Variation of Surface Nanostructures on (100) PbS Single Crystals during Argon Plasma Treatment
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Sputtering Rates of PbS Single Crystals in Argon Plasma with Varying Ar+ Ion Energy
3.2. Formation of Nanotips via the Micromasking Mechanism
3.3. Submicron Cones and Arrays of Nanostructures
3.4. Formation of Nanostructure Arrays without Submicron Cones
3.5. Formation of Quasi-Spherical Lead Submicron Structures
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, G.; Wang, Y.; Ning, J.; Wei, Y.; Liu, B.; William, W.Y.; Zou, G.; Zou, B. Recent advances in IV–VI semiconductor nanocrystals: Synthesis, mechanism, and applications. RSC Adv. 2013, 3, 8104–8130. [Google Scholar] [CrossRef]
- Litvin, A.P.; Martynenko, I.V.; Purcell-Milton, F.; Baranov, A.V.; Fedorov, A.V.; Gun’Ko, Y.K. Colloidal quantum dots for optoelectronics. J. Mater. Chem. A 2017, 5, 13252–13275. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Jia, Y.; Liu, X.; Liu, T.; Fu, T.; Li, J.; Weng, B.; Zhang, X.; Liu, Y. Manipulation of Phase-Transfer Ligand-Exchange Dynamics of PbS Quantum Dots for Efficient Infrared Photovoltaics. J. Phys. Chem. C 2019, 123, 30137–30144. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Phuyal, D.; Du, J.; Tian, L.; Öberg, V.A.; Johansson, M.B.; Cappel, U.B.; Karis, O.; Liu, J.; et al. Inorganic CsPbI3 perovskite coating on PbS quantum dot for highly efficient and stable infrared light converting solar cells. Adv. Energy Mater. 2018, 8, 1702049. [Google Scholar] [CrossRef]
- Sukharevska, N.; Bederak, D.; Goossens, V.M.; Momand, J.; Duim, H.; Dirin, D.N.; Kovalenko, M.V.; Kooi, B.J.; Loi, M.A. Scalable PbS Quantum Dot Solar Cell Production by Blade Coating from Stable Inks. ACS Appl. Mater. Interfaces 2021, 13, 5195–5207. [Google Scholar] [CrossRef]
- Jana, S.; Goswami, S.; Nandy, S.; Chattopadhyay, K.K. Synthesis of tetrapod like PbS microcrystals by hydrothermal route and its optical characterization. J. Alloy. Compd. 2009, 481, 806–810. [Google Scholar] [CrossRef]
- Murray, C.B.; Sun, S.; Gaschler, W.; Doyle, H.; Betley, T.A.; Kagan, C.R. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 2001, 45, 47–56. [Google Scholar] [CrossRef]
- Bakueva, L.; Gorelikov, I.; Musikhin, S.; Zhao, X.S.; Sargent, E.H.; Kumacheva, E. PbS quantum dots with stable efficient luminescence in the near-IR spectral range. Adv. Mater. 2004, 16, 926–929. [Google Scholar] [CrossRef]
- Alchalabi, K.; Zimin, D.; Kostorz, G.; Zogg, H. Self-assembled semiconductor quantum dots with nearly uniform sizes. Phys. Rev. Lett. 2003, 90, 026104. [Google Scholar] [CrossRef]
- Anthony, S.P.; Cho, W.J.; Lee, J.I.; Kim, J.K. Synthesis of lead chalcogenide nanoparticles in block copolymer micelles: Investigation of optical properties and fabrication of 2-D arrays of nanoparticles. J. Mater. Chem. 2009, 19, 280–285. [Google Scholar] [CrossRef][Green Version]
- Dong, G.; Wu, B.; Zhang, F.; Zhang, L.; Peng, M.; Chen, D.; Wu, E.; Qiu, J. Broadband near-infrared luminescence and tunable optical amplification around 1.55 μm and 1.33 μm of PbS quantum dots in glasses. J. Alloy. Compd. 2011, 509, 9335–9339. [Google Scholar] [CrossRef]
- Zimin, S.; Gorlachev, E.; Amirov, I. Inductively Coupled Plasma Sputtering: Structure of IV-VI Semiconductors. In Encyclopedia of Plasma Technology, 1st ed.; Shohet, J.L., Ed.; CRC Press: New York, NY, USA, 2017; pp. 679–691. Available online: https://www.routledgehandbooks.com/doi/10.1081/E-EPLT-120053966 (accessed on 1 November 2020).
