Oxidation of Cr(III) to Cr(VI) and Production of Mn(II) by Synthetic Manganese(IV) Oxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Synthesis of δ-MnO2
2.2. Characterization of δ-MnO2
2.3. Reaction of Cr(III) with Synthetic MnO2
2.4. Determination of Dissolved Cr(III), Cr(VI), and Mn(II)
2.5. Analysis of MnO2 Solids by XPS and FTIR
3. Results and Discussion
3.1. Characterization of MnO2
3.2. UV–Vis Spectrophotometric Analysis of Cr(III) and Cr(VI)
3.3. Reaction of Cr(III) with Synthetic MnO2
3.4. XPS and FTIR Analysis of Cr(III)-Treated MnO2
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manning, A.H.; Mills, C.; Morrison, J.M.; Ball, L.B. Insights into controls on hexavalent chromium in groundwater provided by environmental tracers, Sacramento Valley, California, USA. Appl. Geochem. 2015, 62, 186–199. [Google Scholar] [CrossRef]
- Trebien, D.O.P.; Bortolon, L.; Tedesco, M.J.; Bissani, C.A.; Camargo, F.A.O. Environmental factors affecting chromium-manganese oxidation-reduction reactions in soil. Pedosphere 2011, 21, 84–89. [Google Scholar] [CrossRef]
- Tokunaga, T.K.; Wan, J.; Lanzirotti, A.; Sutton, S.R.; Newville, M.; Rao, W. Long-term stability of organic carbon-stimulated chromate reduction in contaminated soils and its relation to manganese redox status. Environ. Sci. Technol. 2007, 41, 4326–4331. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Huang, X.; Yan, J.; Li, Y.; Zhao, Z.; Liu, Y.; Ye, J.; Wei, Y. A review of the formation of Cr(VI) via Cr(III) oxidation in soils and groundwater. Sci. Total Envion. 2021, 774, 145762. [Google Scholar] [CrossRef]
- Oliveira, H. Chromium as an environmental pollutant: Insights on induced plant toxicity. J. Bot. 2012, 2012, 1–8. [Google Scholar] [CrossRef]
- Dayan, A.D.; Paine, A.J. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: Review of the literature from 1985 to 2000. Hum. Exp. Toxicol. 2001, 20, 439–451. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Shriwastav, A.; Bhole, S.; Silori, R.; Mansfeldt, T.; Kretzschmar, R.; Singh, A. Processes governing chromium contamination of groundwater and soil from a chromium waste source. Acs Earth Space Chem. 2020, 4, 35–49. [Google Scholar] [CrossRef]
- Garnier, J.; Quantin, C.; Guimarães, E.M.; Vantelon, D.; Montargès-Pelletier, E.; Becquer, T. Cr(VI) genesis and dynamics in Ferralsols developed from ultramafic rocks: The case of Niquelândia, Brazil. Geoderma 2013, 193, 256–264. [Google Scholar] [CrossRef]
- Fandeur, D.; Juillot, F.; Morin, G.; Olivi, L.; Cognigni, A.; Webb, S.M.; Ambrosi, J.-P.; Fritsch, E.; Guyot, F.; Brown, G.E., Jr. XANES evidence for oxidation of Cr(III) to Cr(VI) by Mn-oxides in a lateritic regolith developed on serpentinized ultramafic rocks of New Caledonia. Environ. Sci. Technol. 2009, 43, 7384–7390. [Google Scholar] [CrossRef] [PubMed]
- Chacon, S.S.; Reardon, P.N.; Burgess, C.J.; Purvine, S.; Chu, R.K.; Clauss, T.R.; Walter, E.; Myrold, D.D.; Washton, N.; Kleber, M. Mineral surfaces as agents of environmental proteolysis: Mechanisms and controls. Environ. Sci. Technol. 2019, 53, 3018–3026. [Google Scholar] [CrossRef] [PubMed]
- Post, J.E. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA 1999, 96, 3447–3454. [Google Scholar] [CrossRef] [Green Version]
- Ukrainczyk, L.; McBride, M.B. Oxidation and dechlorination of chlorophenols in dilute aqueous suspensions of manganese oxides: Reaction products. Environ. Toxicol. Chem. 1993, 12, 2015–2022. [Google Scholar] [CrossRef]
