation (SSISD)
3. Results
3.1. Synthesis and Characterization of Pure and Ba-Substituted Hydrogen Phosphates
3.2. Synthesis and Characterization of Nastrophites
3.3. Synthesis and Characterization of Fibrous Strontium Apatites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cianferotti, L.; D’Asta, F.; Brandi, M.L. A review on strontium ranelate long-term antifracture efficacy in the treatment of postmenopausal osteoporosis. Ther. Adv. Musculoskelet. Dis. 2013, 5, 127–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marie, P.J. Strontium as therapy for osteoporosis. Curr. Opin. Pharmacol. 2005, 5, 633–636. [Google Scholar] [CrossRef] [PubMed]
- Reginster, J.-Y.; Deroisy, R.; Jupsin, I. Strontium ranelate: A new paradigm in the treatment of osteoporosis. Drugs Today 2003, 39, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Fan, S.; Bai, X.; Ding, C. Strontium ranelate, a promising disease modifying osteoarthritis drug. Expert Opin. Investig. Drugs 2017, 26, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.A.; Freire, A.D.O.; Carvalho, H.C.O.; Silva, G.E.B.; Vasconcelos, J.W.; Guerra, R.N.M.; Cartágenes, M.D.S.D.S.; Garcia, J.B.S. Prophylactic and Therapeutic Use of Strontium Ranelate Reduces the Progression of Experimental Osteoarthritis. Front. Pharmacol. 2018, 9, 975. [Google Scholar] [CrossRef]
- Yu, D.-G.; Ding, H.-F.; Mao, Y.-Q.; Liu, M.; Yu, B.; Zhao, X.; Wang, X.-Q.; Li, Y.; Liu, G.-W.; Nie, S.-B.; et al. Strontium ranelate reduces cartilage degeneration and subchondral bone remodeling in rat osteoarthritis model. Acta Pharmacol. Sin. 2013, 34, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Marx, D.; Yazdi, A.R.; Papini, M.; Towler, M. A review of the latest insights into the mechanism of action of strontium in bone. Bone Rep. 2020, 12, 100273. [Google Scholar] [CrossRef]
- Stepan, J.J. Strontium ranelate: In search for the mechanism of action. J. Bone Miner. Metab. 2013, 31, 606–612. [Google Scholar] [CrossRef]
- Brennan, T.C.; Rybchyn, M.; Green, W.; Atwa, S.; Conigrave, A.D.; Mason, R. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br. J. Pharmacol. 2009, 157, 1291–1300. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, A. The formation of strontium apatites through alkaline hydrolysis of strontium hydrogen phosphate and their crystallographic characterization. Ceram. Int. 2021, 47, 21848–21861. [Google Scholar] [CrossRef]
- Furukawa, A.; Kawasaki, S.; Akahane, M.; Tanaka, Y. Fabrication of bioactive poly(ether ether ketone) by laser melt infiltration of poly(ether ether ketone) inside the strontium apatite coatings. Mater. Chem. Phys. 2022, 288, 126352. [Google Scholar] [CrossRef]
- Furukawa, A.; Akahane, M.; Tanaka, Y. CO2 laser bonding of silicate-substituted strontium apatite on PEEK and osteointegration on its surface. In Key Engineering Materials; Trans Tech Publications Ltd.: Bäch, Switzerland, 2018; Volume 782, pp. 145–150. [Google Scholar] [CrossRef] [Green Version]
- Tiselius, A. Chromatography of proteins on calcium phosphate columns. Arkiv Kemi 1954, 7, 443–449. [Google Scholar] [CrossRef]
- Monma, H.; Kamiya, T. Preparation of hydroxyapatite by the hydrolysis of brushite. J. Mater. Sci. 1987, 22, 4247–4250. [Google Scholar] [CrossRef]
- Chen, S.; Krumova, M.; Cölfen, H.; Sturm, E.V. Synthesis of Fiber-like Monetite without Organic Additives and Its Transformation to Hydroxyapatite. Chem. Mater. 2019, 31, 1543–1551. [Google Scholar] [CrossRef]