- Gago, R.; Vázquez, L.; Cuerno, R.; Varela, M.; Ballesteros, C.; Albella, J.M. Production of ordered silicon nanocrystals by low-energy ion sputtering. Appl. Phys. Lett. 2001, 78, 3316–3318. [Google Scholar] [CrossRef]
- Levchenko, I.; Ostrikov, K. Nanostructures of various dimensionalities from plasma and neutral fluxes. J. Phys. D: Appl. Phys. 2007, 40, 2308–2319. [Google Scholar] [CrossRef]
- Bradley, R.M.; Shipman, P.D. Spontaneous pattern formation induced by ion bombardment of binary compounds. Phys. Rev. Lett. 2010, 105, 145501. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.B.; Agarwal, D.C.; Khan, S.A.; Kumar, M.; Tripathi, A.; Singhal, R.; Panigrahi, B.K.; Avasthi, D.K. Engineering of hydrophilic and plasmonic properties of Ag thin film by atom beam irradiation. Appl. Surf. Sci. 2011, 258, 1464–1469. [Google Scholar] [CrossRef]
- Tanyeli, I.; Marot, L.; Mathys, D.; van de Sanden, M.C.M.; De Temmerman, G. Surface modifications induced by high fluxes of low energy Helium ions. Sci. Rep. 2015, 5, 9779. [Google Scholar] [CrossRef] [PubMed]
- Sulania, I.; Agarwal, D.; Husain, M.; Avasthi, D.K. Investigations of ripple pattern formation on Germanium surfaces using 100-keV Ar+ ions. Nanoscale Res. Lett. 2015, 10, 88. [Google Scholar] [CrossRef]
- El-Said, A.S.; Wilhelm, R.A.; Heller, R.; Sorokin, M.; Facsko, S.; Aumayr, F. Tuning the fabrication of nanostructures by low-energy highly charged ions. Phys. Rev. Lett. 2016, 117, 126101. [Google Scholar] [CrossRef]
- Zimin, S.P.; Amirov, I.I.; Naumov, V.V.; Guseva, K.E. The Formation of Hollow Lead Structures on the Surface of PbSe Films Treated in Argon Plasma. Tech. Phys. Lett. 2018, 44, 518–521. [Google Scholar] [CrossRef]
- Zimin, S.P.; Amirov, I.I.; Naumov, V.V. Changes in the conductivity of lead-selenide thin films after plasma etching. Semiconductors 2016, 50, 1125–1129. [Google Scholar] [CrossRef]
- Zimin, S.P.; Gorlachev, E.S.; Amirov, I.I.; Zogg, H. Micromasking effect and nanostructure self-formation on the surface of lead chalcogenide epitaxial films on Si substrates during argon plasma treatment. J. Phys. D-Appl. Phys. 2009, 42, 165205. [Google Scholar] [CrossRef]
- Zimin, S.P.; Gorlachev, E.S.; Amirov, I.I.; Naumov, V.V.; Bagiyeva, G.Z. Application of abnormally high sputtering rate of PbTe (Te) single crystals during inductively coupled argon plasma treatment for fabrication of nanostructures. Semicond. Sci. Technol. 2015, 30, 035017. [Google Scholar] [CrossRef]
- Zimin, S.P.; Gorlachev, E.S.; Amirov, I.I.; Naumov, V.V.; Juskenas, R.; Skapas, M.; Abramof, E.; Rappl, P.H.O. Plasma-assisted surface nanostructuring of epitaxial Pb1−xSnxTe (0≤ x≤ 1) films. Semicond. Sci. Technol. 2019, 34, 095001. [Google Scholar] [CrossRef]
- Zimin, S.P.; Amirov, I.I.; Naumov, V.V.; Guseva, K.E. Surface Modification of Pb1–xSnxSe Films during Plasma Treatment Near the Sputtering Threshold. J. Surf. Ingestig.-X-Ray Synchro. 2020, 14, 1174–1178. [Google Scholar] [CrossRef]
- Zimin, S.P.; Gorlachev, E.S.; Gremenok, V.F.; Tsyrelchuk, I.N.; Naumov, V.V.; Amirov, I.I.; Dubov, G.A. Plasma sputtering of polycrystalline Pb1− xSnxTe thin films grown on glass substrates using hot wall deposition. Semicond. Sci. Technol. 2014, 29, 075020. [Google Scholar] [CrossRef]
- Zimin, S.P.; Gorlachev, E.S.; Amirov, I.I.; Naumov, V.V. Lead selenide nanowire growth by vapor-liquid-solid mechanism under mask during plasma processing. Tech. Phys. Lett. 2011, 37, 929–931. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Xiao, G.; Zhou, B.; Liu, B.; Zou, G.; Zou, B. Shape-controlled synthesis of PbS nanostructures from− 20 to 240 °C: The competitive process between growth kinetics and thermodynamics. Crystengcomm 2013, 15, 5496–5505. [Google Scholar] [CrossRef]
- Lee, S.M.; Jun, Y.W.; Cho, S.N.; Cheon, J. Single-crystalline star-shaped nanocrystals and their evolution: Programming the geometry of nano-building blocks. J. Am. Chem. Soc. 2002, 124, 11244–11245. [Google Scholar] [CrossRef]
