Liquid Crystal Thermography in Gas Turbine Heat Transfer: A Review on Measurement Techniques and Recent Investigations
Abstract
:1. Introduction
2. Fundamentals of Liquid Crystal Thermography (LCT)
2.1. Working Principle
2.2. Color to Temperature Conversion or Color Perception
3. Experimental Methods in Heat Transfer Measurements
3.1. Heat Transfer Measurement Techniques
3.1.1. Steady-State Heat Transfer Experiments
3.1.2. Transient Heat Transfer Experiments: Solid Modeled as Lumped Capacitance
3.1.3. Transient Heat Transfer: Solid Modeled as One-Dimensional Semi-Infinite
3.1.4. Transient Heat Transfer: Simultaneous Determination of h and η
3.1.5. Transient Heat Transfer: h and η Determination through Two Separate Experiments
3.1.6. Hybrid Step Heating Method Using Heater Foil for h Determination
3.1.7. Transient LCT Using Time-Varying Surface Heat Flux for Local h and η Determination
3.1.8. Transient LCT Using Time-Varying Surface Heat Flux for Local h Determination
3.2. Recent Advancements in Liquid Crystal Thermography-Based Measurement Techniques
4. Recent Studies Involving Liquid Crystals
4.1. Rib Turbulators
4.2. Jet Impingement
4.3. Pin Fins
4.4. Endwall Heat Transfer and Blade Film Cooling
5. Concluding Remarks
Funding
Conflicts of Interest
References
- Han, J.-C. Fundamental Gas Turbine Heat Transfer. J. Therm. Sci. Eng. Appl. 2013, 5, 021007. [Google Scholar] [CrossRef]
- Han, J.-C.; Dutta, S.; Ekkad, S. Gas Turbine Heat Transfer and Cooling Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Ireland, P.T.; Jones, T.V. The Measurement of Local Heat Transfer Coefficients in Blade Cooling Geometries, In AGARD Heat Transfer and Cooling in Gas Turbines 8 p (SEE N86-29823 21-07). 1985. Available online: https://ui.adsabs.harvard.edu/abs/1985htcg.agar.....I (accessed on 30 August 2021).
- Goldstein, R.J.; Franchett, M.E. Heat Transfer From a Flat Surface to an Oblique Impinging Jet. J. Heat Transf. 1988, 110, 84–90. [Google Scholar] [CrossRef]
- Baughn, J.W. Liquid crystal methods for studying turbulent heat transfer. Int. J. Heat Fluid Flow 1995, 16, 365–375. [Google Scholar] [CrossRef]
- Metzger, D.E.; Bunker, R.S.; Bosch, G. Transient Liquid Crystal Measurement of Local Heat Transfer on a Rotating Disk with Jet Impingement. J. Turbomach. 1991, 113, 52–59. [Google Scholar] [CrossRef]
- Ekkad, S.V.; Han, J.-C. Detailed heat transfer distributions in two-pass square channels with rib turbulators. Int. J. Heat Mass Transf. 1997, 40, 2525–2537. [Google Scholar] [CrossRef]
- Camci, C.; Glezer, B.; Owen, J.M.; Pilbrow, R.G.; Syson, B.J. Application of Thermochromic Liquid Crystal to Rotating Surfaces. J. Turbomach. 1998, 120, 100–103. [Google Scholar] [CrossRef]
- Taslim, M.E.; Li, T.; Spring, S.D. Measurements of Heat Transfer Coefficients and Friction Factors in Passages Rib-Roughened on All Walls. J. Turbomach. 1998, 120, 564–570. [Google Scholar] [CrossRef]
- Méndez, M.P.; Martinez, D.R.; King, S.M. pH-induced size changes in solutions of cholesteric liquid- crystal polymers studied by SANS. J. Phys. Conf. Ser. 2014, 554, 012011. [Google Scholar] [CrossRef] [Green Version]
- Poser, R.; von Wolfersdorf, J. Liquid Crystal Thermography for Transient Heat Transfer Measurements in Complex Internal Cooling Systems; Begel House Inc.: Danbury, CT, USA, 2009. [Google Scholar] [CrossRef]