- Suchanek, K.; Bartkowiak, A.; Perzanowski, M.; Marszalek, M. From monetite plate to hydroxyapatite nanofibers by monoethanolamine assisted hydrothermal approach. Sci. Rep. 2018, 8, 15408. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Gao, J.; Shi, C.; Zhu, Y.; Zeng, Y.; Wang, D. Facile One-Pot Synthesis of Oriented Pure Hydroxyapatite with Hierarchical Architecture by Topotactic Conversion. Cryst. Growth Des. 2014, 14, 6459–6466. [Google Scholar] [CrossRef]
- Ito, H.; Oaki, Y.; Imai, H. Selective Synthesis of Various Nanoscale Morphologies of Hydroxyapatite via an Intermediate phase. Cryst. Growth Des. 2008, 8, 1055–1059. [Google Scholar] [CrossRef]
- Zhuang, Z.; Aizawa, M. Protein adsorption on single-crystal hydroxyapatite particles with preferred orientation to a(b)- and c-axes. J. Mater. Sci. Mater. Electron. 2013, 24, 1211–1216. [Google Scholar] [CrossRef]
- Haung, S.-M.; Chen, J.-C.; Chang, K.-C.; Ko, C.-L.; Lin, D.-J.; Chen, W.-C. Synthesis of nanorod apatites with templates at critical micelle concentrations and in vitro evaluation of cytotoxicity and antimicrobial activity. J. Asian Ceram. Soc. 2021, 9, 995–1006. [Google Scholar] [CrossRef]
- Thian, E.S.; Ahmad, Z.; Huang, J.; Edirisinghe, M.J.; Jayasinghe, S.N.; Ireland, D.C.; Brooks, R.A.; Rushton, N.; Bonfield, W.; Best, S.M. The role of electrosprayed apatite nanocrystals in guiding osteoblast behaviour. Biomaterials 2008, 29, 1833–1843. [Google Scholar] [CrossRef]
- Aizawa, M.; Matsuura, T.; Zhuang, Z. Syntheses of Single-Crystal Apatite Particles with Preferred Orientation to the a- and c-Axes as Models of Hard Tissue and Their Applications. Biol. Pharm. Bull. 2013, 36, 1654–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morisue, H.; Matsumoto, M.; Chiba, K.; Matsumoto, H.; Toyama, Y.; Aizawa, M.; Kanzawa, N.; Fujimi, T.J.; Uchida, H.; Okada, I. Novel apatite fiber scaffolds can promote three-dimensional proliferation of osteoblasts in rodent bone regeneration models. J. Biomed. Mater. Res. Part A 2009, 90, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Arepalli, S.K.; Tripathi, H.; Vyas, V.K.; Jain, S.; Suman, S.K.; Pyare, R.; Singh, S. Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass. Mater. Sci. Eng. C 2015, 49, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, M.; Yamazaki, A.; Akao, M.; Aoki, H. Cytotoxicity of synthetic barium hydroxyapatite. Bio-Med. Mater. Eng. 1996, 6, 405–413. [Google Scholar] [CrossRef]
- Boanini, E.; Gazzano, M.; Rubini, K.; Mazzeo, P.P.; Bigi, A. Structural interplay between strontium and calcium in α-CaHPO4 and β-SrHPO4. Ceram. Int. 2021, 47, 24412–24420. [Google Scholar] [CrossRef]
- Altomare, A.; Cuocci, C.; Giacovazzo, C.; Moliterni, A.; Rizzi, R.; Corriero, N.; Falcicchio, A. EXPO2013: A kit of tools for phasing crystal structures from powder data. J. Appl. Crystallogr. 2013, 46, 1231–1235. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658. [Google Scholar] [CrossRef]
- Boudjada, A.; Masse, R.; Guitel, J.C. Structure cristalline de l’orthophosphate monoacide de strontium: SrHPO4~α: Forme tri-clinique. Acta Crystallogr. Sect. B Struct. Crystogr. Cryst. Chem. 1978, 34, 2692–2695. [Google Scholar] [CrossRef]
- Cambridge Crystallographic Data Centre. CCDC Deposition Numbers: CSD2069793. Available online: https://www.ccdc.cam.ac.uk/ (accessed on 4 November 2022).
