Design of a Hollow-Core Photonic Crystal Fiber Based Edible Oil Sensor
Abstract
:1. Introduction
2. Design of the Proposed Sensor
3. Simulation Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acid EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wakf, A.M.E.; Hassan, H.A.; Gharib, N.S. Osteoprotective effect of soybean and sesame oils in ovariectomized rats via estrogen like mechanism. Cytotechnology 2013, 66, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Fusaro, M.; Mereu, M.C.; Aghi, A.; Lervasi, G.; Gallieni, M. Vitamin K and bone. Clin. Cases Miner. Bone Metab. 2017, 14, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.E.; Smesny, S.; Kim, S.W.; Davey, C.G.; Rice, S.; Sarnyai, Z.; Schlogelhofer, M.; Schafer, M.R.; Berk, M.; McGorry, P.D.; et al. Omega-6 to omega-3 polyunsaturated fatty acid ratio and subsequent mood disorders in young people with at-risk mental states: A 7 year longitudinal study. Transl. Psychiatry 2017, 7, 1220. [Google Scholar] [CrossRef] [PubMed]
- Habib, M.A.; Rashed, A.N.Z.; El-hageen, H.; Alatwi, A.M. Extremely sensitive photonic crystal fiber based cancer cell detector in the terahertz regime. Plasmonics 2021, 16, 1297–1306. [Google Scholar] [CrossRef]
- She, Y.; Zhang, W.; Tu, S.; Guoling, L. Large mode area single mode photonic crystal fiber with ultra-low bending loss. Optik 2021, 229, 165556. [Google Scholar] [CrossRef]
- Wang, W.; Yang, B.; Song, H.; Fan, Y. Investigation of high birefringence and negative dispersion photonic crystal fiber with hybrid crystal lattice. Electron Opt. 2013, 124, 2901–2903. [Google Scholar] [CrossRef]
- Zhou, J.; Tajima, K.; Nakajima, K.; Kurokawa, K.; Fukai, C.; Matsui, T.; Sankawa, I. Progress on low loss photonic crystal fibers. Opt. Fiber Technol. 2005, 11, 101–110. [Google Scholar] [CrossRef]
- Habib, M.A.; Anower, M.S.; Hasan, M.R. Ultrahigh birefringence and extremely low loss slotted core microstructure fiber in terahertz regime. Curr. Opt. Photonics 2017, 1, 567–572. [Google Scholar]
- Agrez, V.; Petkovsek, R. Gain switch laser based on micro-structured Yb-doped active laser. Opt. Express 2014, 22, 5558–5563. [Google Scholar] [CrossRef]
- Stachowiak, D. High-power passive fiber components for all-fiber lasers and amplifiers applications-design and fabrication. Photonics 2018, 5, 38. [Google Scholar] [CrossRef] [Green Version]
- Eid, M.M.A.; Habib, M.A.; Anower, M.S.; Rashed, A.N.Z. Highly sensitive nonlinear photonic crystal fiber based sensor for chemical sensing applications. Microsyst. Technol. 2021, 27, 1007–1014. [Google Scholar] [CrossRef]
- Habib, M.A.; Abdulrrazak, L.F.; Magam, M.; Jamil, L.; Qureshi, K.K. Design of highly sensitive photonic crystal fiber sensor for sulfuric acid detection. Micromachines 2022, 13, 670. [Google Scholar] [CrossRef] [PubMed]
- Knorr, F.; Yankelevich, D.R.; Liu, J.; Hogiu, S.W.; Marcu, L. Two-photon excited fluorescence lifetime measurements through a double-clad photonic crystal fiber for tissue micro-endoscopy. J. Biophotonics 2011, 5, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Pawar, A.Y.; Sonawane, D.D.; Erande, K.B.; Derle, D.V. Terahertz technology and its applications. Drug Invent. Today 2013, 5, 157–163. [Google Scholar] [CrossRef]