- Camci, C.; Kim, K.; Hippensteele, S.A.; Poinsatte, P.E. Evaluation of a Hue Capturing Based Transient Liquid Crystal Method for High-Resolution Mapping of Convective Heat Transfer on Curved Surfaces. J. Heat Transf. 1993, 115, 311–318. [Google Scholar] [CrossRef]
- Hay, J.L.; Hollingsworth, D.K. A comparison of trichromic systems for use in the calibration of polymer-dispersed thermochromic liquid crystals. Exp. Therm. Fluid Sci. 1996, 12, 1–12. [Google Scholar] [CrossRef]
- Kodzwa, P.M.; Eaton, J.K. Angular effects on thermochromic liquid crystal thermography. Exp. Fluids 2007, 43, 929–937. [Google Scholar] [CrossRef]
- Abdullah, N.; Talib, A.R.A.; Jaafar, A.A.; Salleh, M.A.M.; Chong, W.T. The basics and issues of Thermochromic Liquid Crystal Calibrations. Exp. Therm. Fluid Sci. 2010, 34, 1089–1121. [Google Scholar] [CrossRef]
- Cukurel, B.; Selcan, C.; Arts, T. Color theory perception of steady wide band liquid crystal thermometry. Exp. Therm. Fluid Sci. 2012, 39, 112–122. [Google Scholar] [CrossRef]
- Ireland, P.T.; Jones, T.V. Liquid crystal measurements of heat transfer and surface shear stress. Meas. Sci. Technol. 2000, 11, 969–986. [Google Scholar] [CrossRef]
- Ekkad, S.V.; Han, J.-C. A transient liquid crystal thermography technique for gas turbine heat transfer measurements. Meas. Sci. Technol. 2000, 11, 957–968. [Google Scholar] [CrossRef]
- Abuaf, N.; Bunker, R.; Lee, C.P. Heat Transfer and Film Cooling Effectiveness in a Linear Airfoil Cascade. J. Turbomach. 1997, 119, 302–309. [Google Scholar] [CrossRef]
- Abuaf, N.; Bunker, R.S.; Lee, C.P. Effects of Surface Roughness on Heat Transfer and Aerodynamic Performance of Turbine Airfoils. J. Turbomach. 1998, 120, 522–529. [Google Scholar] [CrossRef]
- Ekkad, S.V. Gas Turbine Film Cooling and Heat Transfer Measurements Using a Transient Liquid Crystal Technique. Ph.D. Thesis, Texas A&M University, College Station, TX, USA. Available online: https://www.proquest.com/docview/304224159/abstract/9362FB04B84D457DPQ/1 (accessed on 7 October 2021).
- Singh, P.; Ekkad, S. Experimental study of heat transfer augmentation in a two-pass channel featuring V-shaped ribs and cylindrical dimples. Appl. Therm. Eng. 2017, 116, 205–216. [Google Scholar] [CrossRef]
- Yan, Y.; Owen, J.M. Uncertainties in transient heat transfer measurements with liquid crystal. Int. J. Heat Fluid Flow 2002, 23, 29–35. [Google Scholar] [CrossRef]
- Owen, J.M.; Newton, P.J.; Lock, G.D. Transient heat transfer measurements using thermochromic liquid crystal. Part 2: Experimental uncertainties. Int. J. Heat Fluid Flow 2003, 24, 23–28. [Google Scholar] [CrossRef]
- Kakade, V.U.; Lock, G.D.; Wilson, M.; Owen, J.M.; Mayhew, J.E. Accurate heat transfer measurements using thermochromic liquid crystal. Part 1: Calibration and characteristics of crystals. Int. J. Heat Fluid Flow 2009, 30, 939–949. [Google Scholar] [CrossRef]
- Vedula, R.P. Film Cooling Effectiveness and Heat Transfer Measurements Using Thermochromic Liquid Crystals. Ph.D. Thesis, Arizona State University, Tempe, AZ, USA. Available online: https://www.proquest.com/docview/303664978/abstract/7927F1874B7E4EBCPQ/1 (accessed on 25 August 2021).
