π-Hole Tetrel Bonds—Lewis Acid Properties of Metallylenes
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Crystal Structures
3.2. Dihalometallylenes—Lewis Acid and Lewis Base Sites
3.3. Complexes of Dihalometallylenes
4. Summary and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carbene Chemistry: From Fleeting Intermediates to Powerful Reagents; Bertrand, G. (Ed.) FontisMedia S.A. & Marcel Dekker Inc.: Lausanne, Switzerland; Basel, Switzerland, 2002. [Google Scholar]
- Bourissou, D.; Guerret, O.; Gabbaï, F.P.; Bertrand, G. Stable Carbenes. Chem. Rev. 2000, 100, 39–91. [Google Scholar] [CrossRef] [PubMed]
- Skell, P.S.; Garner, A.Y. The Stereochemistry of Carbene-Olefin Reactions. Reactions of Dibromocarbene with the cis- and trans-2-Butenes. J. Am. Chem. Soc. 1956, 78, 3409–3411. [Google Scholar] [CrossRef]
- Skell, P.S.; Garner, A.Y. Reactions of Bivalent Carbon Compounds. Reactivities in Olefin-Dibromocarbene Reactions. J. Am. Chem. Soc. 1956, 78, 5430–5433. [Google Scholar] [CrossRef]
- Skell, P.S.; Woodworth, R.C. Structure of Carbene, CH2. J. Am. Chem. Soc. 1956, 78, 4496–4497. [Google Scholar] [CrossRef]
- Skell, P.S. The beginnings of modern carbene chemistry triplets and singlets. Tetrahedron 1985, 41, 1427–1428. [Google Scholar] [CrossRef]
- Mizuhata, Y.; Sasamori, T.; Tokitoh, N. Stable Heavier Carbene Analogues. Chem. Rev. 2009, 109, 3479–3511. [Google Scholar] [CrossRef] [PubMed]
- Pople, J.A.; Raghavachari, K.; Frisch, M.J.; Binkley, J.S.; Schleyer, P.V.R. Comprehensive Theoretical Study of Isomers and Rearrangement Barriers of Even-Electron Polyatomic Molecules HmABHn (A, B = C, N, 0, and F). J. Am. Chem. Soc. 1983, 105, 6389–6398. [Google Scholar] [CrossRef]
- Pople, J.A. A Theoretical Search for the Methylenefluoronium Ylide. Chem. Phys. Lett. 1986, 132, 144–146. [Google Scholar] [CrossRef]
- Arduengo, A.J., III; Gamper, S.F.; Tamm, M.; Calabrese, J.C.; Davidson, F.; Craig, H.A. A Bis(carbene)-Proton Complex: Structure of a C-H-C Hydrogen Bond. J. Am. Chem. Soc. 1995, 117, 572–573. [Google Scholar] [CrossRef]
- Alkorta, I.; Elguero, J. Carbenes and Silylenes as Hydrogen Bond Acceptors. J. Phys. Chem. 1996, 100, 19367–19370. [Google Scholar] [CrossRef]
- Palusiak, M.; Jabłoński, M. Divalent carbon atom as the proton acceptor in hydrogen bonding. Phys. Chem. Chem. Phys. 2009, 11, 5711–5719. [Google Scholar]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge structural database. Acta Cryst. 2016, B72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.; Allen, F.H.; Willett, P. The scientific impact of the Cambridge Structural Database: A citation-based study. J. Appl. Cryst. 2010, 43, 811–824. [Google Scholar] [CrossRef] [Green Version]
- Bader, R.F.W. Atoms in Molecules, a Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Quantum Theory of Atoms in Molecules: Recent Progress in Theory and Application; Matta, C.; Boyd, R.J. (Eds.) Wiley-VCH: Weinheim, Germany, 2007. [Google Scholar]
- Weinhold, F.; Landis, C. Valency and Bonding, a Natural Bond Orbital Donor—Acceptor Perspective; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Reed, E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Møller, C.; Plesset, M.S. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618–622. [Google Scholar] [CrossRef] [Green Version]
- Kendall, R.A.; Dunning, T.H., Jr.; Harrison, R.J. Electron Affinities of the First-Row Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef] [Green Version]
- Woon, D.E.; Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358–1371. [Google Scholar] [CrossRef] [Green Version]
- Peterson, K.A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J. Chem. Phys. 2003, 119, 11113. [Google Scholar] [CrossRef] [Green Version]
- Peterson, K.A. Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13–15 elements. J. Chem. Phys. 2003, 119, 11099. [Google Scholar] [CrossRef] [Green Version]
- Piela, L. Ideas of Quantum Chemistry; Elsevier Science Publishers: Amsterdam, The Netherlands, 2007; pp. 684–691. [Google Scholar]
- Grabowski, S.J.; Sokalski, W.A. Different types of hydrogen bonds: Correlation analysis of interaction energy components. J. Phys. Org. Chem. 2005, 18, 779–784. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–561. [Google Scholar] [CrossRef]
- Glendening, E.D.; Landis, C.-R.; Weinhold, F. NBO 6.0: Natural bond orbital analysis program. J. Comput. Chem. 2013, 34, 1429–1437. [Google Scholar] [CrossRef] [PubMed]
- Baerends, E.J.; Ziegler, T.; Atkins, A.J.; Autschbach, J.; Baseggio, O.; Bashford, D.; Bérces, A.; Bickelhaupt, F.M.; Bo, C.; Boerrigter, P.M.; et al. ADF2019, SCM, Theoretical Chemistry; Vrije Universiteit: Amsterdam, The Netherlands, 2019; Available online: http://www.scm.com (accessed on 27 December 2021).
