Crystal Plasticity
- an influence of trapped gas on pore healing under hot isostatic pressing in nickel-base superalloys (Prasad et al. [16];
- a microstructural influence on stretch flangeability of ferrite–martensite dual-phase steels (Kim et al. [17]);
- an effect of equal-channel angular pressing on microstructure, mechanical properties, and biodegradation behavior of Mg alloyed with Ag and Gd (Straumal et al. [18]);
- kinetics of capability aging in Ti-13Nb-13Zr alloy (Lee et al. [19]);
- mechanisms of grain structure evolution in a quenched medium carbon steel during warm deformation (Panov et al. [20]);
- a microstructure, texture, and strength development during high-pressure torsion of CrMnFeCoNi high-entropy alloy (Skrotzki et al. [21]);
- an effect of strain on transformation diagrams of 100Cr6 steel (Kawulok et al. [22]);
- mechanical and thermal properties of low-density Al20+xCr20-xMo20-yTi20V20+y alloys (Bhandari et al. [23]);
- the late age dynamic strength of high-volume fly ash concrete with nano-silica and polypropylene fibres (Mussa et al. [24]);
- dislocation reactions governing low-temperature and high-stress creep of ni-base single crystal superalloys (Burger et al [25]).
Funding
Acknowledgments
Conflicts of Interest
References
- Zubelewicz, A. Mechanisms-Based Transitional Viscoplasticity. Crystals 2020, 10, 212. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, K.; Zhang, M.; Amores, V.J.; Sanz, M.A.; Montáns, F.J. Computational Modeling of Dislocation Slip Mechanisms in Crystal Plasticity: A Short Review. Crystals 2021, 11, 42. [Google Scholar] [CrossRef]
- Masood Chaudry, U.; Hamad, K.; Kim, J.-G. Ca-induced Plasticity in Magnesium Alloy: EBSD Measurements and VPSC Calculations. Crystals 2020, 10, 67. [Google Scholar] [CrossRef] [Green Version]
- Galán-López, J.; Hidalgo, J. Use of the Correlation between Grain Size and Crystallographic Orientation in Crystal Plasticity Simulations: Application to AISI 420 Stainless Steel. Crystals 2020, 10, 819. [Google Scholar]
- Qayyum, F.; Guk, S.; Schmidtchen, M.; Kawalla, R.; Prahl, U. Modeling the Local Deformation and Transformation Behavior of Cast X8CrMnNi16-6-6 TRIP Steel and 10% Mg-PSZ Composite Using a Continuum Mechanics-Based Crystal Plasticity Model. Crystals 2020, 10, 221. [Google Scholar]
- Matvienko, O.; Daneyko, O.; Kovalevskaya, T. Mathematical Modeling of Plastic Deformation of a Tube from Dispersion-Hardened Aluminum Alloy in an Inhomogeneous Temperature Field. Crystals 2020, 10, 1103. [Google Scholar]
- Ou, C.-Y.; Voothaluru, R.; Liu, C.R. Fatigue Crack Initiation of Metals Fabricated by Additive Manufacturing—A Crystal Plasticity Energy-Based Approach to IN718 Life Prediction. Crystals 2020, 10, 905. [Google Scholar] [CrossRef]
- Kosuge, H.; Kawabata, T.; Okita, T.; Nako, H. Accurate Estimation of Brittle Fracture Toughness Deterioration in Steel Structures Subjected to Large Complicated Prestrains. Crystals 2020, 10, 867. [Google Scholar] [CrossRef]
- Zhang, N.; Meng, L.; Zhang, W.; Mao, W. Study on Texture and Grain Orientation Evolution in Cold-Rolled BCC Steel by Reaction Stress Model. Crystals 2020, 10, 680. [Google Scholar]
- Shveykin, A.; Trusov, P.; Sharifullina, E. Statistical Crystal Plasticity Model Advanced for Grain Boundary Sliding Description. Crystals 2020, 10, 822. [Google Scholar]
- Qayyum, F.; Chaudhry, A.A.; Guk, S.; Schmidtchen, M.; Kawalla, R.; Prahl, U. Effect of 3D Representative Volume Element (RVE) Thickness on Stress and Strain Partitioning in Crystal Plasticity Simulations of Multi-Phase Materials. Crystals 2020, 10, 944. [Google Scholar] [CrossRef]