- Han, J.-C.; Rallabandi, A. Turbine Blade Film Cooling Using Psp Technique. Front. Heat Mass Transf. (FHMT) 2010, 1. Available online: http://ww.thermalfluidscentral.org/journals/index.php/Heat_Mass_Transfer/article/view/71 (accessed on 25 August 2021). [CrossRef]
- Ekkad, S.V.; Ou, S.; Rivir, R.B. A Transient Infrared Thermography Method for Simultaneous Film Cooling Effectiveness and Heat Transfer Coefficient Measurements From a Single Test. J. Turbomach. 2004, 126, 597–603. [Google Scholar] [CrossRef]
- von Wolfersdorf, J.; Hoecker, R.; Sattelmayer, T. A Hybrid Transient Step-Heating Heat Transfer Measurement Technique Using Heater Foils and Liquid-Crystal Thermography. J. Heat Transf. 1993, 115, 319–324. [Google Scholar] [CrossRef]
- Carslaw, H.S.; Jaeger, J.C.; Conrad, J.J.J. Conduction of Heat in Solids; Clarendon Press: London, UK, 1959. [Google Scholar]
- Bieniasz, B.; Smusz, R. Discussion: “A Hybrid Transient Step-Heating Heat Transfer Measurement Technique Using Heater Foils and Liquid-Crystal Thermography” (von Wolfersdorf, J., Hoecker, R. and Sattelmayer, T., 1995, ASME J. Heat Transfer, 115, pp. 319–324. J. Heat Transf. 1996, 118, 265–266. [Google Scholar] [CrossRef] [Green Version]
- Vogel, G.; Graf, A.B.A.; von Wolfersdorf, J.; Weigand, B. A Novel Transient Heater-Foil Technique for Liquid Crystal Experiments on Film-Cooled Surfaces. J. Turbomach. 2002, 125, 529–537. [Google Scholar] [CrossRef]
- Schmid, J.; Gaffuri, M.; Terzis, A.; Ott, P.; von Wolfersdorf, J. Transient liquid crystal thermography using a time varying surface heat flux. Int. J. Heat Mass Transf. 2021, 179, 121718. [Google Scholar] [CrossRef]
- Goldstein, R.J.; Behbahani, A.I. Impingement of a circular jet with and without cross flow. Int. J. Heat Mass Transf. 1982, 25, 1377–1382. [Google Scholar] [CrossRef]
- Moffat, R.J. What’s new in convective heat transfer? Int. J. Heat Fluid Flow 1998, 19, 90–101. [Google Scholar] [CrossRef]
- Terzis, A.; Bontitsopoulos, S.; Ott, P.; von Wolfersdorf, J.; Kalfas, A.I. Improved Accuracy in Jet Impingement Heat Transfer Experiments Considering the Layer Thicknesses of a Triple Thermochromic Liquid Crystal Coating. J. Turbomach. 2015, 138, 021003. [Google Scholar] [CrossRef]
- Schulz, S.; Brack, S.; Terzis, A.; von Wolfersdorf, J.; Ott, P. On the effects of coating thickness in transient heat transfer experiments using thermochromic liquid crystals. Exp. Therm. Fluid Sci. 2016, 70, 196–207. [Google Scholar] [CrossRef]
- Lin, M.; Wang, T. A transient liquid crystal method using a 3-D inverse transient conduction scheme. Int. J. Heat Mass Transf. 2002, 45, 3491–3501. [Google Scholar] [CrossRef]
- Wang, T.; Lin, M.; Bunker, R.S. Flow and heat transfer of confined impingement jets cooling using a 3-D transient liquid crystal scheme. Int. J. Heat Mass Transf. 2005, 48, 4887–4903. [Google Scholar] [CrossRef]
- Brack, S.; Poser, R.; von Wolfersdorf, J. A comparison between transient heat transfer measurements using TLC and IR thermography. OPUS 2017. [Google Scholar] [CrossRef]
- Brack, S.; Poser, R.; von Wolfersdorf, J. An approach to consider lateral heat conduction effects in the evaluation process of transient heat transfer measurements using TLC. Int. J. Therm. Sci. 2016, 107, 289–302. [Google Scholar] [CrossRef]
- Ahmed, S.; Singh, P.; Ekkad, S.V. Three-Dimensional Transient Heat Conduction Equation Solution for Accurate Determination of Heat Transfer Coefficient. J. Heat Transf. 2020, 142, 051302. [Google Scholar] [CrossRef]