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822–8824. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Lenthe, E.; Baerends, E.J. Optimized Slater-type basis sets for the elements 1-118. J. Comput. Chem. 2003, 24, 1142–1156. [Google Scholar] [CrossRef]
- Velde, G.T.E.; Bickelhaupt, F.M.; Baerends, E.J.; Guerra, C.F.; van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967. [Google Scholar] [CrossRef]
- Keith, T.A. AIMAll, (Version 11.08.23); TK Gristmill Software: Overland Park, KS, USA, 2011; Available online: aim.tkgristmill.com (accessed on 10 January 2022).
- Jmol: An Open-Source Java Viewer for Chemical Structures in 3D. Available online: http://www.jmol.org/ (accessed on 9 January 2022).
- Bondi, J. Van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Denk, M.K.; Khan, M.; Lough, A.J.; Shuchi, K. Redetermination of the Germanium Dichloride Complex with 1,4-Dioxane at 173 K. Acta Cryst. 1998, C54, 1830–1832. [Google Scholar]
- Tian, X.; Pape, T.; Mitzel, N.W. Crystal Structure of Germanium(II) Dichloride Solvated by Tetrahydrofuran. Heteroatom Chem. 2005, 16, 361–363. [Google Scholar] [CrossRef]
- Merkelbach, J.; Frank, W. Synthesis, detailed geometric analysis and bond-valence method evaluation of the strength of π-arene bonding of two isotypic cationic prehnitene tin (II) complexes: [{1,2,3,4-(CH3)4C6H2}2Sn2Cl2][MCl4]2 (M = Al and Ga). Acta Cryst. 2019, E75, 1051–1056. [Google Scholar] [CrossRef] [PubMed]
- Ayers, A.E.; Dias, H.V.R. Investigation of Silver Salt Metathesis: Preparation of Cationic Germanium(II) and Tin(II) Complexes, and Silver Adducts Containing Unsupported Silver-Germanium and Silver-Tin Bonds. Inorg. Chem. 2002, 41, 3259–3268. [Google Scholar] [CrossRef] [PubMed]
- Hahn, F.E.; Wittenbecher, L.; Le Van, D.; Zabula, A.V. Benzimidazolin-2-stannylenes with, N,N′-Alkyl (Me and Et) and Lewis Base Functional Groups. Inorg. Chem. 2007, 46, 7662–7667. [Google Scholar] [CrossRef]
- Politzer, P.; Riley, K.E.; Bulat, F.A.; Murray, J.S. Perspectives on halogen bonding and other σ-hole interactions: Lex parsimoniae (Occam’s Razor). Comput. Theor. Chem. 2012, 998, 2–8. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S.; Clark, T. Halogen bonding: An electrostatically-driven highly directional noncovalent interaction. Phys. Chem. Chem. Phys. 2010, 12, 7748–7758. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S.; Clark, T. Halogen bonding and other σ-hole interactions: A perspective. Phys. Chem. Chem. Phys. 2013, 15, 11178–11189. [Google Scholar] [CrossRef]
- Bundhun, A.; Ramasami, P.; Murray, J.S.; Politzer, P. Trends in σ-hole Strengths and Interactions of F3MX Molecules (M = C, Si, Ge and X = F., Cl, Br, I). J. Mol. Model. 2013, 19, 2739–2746. [Google Scholar] [CrossRef]