- Habib, M.A.; Anower, M.S. Low loss highly birefringent porous core fiber for single-mode terahertz wave guidance. Curr. Opt. Photonics 2018, 2, 215–220. [Google Scholar]
- Szentpali, B.; Furjes, P.; Barsony, I. THz detection by thermopile antenna. Procedia Comput. Sci. 2011, 7, 156–157. [Google Scholar] [CrossRef]
- Habib, A.; Anower, S.; Haque, I. Highly sensitive hollow-core spiral fiber for chemical spectroscopic applications. Sens. Int. 2020, 1, 100011. [Google Scholar] [CrossRef]
- Razanoelina, M.; Kinjo, R.; Takayama, K.; Kawayama, I.; Murakami, H.; Mittleman, D.M.; Tonouchi, M. Parallel-plate waveguide terahertz time domain spectroscopy for ultrathin conductive films. J. Infrared Millim. Terahertz Waves 2015, 36, 1182–1194. [Google Scholar] [CrossRef]
- Wang, K.; Mittleman, D. Metal wires for terahertz wave guiding. Nature 2004, 432, 376–379. [Google Scholar] [CrossRef]
- Reza, M.S.; Habib, M.A. Extremely sensitive chemical sensor for terahertz regime based on hollow-core photonic crystal fiber. Ukranian J. Phys. Opt. 2020, 21, 8–14. [Google Scholar] [CrossRef]
- Suhaimi, N.A.N.B.; Maidi, A.M.; Abas, P.E.; Kaijage, S.; Begum, F. Design and simulation of heptagonal porous core photonic crystal fiber for terahertz wave transmission. Optik 2022, 260, 169142. [Google Scholar] [CrossRef]
- Habib, M.A.; Anower, M.S.; Hasan, M.R. Highly birefringent and low effective material loss microstructure fiber for THz wave guidance. Opt. Commun. 2018, 423, 140–144. [Google Scholar] [CrossRef]
- Wu, C.; Fu, H.Y.; Qureshi, K.K.; Guan, B.; Tam, H.Y. High pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber. Opt. Lett. 2011, 36, 412–414. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, K.K.; Liu, Z.; Tam, H.Y.; Zia, M.F. A strain sensor based on in-line fiber Mach-Zehnder interferometer in twin core photonic crystal fiber. Opt. Commun. 2013, 309, 68–70. [Google Scholar] [CrossRef]
- Qureshi, K.K. A switchable dual-wavelength fiber ring laser featuring twin-core photonic crystal fiber-based filter. Chin. Opt. Lett. 2014, 12, 0200605. [Google Scholar]
- Sultana, J.; Islam, M.S.; Ahmed, K.; Dinovitser, A.; Ng, B.W.-H.; Abbott, D. Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl. Opt. 2018, 57, 2426–2433. [Google Scholar] [CrossRef]
- Islam, M.S.; Sultana, J.; Rifat, A.A.; Dinovitser, A.; Ng, B.W.-H.; Abbott, D. Terahertz sensing in a hollow core photonic crystal fiber. IEEE Sens. J. 2018, 18, 4073–4080. [Google Scholar] [CrossRef]
- Eid, M.M.A.; Habib, M.A.; Anower, M.S.; Rashed, A.N.Z. Hollow core photonic crystal fiber (PCF) based optical sensor for blood component detection in terahertz spectrum. Braz. J. Phys. 2021, 51, 1017–1025. [Google Scholar] [CrossRef]
- Hossain, M.B.; Podder, E. Design and investigation of PCF-based blood components sensor in terahertz regime. Appl. Phys. A 2019, 125, 1–8. [Google Scholar] [CrossRef]
- Ferdous, A.H.M.I.; Anower, M.S.; Musha, A.; Habib, M.A.; Shobug, M.A. A heptagonal PCF-based oil sensor to detect fuel adulteration using terahertz spectrum. Sens. Bio-Sens. Res. 2022, 36, 100485. [Google Scholar] [CrossRef]