- Ryley, J.R.; McGilvray, M.; Gillespie, D. Heat Transfer Coefficient Determination on 3D Geometries from Transient Thermochromic Liquid Crystal Experiments. J. Thermophys. Heat Transf. 2019, 33, 1132–1141. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, W.; Zhang, Q.; He, L. Analytical-Solution Based Corner Correction for Transient Thermal Measurement. J. Heat Transf. 2015, 137, 111302. [Google Scholar] [CrossRef]
- Bergman, T.L.; Incropera, F.P.; DeWitt, D.P.; Lavine, A.S. Fundamentals of Heat and Mass Transfer; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Chyu, M.K.; Ding, H.; Downs, J.P.; Soechting, F.O. Determination of local heat transfer coefficient based on bulk mean temperature using a transient liquid crystals technique. Exp. Therm. Fluid Sci. 1998, 18, 142–149. [Google Scholar] [CrossRef]
- Jenkins, S.C.; Shevchuk, I.V.; von Wolfersdorf, J.; Weigand, B. Transient Thermal Field Measurements in a High Aspect Ratio Channel Related to Transient Thermochromic Liquid Crystal Experiments. J. Turbomach. 2011, 134, 031002. [Google Scholar] [CrossRef]
- Singh, P.; Li, W.; Ekkad, S.V.; Ren, J. Experimental and numerical investigation of heat transfer inside two-pass rib roughened duct (AR=1:2) under rotating and stationary conditions. Int. J. Heat Mass Transf. 2017, 113, 384–398. [Google Scholar] [CrossRef]
- Singh, P.; Li, W.; Ekkad, S.V.; Ren, J. A new cooling design for rib roughened two-pass channel having positive effects of rotation on heat transfer enhancement on both pressure and suction side internal walls of a gas turbine blade. Int. J. Heat Mass Transf. 2017, 115, 6–20. [Google Scholar] [CrossRef]
- Singh, P.; Ji, Y.; Ekkad, S.V. Experimental and numerical investigation of heat and fluid flow in a square duct featuring criss-cross rib patterns. Appl. Therm. Eng. 2018, 128, 415–425. [Google Scholar] [CrossRef]
- Ravi, B.V.; Singh, P.; Ekkad, S.V. Numerical investigation of turbulent flow and heat transfer in two-pass ribbed channels. Int. J. Therm. Sci. 2017, 112, 31–43. [Google Scholar] [CrossRef]
- Singh, P.; Ravi, B.V.; Ekkad, S.V. Experimental and numerical study of heat transfer due to developing flow in a two-pass rib roughened square duct. Int. J. Heat Mass Transf. 2016, 102, 1245–1256. [Google Scholar] [CrossRef]
- Axtmann, M.; von Wolfersdorf, J.; Meyer, G. Application of the Transient Heat Transfer Measurement Technique in a Low Aspect Ratio Pin Fin Cooling Channel. J. Turbomach. 2015, 137, 121006. [Google Scholar] [CrossRef]
- Zhang, M.; Singh, P.; Ekkad, S.V. Rib Turbulator Heat Transfer Enhancements at Very High Reynolds Numbers. J. Therm. Sci. Eng. Appl. 2019, 11, 061014. [Google Scholar] [CrossRef]
- Liu, J.; Hussain, S.; Wang, W.; Xie, G.; Sundén, B. Experimental and numerical investigations of heat transfer and fluid flow in a rectangular channel with perforated ribs. Int. Commun. Heat Mass Transf. 2021, 121, 105083. [Google Scholar] [CrossRef]
- Singh, P.; Pandit, J.; Ekkad, S.V. Characterization of heat transfer enhancement and frictional losses in a two-pass square duct featuring unique combinations of rib turbulators and cylindrical dimples. Int. J. Heat Mass Transf. 2017, 106, 629–647. [Google Scholar] [CrossRef]
- Madhavan, S.; Ramakrishnan, K.R.; Singh, P.; Ekkad, S. Jet Impingement Heat Transfer Enhancement by U-Shaped Crossflow Diverters. J. Therm. Sci. Eng. Appl. 2019, 12, 1–15. [Google Scholar] [CrossRef]
- Singh, P.; Ji, Y.; Ekkad, S.V. Multipass Serpentine Cooling Designs for Negating Coriolis Force Effect on Heat Transfer: 45-deg Angled Rib Turbulated Channels. J. Turbomach. 2019, 141, 071003. [Google Scholar] [CrossRef]
- Effect of Inclined Ribs on Heat Transfer Coefficient in Stationary Square Channel-ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S2095034917301307 (accessed on 30 August 2021).