- Baturin, S.V.; Malinovskii, Y.A.; Belov, N.V. The crystal structure of nastrophite Na (Sr, Ba) (PO4) (H2O)9. Dokl. Akad. Nauk. SSSR 1981, 261, 619–623. [Google Scholar]
- Mooney, R.W.; Aia, M.A.; Hoffman, C.W.W.; Ropp, R.C. Dimorphic Modifications of Dibasic Strontium Phosphate, SrHPO4. J. Am. Chem. Soc. 1959, 81, 826–829. [Google Scholar] [CrossRef]
- Aia, M.A.; Mathers, J.E.; Mooney, R.W. Thermodynamic solubility products of α-and β−SrHPO4 from 25 to 90 °C. J. Chem. Eng. Data 1964, 9, 335–338. [Google Scholar] [CrossRef]
- Roming, M.; Feldmann, C. Selective synthesis of α- and β-SrHPO4 nanoparticles. J. Mater. Sci. 2008, 43, 5504–5507. [Google Scholar] [CrossRef]
- Chu, W.; Lu, Z.; Tan, R.; Tang, S.; Xu, W.; Song, W.; Zhao, J. Comparative study on Pb2+ removal using hydrothermal synthesized β-SrHPO4, Sr3(PO4)2, and Sr5(PO4)3(OH) powders. Powder Technol. 2018, 329, 420–425. [Google Scholar] [CrossRef]
- Shi, H.; Wu, T.; Zhang, J.; Ye, X.; Zeng, S.; Liu, X.; Yu, T.; Ye, J.; Zhou, C. Biocompatible β−SrHPO4 clusters with dandelion-like structure as an alternative drug carrier. Mater. Sci. Eng. C 2017, 81, 8–12. [Google Scholar] [CrossRef]
- Heijligers, H.J.M.; Driessens, F.C.M.; Verbeeck, R.M.H. Lattice parameters and cation distribution of solid solutions of calcium and strontium hydroxyapatite. Calcif. Tissue Res. 1979, 29, 127–131. [Google Scholar] [CrossRef] [Green Version]
- Fowler, B.O. Infrared studies of apatites. II. Preparation of normal and isotopically substituted calcium, strontium, and barium hydroxyapatites and spectra-structure-composition correlations. Inorg. Chem. 1974, 13, 207–214. [Google Scholar] [CrossRef]
- Delhez, R.; De Keijser, T.H.; Mittemeijer, E.J. Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis. Anal. Bioanal. Chem. 1982, 312, 1–16. [Google Scholar] [CrossRef]
- Koutsoukos, P.G.; Nancollas, G.H. Influence of strontium ion on the crystallization of hydroxyapatite from aqueous solution. J. Phys. Chem. 1981, 85, 2403–2408. [Google Scholar] [CrossRef]
- George, G.; Gupta, S.K.; Rao, P.V.R.; Narasaraju, T.S.B. Preparation and characterization of phosphate and arsenate apatites of strontium and their solid solutions. J. Mater. Sci. 1987, 22, 2274–2276. [Google Scholar] [CrossRef]
Lattice | α−SrHPO4 | α−SrBa(9/1)HPO4 | |||
---|---|---|---|---|---|
Parameters | EXPO | SSISD | Lit. [29] | EXPO | SSISD |
a (Å) | 7.251 | 7.153 | 7.184 | 7.259 | 7.211 |
b (Å) | 7.188 | 6.79 | 6.79 | 7.228 | 6.812 |
c (Å) | 6.797 | 7.222 | 7.256 | 6.806 | 7.268 |
α (°) | 91.27 | 94.62 | 94.68 | 91.11 | 94.28 |