- Holmedal, B. Regularized Yield Surfaces for Crystal Plasticity of Metals. Crystals 2020, 10, 1076. [Google Scholar] [CrossRef]
- Yanagida, S.; Nagoshi, T.; Araki, A.; Chang, T.-F.M.; Chen, C.-Y.; Kobayashi, E.; Umise, A.; Hosoda, H.; Sato, T.; Sone, M. Heterogeneous Deformation Behavior of Cu-Ni-Si Alloy by Micro-Size Compression Testing. Crystals 2020, 10, 1162. [Google Scholar] [CrossRef]
- Fang, X.; Porz, L.; Ding, K.; Nakamura, A. Bridging the Gap between Bulk Compression and Indentation Test on Room-Temperature Plasticity in Oxides: Case Study on SrTiO3. Crystals 2020, 10, 933. [Google Scholar] [CrossRef]
- Minárik, S.; Martinkovič, M. On the Applicability of Stereological Methods for the Modelling of a Local Plastic Deformation in Grained Structure: Mathematical Principles. Crystals 2020, 10, 697. [Google Scholar]
- Prasad, M.R.G.; Gao, S.; Vajragupta, N.; Hartmaier, A. Influence of Trapped Gas on Pore Healing under Hot Isostatic Pressing in Nickel-Base Superalloys. Crystals 2020, 10, 1147. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, T.; Lee, C.S. Microstructural Influence on Stretch Flangeability of Ferrite–Martensite Dual-Phase Steels. Crystals 2020, 10, 1022. [Google Scholar] [CrossRef]
- Straumal, B.; Martynenko, N.; Temralieva, D.; Serebryany, V.; Tabachkova, N.; Shchetinin, I.; Anisimova, N.; Kiselevskiy, M.; Kolyanova, A.; Raab, G.; et al. The Effect of Equal-Channel Angular Pressing on Microstructure, Mechanical Properties, and Biodegradation Behavior of Magnesium Alloyed with Silver and Gadolinium. Crystals 2020, 10, 918. [Google Scholar] [CrossRef]
- Lee, M.; Kim, I.-S.; Moon, Y.H.; Yoon, H.S.; Park, C.H.; Lee, T. Kinetics of Capability Aging in Ti-13Nb-13Zr Alloy. Crystals 2020, 10, 693. [Google Scholar] [CrossRef]
- Panov, D.; Dedyulina, O.; Shaysultanov, D.; Stepanov, N.; Zherebtsov, S.; Salishchev, G. Mechanisms of Grain Structure Evolution in a Quenched Medium Carbon Steel during Warm Deformation. Crystals 2020, 10, 554. [Google Scholar] [CrossRef]
- Skrotzki, W.; Pukenas, A.; Odor, E.; Joni, B.; Ungar, T.; Völker, B.; Hohenwarter, A.; Pippan, R.; George, E.P. Microstructure, Texture, and Strength Development during High-Pressure Torsion of CrMnFeCoNi High-Entropy Alloy. Crystals 2020, 10, 336. [Google Scholar] [CrossRef]
- Kawulok, R.; Schindler, I.; Sojka, J.; Kawulok, P.; Opěla, P.; Pindor, L.; Grycz, E.; Rusz, S.; Ševčák, V. Effect of Strain on Transformation Diagrams of 100Cr6 Steel. Crystals 2020, 10, 326. [Google Scholar] [CrossRef]
- Bhandari, U.; Zhang, C.; Yang, S. Mechanical and Thermal Properties of Low-Density Al20+xCr20-xMo20-yTi20V20+y Alloys. Crystals 2020, 10, 278. [Google Scholar] [CrossRef] [Green Version]
- Mussa, M.H.; Abdulhadi, A.M.; Abbood, I.S.; Mutalib, A.A.; Yaseen, Z.M. Late Age Dynamic Strength of High-Volume Fly Ash Concrete with Nano-Silica and Polypropylene Fibres. Crystals 2020, 10, 243. [Google Scholar] [CrossRef] [Green Version]
- Bürger, D.; Dlouhý, A.; Yoshimi, K.; Eggeler, G. How Nanoscale Dislocation Reactions Govern Low- Temperature and High-Stress Creep of Ni-Base Single Crystal Superalloys. Crystals 2020, 10, 134. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polkowski, W. Crystal Plasticity. Crystals 2021, 11, 44. https://doi.org/10.3390/cryst11010044
Polkowski W. Crystal Plasticity. Crystals. 2021; 11(1):44. https://doi.org/10.3390/cryst11010044
Chicago/Turabian StylePolkowski, Wojciech. 2021. "Crystal Plasticity" Crystals 11, no. 1: 44. https://doi.org/10.3390/cryst11010044
APA StylePolkowski, W. (2021). Crystal Plasticity. Crystals, 11(1), 44. https://doi.org/10.3390/cryst11010044