- Sharma, N.; Tariq, A.; Mishra, M. Detailed heat transfer and fluid flow investigation in a rectangular duct with truncated prismatic ribs. Exp. Therm. Fluid Sci. 2018, 96, 383–396. [Google Scholar] [CrossRef]
- Experimental and Numerical Investigation of Turbulent Flow Heat Transfer in a Serpentine Channel with Multiple Short Ribbed Passes and Turning Vanes-ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S1290072921000971 (accessed on 30 August 2021).
- Rao, Y.; Guo, Z.; Wang, D. Experimental and Numerical Study of Heat Transfer and Turbulent Flow Characteristics in Three-Short-Pass Serpentine Cooling Channels with Miniature W-Ribs. J. Heat Transf. 2020, 142, 121901. [Google Scholar] [CrossRef]
- Liou, T.-M.; Chen, C.-C.; Wang, C.-S.; Wang, E.-S. Thermal-fluidic correlations for turbulent flow in a serpentine heat exchanger with novel wing-shaped turbulators. Int. J. Heat Mass Transf. 2020, 160, 120220. [Google Scholar] [CrossRef]
- Promvonge, P.; Eiamsa-ard, S.; Wongcharee, K.; Chuwattanakul, V.; Samruaisin, P.; Chokphoemphun, S.; Nanan, K.; Eiamsa-ard, P. Characterization of heat transfer and artificial neural networks prediction on overall performance index of a channel installed with arc-shaped baffle turbulators. Case Stud. Therm. Eng. 2021, 26, 101067. [Google Scholar] [CrossRef]
- Eiamsa-ard, S.; Chuwattanakul, V. Visualization of heat transfer characteristics using thermochromic liquid crystal temperature measurements in channels with inclined and transverse twisted-baffles. Int. J. Therm. Sci. 2020, 153, 106358. [Google Scholar] [CrossRef]
- Shiau, C.-C.; Chen, A.F.; Han, J.-C.; Krewinkel, R. Detailed Heat Transfer Coefficient Measurements on a Scaled Realistic Turbine Blade Internal Cooling System. J. Therm. Sci. Eng. Appl. 2019, 12, 031015. [Google Scholar] [CrossRef]
- Ekkad, S.V.; Singh, P. Detailed Heat Transfer Measurements for Rotating Turbulent Flows in Gas Turbine Systems. Energies 2021, 14, 39. [Google Scholar] [CrossRef]
- Ekkad, S.V.; Singh, P. A Modern Review on Jet Impingement Heat Transfer Methods. J. Heat Transf. 2021, 143, 064001. [Google Scholar] [CrossRef]
- Chen, L.; Brakmann, R.G.A.; Weigand, B.; Crawford, M.; Poser, R. Detailed heat transfer investigation of an impingement jet array with large jet-to-jet distance. Int. J. Therm. Sci. 2019, 146, 106058. [Google Scholar] [CrossRef]
- Chen, L.; Brakmann, R.G.A.; Weigand, B.; Poser, R.; Yang, Q. Detailed investigation of staggered jet impingement array cooling performance with cubic micro pin fin roughened target plate. Appl. Therm. Eng. 2020, 171, 115095. [Google Scholar] [CrossRef]
- Chen, L.; Brakmann, R.G.; Weigand, B.; Poser, R. An experimental heat transfer investigation of an impingement jet array with turbulators on both target plate and impingement plate. Appl. Therm. Eng. 2020, 166, 114661. [Google Scholar] [CrossRef]
- Brakmann, R.; Chen, L.; Poser, R.; Rodriguez, J.; Crawford, M.; Weigand, B. Heat transfer investigation of an array of jets impinging on a target plate with detached ribs. Int. J. Heat Fluid Flow 2019, 78, 108420. [Google Scholar] [CrossRef]
- Singh, P.; Zhang, M.; Ahmed, S.; Ramakrishnan, K.R.; Ekkad, S. Effect of micro-roughness shapes on jet impingement heat transfer and fin-effectiveness. Int. J. Heat Mass Transf. 2019, 132, 80–95. [Google Scholar] [CrossRef]
- Rao, Y.; Liu, Y.; Wan, C. Multiple-jet impingement heat transfer in double-wall cooling structures with pin fins and effusion holes. Int. J. Therm. Sci. 2018, 133, 106–119. [Google Scholar] [CrossRef]