β (°) | 94.65 | 104.89 | 104.97 | 94.33 | 105.17 |
γ (°) | 75.01 | 88.91 | 88.77 | 74.86 | 88.87 |
V (Å3) | 341.1 | 337.92 | 340.79 | 343.73 | 343.63 |
Rp’ | 5.82 | 7.59 | |||
SD | 2.71 × 10−1 | 6.47 × 10−3 | 2.88 × 10−1 | 3.21 × 10−3 |
β−SrHPO4 | β−SrBa(8/2)HPO4 | β−SrBa(7/3)HPO4 | β−SrBa(5/5)HPO4 | ||||||
---|---|---|---|---|---|---|---|---|---|
EXPO | SSISD | Lit. [30] | EXPO | SSISD | EXPO | SSISD | EXPO | SSISD | |
a (Å) | 10.244 | 10.240 | 10.239 | 10.275 | 10.297 | 9.041 | 10.297 | 10.37 | 10.435 |
b (Å) | 7.996 | 8.001 | 7.999 | 8.049 | 8.075 | 8.906 | 8.127 | 8.145 | 8.179 |
c (Å) | 9.318 | 9.328 | 9.326 | 9.362 | 9.369 | 4.808 | 9.394 | 9.494 | 9.512 |
α (°) | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
β (°) | 116.8 | 116.82 | 116.77 | 116.93 | 116.95 | 102.89 | 116.66 | 117.09 | 116.96 |
γ (°) | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
V (Å3) | 681.2 | 682.1 | 682 | 690.3 | 694.4 | 377.4 | 702.6 | 713.9 | 723.6 |
Rp’ | 8.25 | 9.29 | 17.77 | 11.55 | |||||
SD | 2.28 × 10−3 | 3.65 × 10−5 | 1.10 × 10−2 | 8.72 × 10−3 | 9.95 × 10−1 | 6.79 × 10−3 | 1.40 × 10−2 | 1.30 × 10−3 |
Na | Ba | Sr | P | O | Ba/(Ba + Sr) | (Ba + Sr)/P | ||
---|---|---|---|---|---|---|---|---|
NaSrPO4 | calcd | 0.140 | 0.000 | 0.140 | 0.140 | 0.570 | 0.000 | 1.000 |
obsd | 0.060 | 0.000 | 0.190 | 0.140 | 0.610 | 0.000 | 1.357 | |
NaSrBa(9/1)PO4 | calcd | 0.140 | 0.010 | 0.130 | 0.140 | 0.570 | 0.100 | 1.000 |
obsd | 0.020 | n.d. | 0.250 | 0.130 | 0.600 | n.d. | n.d. | |
NaSrBa(8/2)PO4 | calcd | 0.140 | 0.030 | 0.110 | 0.140 | 0.570 | 0.200 | 1.000 |
obsd | 0.018 | n.d. | 0.251 | 0.130 | 0.601 | n.d. | n.d. | |
NaSrBa(7/3)PO4 | calcd | 0.140 | 0.040 | 0.100 | 0.140 | 0.570 | 0.300 | 1.000 |
obsd | 0.102 | 0.051 | 0.127 | 0.131 | 0.589 | 0.287 | 1.359 | |
NaSrBa(5/5)PO4 | calcd | 0.140 | 0.070 | 0.070 | 0.140 | 0.570 | 0.500 | 1.000 |
obsd | 0.105 | 0.078 | 0.088 | 0.124 | 0.605 | 0.470 | 1.339 |
NaSrPO4 | NaSrBa(9/1)PO4 | NaSrBa(8/2)PO4 | NaSrBa(7/3)PO4 | NaSrBa(5/5)PO4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
EXPO | LSM | EXPO | LSM | EXPO | LSM | EXPO | LSM | EXPO | LSM | |
a (Å) | 10.54271 | 10.5478 | 10.5613 | 10.5609 | 10.5618 | 10.5673 | 10.6087 | 10.6087 | 10.6313 | 10.6661 |
V (Å3) | 1178.93 | 1173.51 | 1178.01 | 1177.90 | 1201.61 | 1180.02 | 1193.95 | 1193.95 | 1201.61 | 1213.44 |
SD | 5.58 × 10−3 | 2.70 × 10−3 | 2.55 × 10−4 | 2.55 × 10−4 | 1.29 × 10−2 | 1.31 × 10−2 | 2.83 × 10−7 | 2.83 × 10−7 | 1.08 × 10−2 | 1.46 × 10−2 |
Rp’ | 8.999 | 6.840 | 6.980 | 8.289 | 7.901 |