- Klausen, J.; Haderlein, S.B.; Schwarzenbach, R.P. Oxidation of substituted anilines by aqueous MnO2: Effect of cosolutes on initial and quasi-steady-state kinetics. Environ. Sci. Technol. 1997, 31, 2642–2649. [Google Scholar] [CrossRef]
- Wang, D.; Shin, J.Y.; Cheney, M.A.; Sposito, G.; Spiro, T.G. Manganese dioxide as a catalyst for oxygen-independent atrazine dealkylation. Environ. Sci. Technol. 1999, 33, 3160–3165. [Google Scholar] [CrossRef]
- Manning, B.A.; Kanel, S.R.; Guzman, E.; Brittle, S.W.; Pavel, I.E. Oxidative dissolution of silver nanoparticles by synthetic manganese dioxide investigated by synchrotron X-ray absorption spectroscopy. J. Nanopart. Res. 2019, 21, 213. [Google Scholar] [CrossRef]
- Landrot, G.; Ginder-Vogel, M.; Livi, K.; Fitts, J.P.; Sparks, D.L. Chromium(III) oxidation by three poorly-crystalline manganese(IV) oxides. 1. Chromium(III)-oxidizing capacity. Environ. Sci. Technol. 2012, 46, 11594–11600. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Wang, P.; Shi, Z.; Kwon, K.; Zhao, H.; Yin, H.; Lin, Z.; Zhu, M.; Liang, X.; Liu, F.; et al. A quantitative model for the coupled kinetics of arsenic adsorption/desorption and oxidation on manganese oxides. Environ. Sci. Technol. Lett. 2018, 5, 175–180. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Brown, C.; Mycroft, J.R.; Davidson, R.D.; McIntyre, N.S. X-ray photoelectron spectroscopy studies of chromium compounds. Surf. Interface Anal. 2004, 36, 1550–1563. [Google Scholar] [CrossRef]
- Victor, R.P.D.; Fontess, L.L.; Neves, A.A.; de Queiroz, M.E.L.R.; de Oliveira, A.F.; Miranda, D.L. Removal of Orange G Dye by manganese oxide nanostructures. J. Braz. Chem. Soc. 2019, 30, 1769–1778. [Google Scholar] [CrossRef]
- Liang, M.; Guo, H.; Xiu, W. Arsenite oxidation and arsenic adsorption on birnessite in the absence and the presence of citrate or EDTA. Environ. Sci. Pollut. Res. 2020, 27, 43769–43785. [Google Scholar] [CrossRef]
- Zhang, X.; Miao, W.; Li, C.; Sun, X.; Wang, K.; Yanwei, M. Microwave-assisted rapid synthesis of birnessite-type MnO2 nanoparticles for high performance supercapacitor applications. Mater. Res. Bull. 2015, 71, 111–115. [Google Scholar] [CrossRef]
- Cui, H.; Qiu, G.; Feng, X.; Tan, W.; Liu, F. Birnessites with different average manganese oxidation states synthesized, characterized, and transformed to todorokite at atmospheric pressure. Clays Clay Min. 2009, 57, 715–724. [Google Scholar] [CrossRef]
- Liu, M.; Lv, G.; Mei, L.; Wang, X.; Xing, X.; Liao, L. Degradation of tetracycline by birnessite under microwave irradiation. Adv. Mater. Sci. Eng. 2014, 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.A.; Post, J.E. Water in the interlayer region of birnessite: Importance in cation exchange and structural stability. Am. Mineral. 2006, 91, 609–618. [Google Scholar] [CrossRef]
- Drits, V.A.; Silvester, E.; Gorshkov, A.; Manceau, A. Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite: II. Results from chemical studies and EXAFS spectroscopy. Am. Mineral. 1997, 82, 962–978. [Google Scholar] [CrossRef]