- Bauzá, A.; Mooibroek, T.J.; Frontera, A. Tetrel-Bonding Interaction: Rediscovered Supramolecular Force? Angew. Chem. Int. Ed. 2013, 52, 12317–12321. [Google Scholar] [CrossRef]
- Grabowski, S.J. Tetrel bond-σ-hole bond as a preliminary stage of the SN2 reaction. Phys. Chem. Chem. Phys. 2014, 16, 1824–1834. [Google Scholar] [CrossRef]
- Zierkiewicz, W.; Michalczyk, M.; Scheiner, S. Comparison between Tetrel Bonded Complexes Stabilized by σ and π Hole Interactions. Molecules 2018, 23, 1416. [Google Scholar] [CrossRef] [Green Version]
- Bauzá, A.; Frontera, A. Aerogen Bonding Interaction: A New Supramolecular Force. Angew. Chem. Int. Ed. 2015, 54, 7340–7343. [Google Scholar] [CrossRef]
- Murray, J.S.; Lane, P.; Clark, T.; Riley, K.E.; Politzer, P. σ-Holes, π-holes and electrostatically-driven interactions. J. Mol. Model. 2012, 18, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.S.; Politzer, P. σ-Holes and π-Holes: Similarities and Differences. J. Comput. Chem. 2018, 39, 464–471. [Google Scholar]
- Dyduch, K.; Mitoraj, M.P.; Michalak, A. ETS-NOCV description of σ-hole bonding. J. Mol. Model. 2013, 19, 2747–2758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angarov, V.; Kozuch, S. On the σ, π and δ hole interactions: A molecular orbital overview. New J. Chem. 2018, 42, 1413–1422. [Google Scholar] [CrossRef]
- Metrangolo, P.; Resnati, G. Halogen bonding: A paradigm in supramolecular chemistry. Chem. Eur. J. 2001, 7, 2511–2519. [Google Scholar] [CrossRef]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [Green Version]
- Gar, T.K.; Viktorov, N.A.; Gurkova, S.N.; Gusev, A.I.; Alexeev, N.V. Crystal and molecular structure of the complex of germanium dibromide with 1,4-dioxane. J. Struct. Chem. 1987, 28, 143–145. [Google Scholar] [CrossRef]
- Leites, L.A.; Zabula, A.V.; Bukalov, S.S.; Korlyukov, A.A.; Koroteev, P.S.; Maslennikova, O.S.; Egorov, M.P.; Nefedov, O.M. Experimental and theoretical study of vibrational spectra and structure of dihalogermylene and dihalostannylene complexes with 1,4-dioxane and triphenylphosphine. J. Mol. Struct. 2005, 750, 116–122. [Google Scholar] [CrossRef]
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]
- Espinosa, E.; Molins, E. Retrieving interaction potentials from the topology of the electron density distribution: The case of hydrogen bonds. J. Chem. Phys. 2000, 113, 5686–5694. [Google Scholar] [CrossRef]
- Scheiner, S. (Ed.) Noncovalent Forces; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Novoa, J.J. (Ed.) Intermolecular Interactions in Crystals: Fundamentals of Crystal Engineering; The Royal Society of Chemistry: London, UK, 2018. [Google Scholar]
- Fradera, X.; Austen, M.A.; Bader, R.F.W. The Lewis Model and Beyond. J. Phys. Chem. A 1999, 103, 304–314. [Google Scholar] [CrossRef]