Molar Ratio | Ba | Sr | P | O | Ba/(Ba + Sr) | (Ba + Sr)/P | |
---|---|---|---|---|---|---|---|
SrHAP | calcd | 0.000 | 0.238 | 0.143 | 0.619 | 0.000 | 1.667 |
WDX | 0.000 | 0.228 | 0.139 | 0.633 | 0.000 | 1.641 | |
SrBa(9/1)HAP | calcd | 0.024 | 0.214 | 0.143 | 0.619 | 0.100 | 1.667 |
WDX | 0.021 | 0.196 | 0.132 | 0.651 | 0.097 | 1.647 | |
SrBa(8/2)HAP | calcd | 0.048 | 0.190 | 0.143 | 0.619 | 0.200 | 1.667 |
WDX | 0.042 | 0.174 | 0.135 | 0.649 | 0.194 | 1.600 | |
SrBa(7/3)HAP | calcd | 0.071 | 0.167 | 0.143 | 0.619 | 0.300 | 1.667 |
WDX | 0.068 | 0.165 | 0.130 | 0.638 | 0.292 | 1.792 | |
SrBa(5/5)HAP | calcd | 0.119 | 0.119 | 0.143 | 0.619 | 0.500 | 1.667 |
WDX | 0.106 | 0.110 | 0.129 | 0.655 | 0.491 | 1.674 |
SrHAP | SrBa(9/1)HAP | SrBa(2/8)HAP | SrBa(7/3)HAP | SrBa(5/5)HAP | ||||||
---|---|---|---|---|---|---|---|---|---|---|
EXPO | LSM | EXPO | LSM | EXPO | LSM | EXPO | LSM | EXPO | LSM | |
a (Å) | 9.7702 | 9.7702 | 9.7971 | 9.8117 | 9.8446 | 9.7883 | 9.8633 | 9.8673 | 9.9200 | 9.9453 |
b (Å) | 9.7702 | 9.7702 | 9.7971 | 9.8117 | 9.8446 | 9.7883 | 9.8633 | 9.8673 | 9.9200 | 9.9453 |
c (Å) | 7.2816 | 7.2816 | 7.2994 | 7.3462 | 7.3648 | 7.3104 | 7.3812 | 7.3962 | 7.4596 | 7.4560 |
α (°) | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 |
β (°) | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 |
γ (°) | 120.00 | 120.00 | 120.00 | 120.00 | 120.00 | 120.00 | 120.00 | 120.00 | 120.00 | 120.00 |
V (Å3) | 601.95 | 601.95 | 606.76 | 612.47 | 618.14 | 606.58 | 621.87 | 623.64 | 635.72 | 638.67 |
Rp’ | 6.578 | 9.232 | 9.223 | 6.782 | 8.334 | |||||
SD | 1.31 × 10−6 | 3.38 × 10−7 | 8.40 × 10−3 | 6.08 × 10−3 | 1.94 × 10−2 | 4.89 × 10−3 | 2.79 × 10−3 | 3.12 × 10−3 | 4.63 × 10−2 | 3.30 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furukawa, A.; Tanaka, Y. Conversion of Nastrophites to Fibrous Strontium Apatites and Their Crystallographic Characterization. Crystals 2022, 12, 1705. https://doi.org/10.3390/cryst12121705
Furukawa A, Tanaka Y. Conversion of Nastrophites to Fibrous Strontium Apatites and Their Crystallographic Characterization. Crystals. 2022; 12(12):1705. https://doi.org/10.3390/cryst12121705
Chicago/Turabian StyleFurukawa, Akira, and Yasuhito Tanaka. 2022. "Conversion of Nastrophites to Fibrous Strontium Apatites and Their Crystallographic Characterization" Crystals 12, no. 12: 1705. https://doi.org/10.3390/cryst12121705
APA StyleFurukawa, A., & Tanaka, Y. (2022). Conversion of Nastrophites to Fibrous Strontium Apatites and Their Crystallographic Characterization. Crystals, 12(12), 1705. https://doi.org/10.3390/cryst12121705