- Gerdes, F.; Volkmann, M.; Schliehe, C.; Bielewicz, T.; Klinke, C. Sculpting of lead sulfide nanoparticles by means of acetic acid and dichloroethane. Z. Phys. Chem. 2015, 229, 139–151. [Google Scholar] [CrossRef]
- Kolesnikov, N.N.; James, R.B.; Berzigiarova, N.S.; Kulakov, M.P. HPVB-and HPVZM-shaped growth of CdZnTe, CdSe, and ZnSe crystals. In X-Ray and Gamma-Ray Detectors and Applications IV, Proceedings of International Symposium on Optical Science and Technology, Seattle, WA, United States, 7–11 July 2002; James, R.B., Franks, L.A., Burger, A., Westbrook, E.M., Durst, R.D., Eds.; SPIE: Bellingham, WA, USA, 2003; Volume 4784, pp. 93–104. [Google Scholar] [CrossRef]
- Bohdansky, J.; Roth, J.; Bay, H.L. An analytical formula and important parameters for low-energy ion sputtering. J. Appl. Phys. 1980, 51, 2861–2865. [Google Scholar] [CrossRef]
- Zayachuk, D.M.; Slynko, V.E.; Csik, A. Peculiar properties of preferential sputtering of PbTe, SnTe, and GeTe by Ar+ ion plasma. Mater. Sci. Semicond. Process 2018, 88, 103–108. [Google Scholar] [CrossRef]
- Zimin, S.P.; Amirov, I.I.; Gorlachev, E.S. RF sputtering of epitaxial lead chalcogenide films in argon and krypton plasma. Semicond. Sci. Technol. 2011, 26, 055018. [Google Scholar] [CrossRef]
- Zimin, S.P.; Gorlachev, E.S.; Amirov, I.I.; Gerke, M.N.; Zogg, H.; Zimin, D. Role of threading dislocations during treatment of PbTe films in argon plasma. Semicond. Sci. Technol. 2007, 22, 929. [Google Scholar] [CrossRef]
- Cheng, C.; Fan, H.J. Branched nanowires: Synthesis and energy applications. Nano Today 2012, 7, 327–343. [Google Scholar] [CrossRef]
- Bierman, M.J.; Lau, Y.A.; Jin, S. Hyperbranched PbS and PbSe nanowires and the effect of hydrogen gas on their synthesis. Nano lett. 2007, 7, 2907–2912. [Google Scholar] [CrossRef] [PubMed]
- Bierman, M.J.; Jin, S. Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ. Sci. 2009, 2, 1050–1059. [Google Scholar] [CrossRef]
Ei (eV) | 25 | 75 | 100 | 200 |
V (nm/s) | 0.1 | 3.3 | 5.8 | 10.8 |
Ei (eV) | Plasma Treatment Duration (s) | Surface Micro- and Nanostructures | Formation Mechanism |
---|---|---|---|
25 | 240–360 | Nanocones with 30–50 nm heights | Micromasking with Pb particles |
75 | 60 | 200 nm high submicron cones; nanodroplets with 50 nm diameters | Micromasking of dislocation exit sites; Pb droplet redeposition |
120 | 400 nm high submicron cones; orthogonal nanostructures with 50 nm nanodroplets | Micromasking of dislocation exit sites; VLS growth | |
180 | Arrays of larger quasi-spherical metallic structures; arrays of smaller quasi-spherical particles | Growth of hollow metallic Pb structures [20] | |
100, 200 | 60 | 350 nm high submicron cones; nanodroplets | Micromasking of dislocation exit sites; Pb droplet redeposition |
120 | 700 nm high submicron cones; cruciform nanostructures with 35 nm nanodroplets | Micromasking of dislocation exit sites; VLS growth | |
200 | 120 + 180 | Array of cruciform nanostructures with heights up to 140 nm with 25–70 nm nanodroplets | VLS growth |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimin, S.P.; Kolesnikov, N.N.; Amirov, I.I.; Naumov, V.V.; Gorlachev, E.S.; Kim, S.; Kim, N.-H. Variation of Surface Nanostructures on (100) PbS Single Crystals during Argon Plasma Treatment. Crystals 2022, 12, 111. https://doi.org/10.3390/cryst12010111
Zimin SP, Kolesnikov NN, Amirov II, Naumov VV, Gorlachev ES, Kim S, Kim N-H. Variation of Surface Nanostructures on (100) PbS Single Crystals during Argon Plasma Treatment. Crystals. 2022; 12(1):111. https://doi.org/10.3390/cryst12010111
Chicago/Turabian StyleZimin, Sergey P., Nikolai N. Kolesnikov, Ildar I. Amirov, Viktor V. Naumov, Egor S. Gorlachev, Sara Kim, and Nam-Hoon Kim. 2022. "Variation of Surface Nanostructures on (100) PbS Single Crystals during Argon Plasma Treatment" Crystals 12, no. 1: 111. https://doi.org/10.3390/cryst12010111
APA StyleZimin, S. P., Kolesnikov, N. N., Amirov, I. I., Naumov, V. V., Gorlachev, E. S., Kim, S., & Kim, N.-H. (2022). Variation of Surface Nanostructures on (100) PbS Single Crystals during Argon Plasma Treatment. Crystals, 12(1), 111. https://doi.org/10.3390/cryst12010111