- Fradera, X.; Poater, J.; Simon, S.; Duran, M.; Solà, M. The calculation of electron localization and delocalization índices at the Hartree–Fock, density functional and post-Hartree–Fock levels of theory. Theor. Chem. Acc. 2002, 107, 362–371. [Google Scholar]
- Grabowski, S.J. Classification of So-Called Non-Covalent Interactions Based on VSEPR Model. Molecules 2021, 26, 4939. [Google Scholar] [CrossRef]
Compound | π-Hole (Z) | σ-Hole (Z) | L. Pair | σ-Hole (X) |
---|---|---|---|---|
CCl2 | 0.024 | −0.015 | −0.040 | 0.028 |
SiCl2 | 0.055 | 0.031 | 0.005 | 0.005 |
GeCl2 | 0.065 | 0.035 | 0.015 | −0.008 |
SnCl2 | 0.079 | 0.048 | 0.025 | −0.005 |
PbCl2 | 0.092 | 0.060 | 0.058 | −0.035 |
CBr2 | 0.017 | −0.020 | −0.035 | 0.032 |
SiBr2 | 0.050 | 0.029 | 0.003 | 0.019 |
GeBr2 | 0.060 | 0.033 | 0.021 | 0.001 |
SnBr2 | 0.074 | 0.043 | 0.024 | 0.000 |
PbBr2 | 0.088 | 0.055 | 0.058 | 0.000 |
Compound | Charge | Lp-s | Pol | T-S |
---|---|---|---|---|
CCl2 | −0.098 | 74.3 | 38.0 | 19.3 |
SiCl2 | 0.784 | 86.4 | 21.1 | 51.4 |
GeCl2 | 0.826 | 90.8 | 20.7 | 62.9 |
SnCl2 | 1.029 | 92.2 | 17.3 | 62.9 |
PbCl2 | 1.081 | 95.2 | 16.5 | 79.6 |
CBr2 | −0.215 | 79.4 | 39.7 | 15.9 |
SiBr2 | 0.634 | 88.0 | 23.9 | 46.9 |
GeBr2 | 0.670 | 91.7 | 23.5 | 56.9 |
SnBr2 | 0.880 | 92.7 | 20.0 | 57.6 |
PbBr2 | 0.938 | 95.4 | 19.1 | 71.4 |
Species | EintBSSE | EbinBSSE | Edef | BSSE |
---|---|---|---|---|
(GeCl2)2 | −32.5 | −15.8 | 16.7 | 6.7 |
(GeBr2)2 | −32.0 | −18.2 | 13.8 | 10.0 |
GeCl2-C4H8O2 | −19.5 | −17.4 | 2.0 | 6.8 |
GeBr2-C4H8O2 | −19.3 | −17.2 | 2.1 | 9.4 |
GeCl2-(C4H8O2)2 | −11.9 | −9.2 | 2.7 | 4.9 |
GeBr2-(C4H8O2)2 | −11.9 | −9.1 | 2.8 | 7.1 |
Species | A⋯B | ρBCP | HBCP | δ(A,B) |
---|---|---|---|---|
(GeCl2)2 | Ge⋯Cl | 0.060−0.064 | −0.020−−0.023 | 0.573−0.622 |
(GeBr2)2 | Ge⋯Br | 0.055−0.059 | −0.019−−0.021 | 0.625−0.670 |
GeCl2-C4H8O2 | Ge⋯O | 0.070 | −0.020 | 0.415 |
GeBr2-C4H8O2 | Ge⋯O | 0.071 | −0.020 | 0.428 |
GeCl2-(C4H8O2)2 | Ge⋯O | 0.050 | −0.010 | 0.306 |
GeBr2-(C4H8O2)2 | Ge⋯O | 0.051 | −0.010 | 0.317 |
Species | Charge (Ge) | Extra Orbital | Pol |
---|---|---|---|
(GeCl2)2 | 0.751–0.773 | σGeCl | 15.0–16.1 |
(GeBr2)2 | 0.574–0.593 | σGeBr | 17.5–18.8 |
GeCl2-C4H8O2 | 0.819 | σGeO | 7.8 |
GeBr2-C4H8O2 | 0.695 | σGeO | 8.1 |
Species | Charge (Ge) | Interaction | Energy |
GeCl2-(C4H8O2)2 | 0.818 | n(O) → πGe* | 84.2 |
GeBr2-(C4H8O2)2 | 0.702 | n(O) → πGe* | 89.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabowski, S.J. π-Hole Tetrel Bonds—Lewis Acid Properties of Metallylenes. Crystals 2022, 12, 112. https://doi.org/10.3390/cryst12010112
Grabowski SJ. π-Hole Tetrel Bonds—Lewis Acid Properties of Metallylenes. Crystals. 2022; 12(1):112. https://doi.org/10.3390/cryst12010112
Chicago/Turabian StyleGrabowski, Sławomir J. 2022. "π-Hole Tetrel Bonds—Lewis Acid Properties of Metallylenes" Crystals 12, no. 1: 112. https://doi.org/10.3390/cryst12010112