- Gao, T.; Shen, Y.; Jia, Z.; Qiu, G.; Liu, F.; Zhang, Y.; Feng, X.; Cai, C. Interaction mechanisms and kinetics of ferrous ion and hexagonal birnessite in aqueous systems. Geochem. Trans. 2015, 16, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, L.; Akiyama, E.; Frankel, G.; McCreery, R. Storage and release of soluble hexavalente chromium from chromate conversion coatings. Equilibrium aspects of Cr(VI) concentration. J. Electrochem. Soc. 2000, 147, 2556–2562. [Google Scholar] [CrossRef]
- Phuong, N.V.; Kwon, S.C.; Lee, J.Y.; Lee, J.H.; Lee, K.H. The effects of pH and polyethylene glycol on the Cr(III) solution chemistry and electrodeposition of chromium. Surf. Coatings Technol. 2012, 206, 4349–4355. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Banerjee, D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am. Miner. 1998, 83, 305–315. [Google Scholar] [CrossRef]
- Astrup, T.; Stipp, S.L.S.; Christensen, T.H. Immobilization of chromate from coal fly ash leachate using an attenuating barrier containing zero-valent iron. Environ. Sci. Technol. 2000, 34, 4163–4168. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, Q.; Li, H.; Li, X.; Wang, L.; Tsang, S.C. Cr–MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature. J. Catal. 2010, 276, 56–65. [Google Scholar] [CrossRef]
- Luo, J.; Huang, A.; Park, S.H.; Suib, S.L.; O’Young, C.-L. Crystallization of sodium−birnessite and accompanied phase transformation. Chem. Mater. 1998, 10, 1561–1568. [Google Scholar] [CrossRef]
- Kang, L.; Zhang, M.; Liu, Z.-H.; Ooi, K. IR spectra of manganese oxides with either layered or tunnel structures. Spectrochim. Acta Part A 2007, 67, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Wan, C.; Zhao, L. Facial in-situ synthesis of MnO2/PPy composite for supercapacitor. Int. J. Electrochem. Sci. 2015, 10, 9456–9465. [Google Scholar]
O 1s Fits | ||||||
Sample | O species | eV | Intensity | FWHM | Area | Area % |
MnO2 | Structural O2− | 529.6 | 2468 | 1.89 | 4961 | 68.6 |
Surface OH | 530.9 | 1024 | 1.82 | 2059 | 28.5 | |
Adsorbed H2O | 532.3 | 134 | 1.44 | 215 | 3.00 | |
Cr(III) + MnO2 | Structural O2− | 529.6 | 2047 | 1.77 | 4040 | 57.2 |
Surface OH | 530.9 | 1501 | 1.66 | 2778 | 39.4 | |
Adsorbed H2O | 532.3 | 144 | 1.5 | 241 | 3.4 | |
Mn 2p3/2 Fits | ||||||
Sample | Mn species | eV | Intensity | FWHM | Area | Area % |
MnO2 | Mn(II) | 640.2 | 155 | 1.47 | 242 | 3.2 |
Mn(III) | 641.5 | 340 | 1.13 | 409 | 5.4 | |
Mn(IV) | 642.1 | 2316 | 1.49 | 4295 | 57.0 | |
Mn(IV) | 643.4 | 1324 | 1.84 | 2593 | 34.4 | |
Cr(III) + MnO2 | Mn(II) | 640.2 | 365 | 1.23 | 478 | 6.5 |
Mn(III) | 641.5 | 662 | 1.26 | 888 | 12.0 | |
Mn(IV) | 642.1 | 1691 | 1.39 | 2502 | 33.9 | |
Mn(IV) | 643.4 | 1684 | 1.76 | 3155 | 42.7 | |
Mn(IV) | 644.7 | 225 | 1.5 | 359 | 4.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Bocknek, L.; Manning, B. Oxidation of Cr(III) to Cr(VI) and Production of Mn(II) by Synthetic Manganese(IV) Oxide. Crystals 2021, 11, 443. https://doi.org/10.3390/cryst11040443
Chen K, Bocknek L, Manning B. Oxidation of Cr(III) to Cr(VI) and Production of Mn(II) by Synthetic Manganese(IV) Oxide. Crystals. 2021; 11(4):443. https://doi.org/10.3390/cryst11040443
Chicago/Turabian StyleChen, Kaiyin, Lauren Bocknek, and Bruce Manning. 2021. "Oxidation of Cr(III) to Cr(VI) and Production of Mn(II) by Synthetic Manganese(IV) Oxide" Crystals 11, no. 4: 443. https://doi.org/10.3390/cryst11040443
APA StyleChen, K., Bocknek, L., & Manning, B. (2021). Oxidation of Cr(III) to Cr(VI) and Production of Mn(II) by Synthetic Manganese(IV) Oxide. Crystals, 11(4), 443. https://doi.org/10.3390/cryst11040443