- Zaky, Z.A.; Sharma, A.; Aly, A.H. Gyroidal graphene for exciting tamm plasmon polariton as refractive index sensor: Theoretical study. Opt. Mater. 2021, 122, 111684. [Google Scholar] [CrossRef]
- Zaky, Z.A.; Sharma, A.; Aly, A.H. Tamm plasmon polariton as refractive index sensor excited by gyroid metals/porous Ta2O5 photonic crystal. Plasmonics 2022, 17, 681–691. [Google Scholar] [CrossRef]
- Aly, A.H.; Zaky, Z.A.; Shalaby, A.S.; Ahmed, A.M.; Vigneswaran, D. Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor. Phys. Scr. 2020, 95, 035510. [Google Scholar] [CrossRef]
- Ariponnammal, S. A novel method of using refractive index as a tool for finding the adulteration of oils. Res. J. Recent Sci. 2012, 1, 77–79. [Google Scholar]
- Liu, Z.; Tam, H.Y. Fabrication and sensing applications of special microstructured optical fibers. Sel. Top. Opt. Fiber Technol. Appl. 2017. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, C.; Tse, M.L.V.; Tam, H.Y. Fabrication, Characterization, and Sensing Applications of a High-Birefringence Suspended-Core Fiber. J. Light. Technol. 2014, 32, 2113–2122. Available online: https://opg.optica.org/jlt/abstract.cfm?URI=jlt-32-11-2113 (accessed on 12 September 2022). [CrossRef]
Oil Type | Refractive Index |
---|---|
Sunflower oil | 1.472 |
Mustard oil | 1.470 |
Olive oil | 1.466 |
Coconut oil | 1.463 |
Palm oil | 1.454 |
Ref | Year | Sensing Sample | Relative Sensitivity (%) | Confinement Loss (dB/m) | Numerical Aperture |
---|---|---|---|---|---|
[28] | 2018 | Benzene Ethanol Water | 97.20 96.97 96.69 | 8.80 × 10−12 5.13 × 10−12 2.41 × 10−11 | --- --- --- |
[30] | 2019 | RBC Hemoglobin WBC Plasma Water | 93.50 92.41 91.25 90.48 89.14 | 1.80 × 10−12 6.13 × 10−12 2.15 × 10−11 5.85 × 10−11 8.93 × 10−11 | --- --- --- --- --- |
[21] | 2020 | Benzene Ethanol Water | 98.50 98.20 97.60 | 2.34 × 10−12 5.98 × 10−12 9.51 × 10−11 | --- --- --- |
[20] | 2021 | RBC Hemoglobin WBC Plasma Water | 95.80 95.00 93.60 92.50 91.40 | 3.80 × 10−11 1.13 × 10−11 2.15 × 10−10 6.25 × 10−10 8.3 × 10−9 | 0.38 0.38 0.38 0.38 0.38 |
This work | 2022 | Sunflower oil Mustard oil Olive oil Coconut oil Palm oil | 99.65 99.60 99.55 99.50 99.35 | 1.91 × 10−12 1.93 × 10−12 2.62 × 10−12 3.3 × 10−12 1.31 × 10−11 | 0.37 0.37 0.37 0.37 0.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.N.; Al-tabatabaie, K.F.; Habib, M.A.; Iqbal, S.S.; Qureshi, K.K.; Al-Mutairi, E.M. Design of a Hollow-Core Photonic Crystal Fiber Based Edible Oil Sensor. Crystals 2022, 12, 1362. https://doi.org/10.3390/cryst12101362
Islam MN, Al-tabatabaie KF, Habib MA, Iqbal SS, Qureshi KK, Al-Mutairi EM. Design of a Hollow-Core Photonic Crystal Fiber Based Edible Oil Sensor. Crystals. 2022; 12(10):1362. https://doi.org/10.3390/cryst12101362
Chicago/Turabian StyleIslam, Md. Nazmul, Kusay Faisal Al-tabatabaie, Md. Ahasan Habib, Sheikh Sharif Iqbal, Khurram Karim Qureshi, and Eid M. Al-Mutairi. 2022. "Design of a Hollow-Core Photonic Crystal Fiber Based Edible Oil Sensor" Crystals 12, no. 10: 1362. https://doi.org/10.3390/cryst12101362
APA StyleIslam, M. N., Al-tabatabaie, K. F., Habib, M. A., Iqbal, S. S., Qureshi, K. K., & Al-Mutairi, E. M. (2022). Design of a Hollow-Core Photonic Crystal Fiber Based Edible Oil Sensor. Crystals, 12(10), 1362. https://doi.org/10.3390/cryst12101362