- Wang, N.; Chen, A.F.; Zhang, M.; Han, J.-C. Turbine Blade Leading Edge Cooling with One Row of Normal or Tangential Impinging Jets. J. Heat Transf. 2018, 140, 062201. [Google Scholar] [CrossRef]
- Galeana, D.; Beyene, A. Gas Turbine Blade Heat Transfer and Internal Swirl Cooling Flow Experimental Study Using Liquid Crystals and Three-Dimensional Stereo-Particle Imaging Velocimetry. J. Energy Resour. Technol. 2021, 143, 102106. [Google Scholar] [CrossRef]
- Pamula, G.; Ekkad, S.V.; Acharya, S. Influence of Crossflow-Induced Swirl and Impingement on Heat Transfer in a Two-Pass Channel Connected by Two Rows of Holes. J. Turbomach. 2000, 123, 281–287. [Google Scholar] [CrossRef]
- Yang, L.; Singh, P.; Tyagi, K.; Pandit, J.; Ekkad, S.V.; Ren, J. Experimental Investigation of Rotational Effects on Heat Transfer Enhancement Due to Crossflow-Induced Swirl Using Transient Liquid Crystal Thermography. J. Therm. Sci. Eng. Appl. 2018, 10, 031001. [Google Scholar] [CrossRef]
- Click, A.; Ligrani, P.; Ritchie, D.; Liberatore, F.; Patel, R.; Ho, Y.-H. Effects of coolant supply arrangement on double wall cooling: Hot-side effusion performance and cold-side Nusselt numbers at different initial blowing ratio. Int. J. Heat Mass Transf. 2020, 156, 119808. [Google Scholar] [CrossRef]
- Ligrani, P.M. Vortex Structure Effects on Impingement, Effusion, and Cross Flow Cooling of a Double Wall Configuration. J. Phys. Conf. Ser. 2018, 980, 012018. [Google Scholar] [CrossRef]
- Metzger, D.E.; Fan, C.S.; Haley, S.W. Effects of Pin Shape and Array Orientation on Heat Transfer and Pressure Loss in Pin Fin Arrays. J. Eng. Gas Turbines Power 1984, 106, 252–257. [Google Scholar] [CrossRef]
- Dabagh, A.M.A.; Andrews, G.E. Pin-Fin Heat Transfer: Contribution of the Wall and the Pin to the Overall Heat Transfer. In Proceedings of the ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition, Cologne, Germany, 1–4 June 1992. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, R.J.; Jabbari, M.Y.; Chen, S.B. Convective mass transfer and pressure loss characteristics of staggered short pin-fin arrays. Int. J. Heat Mass Transf. 1994, 37, 149–160. [Google Scholar] [CrossRef]
- Baughn, J.W.; Ireland, P.T.; Jones, T.V.; Saniei, N. A Comparison of the Transient and Heated-Coating Methods for the Measurement of Local Heat Transfer Coefficients on a Pin Fin. J. Heat Transf. 1989, 111, 877–881. [Google Scholar] [CrossRef]
- Hwang, J.-J.; Lui, C.-C. Detailed heat transfer characteristic comparison in straight and 90-deg turned trapezoidal ducts with pin-fin arrays. Int. J. Heat Mass Transf. 1999, 42, 4005–4016. [Google Scholar] [CrossRef]
- Huang, S.-C.; Wang, C.-C.; Liu, Y.-H. Heat transfer measurement in a rotating cooling channel with staggered and inline pin-fin arrays using liquid crystal and stroboscopy. Int. J. Heat Mass Transf. 2017, 115, 364–376. [Google Scholar] [CrossRef]
- Huang, S.-C.; Wang, C.-C.; Liu, Y.-H. Channel orientation effect on endwall heat transfer in rotating cooling passages with pin-fins. Int. J. Heat Mass Transf. 2019, 136, 1115–1126. [Google Scholar] [CrossRef]
- Hung, S.-C.; Huang, S.-C.; Liu, Y.-H. Effect of nonuniform pin size on heat transfer in a rotating rectangular channel with pin-fin arrays. Appl. Therm. Eng. 2019, 163, 114393. [Google Scholar] [CrossRef]
- Liang, C.; Rao, Y.; Luo, J.; Luo, X. Experimental and Numerical Study of Turbulent Flow and Heat Transfer in a Wedge-shaped Channel with Guiding Pin Fins for Turbine Blade Trailing Edge Cooling. Int. J. Heat Mass Transf. 2021, 178, 121590. [Google Scholar] [CrossRef]
- Hussain, S.; Liu, J.; Wang, L.; Sundén, B. Suppression of endwall heat transfer in the junction region with a symmetric airfoil by a vortex generator pair. Int. J. Therm. Sci. 2019, 136, 135–147. [Google Scholar] [CrossRef]
- Ratto, L.; Satta, F.; Tanda, G. An experimental and numerical study of endwall heat transfer in a turbine blade cascade including tangential heat conduction analysis. Heat Mass Transf. 2018, 54, 1627–1636. [Google Scholar] [CrossRef]
- Liu, J.; Hussain, S.; Wang, W.; Wang, L.; Xie, G.; Sundén, B. Effect of the relative location of a pocket cavity on heat transfer and flow structures of the downstream endwall with a symmetrical vane. Int. J. Therm. Sci. 2019, 145, 106012. [Google Scholar] [CrossRef]
- Liu, J.; Hussain, S.; Wang, L.; Xie, G.; Sundén, B. Effects of a pocket cavity on heat transfer and flow characteristics of the endwall with a bluff body in a gas turbine engine. Appl. Therm. Eng. 2018, 143, 935–946. [Google Scholar] [CrossRef]
- Tamunobere, O.; Acharya, S. Turbine Shroud Heat Transfer and Cooling with Blade Rotation: Part I—Forward, Backward and Lateral Injection. In Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Charlotte, NC, USA, 26–30 June 2017. [Google Scholar] [CrossRef]
- Liu, D.; Tao, Z.; Luo, X. Experimental investigation of heat transfer characteristics on turbine endwall with full coverage film cooling. Appl. Therm. Eng. 2018, 140, 295–303. [Google Scholar] [CrossRef]
- Hayes, S.A.; Nix, A.C.; Nestor, C.M.; Billups, D.T.; Haught, S.M. Experimental investigation of the influence of freestream turbulence on an anti-vortex film cooling hole. Exp. Therm. Fluid Sci. 2017, 81, 314–326. [Google Scholar] [CrossRef] [Green Version]
- Dhungel, A.; Lu, Y.; Phillips, W.; Ekkad, S.V.; Heidmann, J. Film Cooling From a Row of Holes Supplemented with Antivortex Holes. J. Turbomach. 2009, 131, 021007. [Google Scholar] [CrossRef]
- Ye, L.; Liu, C.; Liu, F.; Yang, Y.; Zhu, H. Experimental Study on Heat Transfer of Leading Edge Film-Cooling with Counter-Inclined Cylindrical and Laid-Back Holes. J. Heat Transf. 2020, 142, 061801. [Google Scholar] [CrossRef]
- Liu, C.; Ye, L.; Zhang, F.; Huang, R.; Li, B. Film cooling performance evaluation of the furcate hole with cross-flow coolant injection: A comparative study. Int. J. Heat Mass Transf. 2021, 164, 120457. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, H.; Liu, C.; Wei, J. Experimental Study on the Film-Cooling Characteristics of the Cylindrical Holes Embedded in Sine-Wave Shaped Trench. J. Eng. Gas Turbines Power 2020, 142, 101003. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekkad, S.V.; Singh, P. Liquid Crystal Thermography in Gas Turbine Heat Transfer: A Review on Measurement Techniques and Recent Investigations. Crystals 2021, 11, 1332. https://doi.org/10.3390/cryst11111332
Ekkad SV, Singh P. Liquid Crystal Thermography in Gas Turbine Heat Transfer: A Review on Measurement Techniques and Recent Investigations. Crystals. 2021; 11(11):1332. https://doi.org/10.3390/cryst11111332
Chicago/Turabian StyleEkkad, Srinath V., and Prashant Singh. 2021. "Liquid Crystal Thermography in Gas Turbine Heat Transfer: A Review on Measurement Techniques and Recent Investigations" Crystals 11, no. 11: 1332. https://doi.org/10.3390/cryst11111332
APA StyleEkkad, S. V., & Singh, P. (2021). Liquid Crystal Thermography in Gas Turbine Heat Transfer: A Review on Measurement Techniques and Recent Investigations. Crystals, 11(11), 1332. https://doi.org/10.3390/cryst11111332