Effect of Nitrogen Content on the Formation of Inclusions in Fe-5Mn-3Al Steels
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Chemical Composition of the Steels
3.2. Characteristics of Inclusions
4. Discussion
4.1. Thermodynamics of AlN Formation
4.2. Formation of AlN Inclusions during Solidification
4.3. Co-Precipitation of Inclusions
4.4. Effect of N Content on the Morphology of AlN(pure) Inclusions
5. Conclusions
- (1)
- A high N content of steel can be achieved in a short time by injection of N2 gas into the melt.
- (2)
- The number of inclusions increased from ~13 mm−2 to ~64 mm−2 as N content increased from low to medium level, as observed in 533N-P steels. The number of inclusion remained constant by a further increase in N content. However, in the case of 533N-I steels, the number of inclusion increased up to 108 mm−2 at the high level of N content.
- (3)
- In low N content steel, AlN-MnS inclusions were dominating class (40–60% of the total inclusions). While in medium and high N content steel samples, AlN(pure) inclusions are the primary class of inclusions (50–90% of the total inclusions).
- (4)
- The number of AlN-MnS inclusions is not affected by the N content of steel as they are formed during solidification. However, the cooling rate has an influence on their number.
- (5)
- The amount of Al2O3 inclusions decreases with an increase in the N content of the steel. Low N samples contained 10 mm−2 of Al2O3 inclusions, which decreased to 2 mm−2 and 1 mm−2 in medium and high N containing samples, respectively.
- (6)
- AlN inclusions exhibit different morphologies such as plate-like, needle-like, angular, and agglomerates. Three-dimensional observation of angular AlN inclusions showed that they could be plate-like inclusions which are positioned at different orientations, making them appear angular.
- (7)
- Since the morphological information can be misinterpreted in a two-dimensional observation, a three-dimensional inclusion analysis is recommended for detailed morphological investigation of AlN inclusions.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hu, B.; Luo, H.; Yang, F.; Dong, H. Recent progress in medium-Mn steels made with new designing strategies, a review. J. Mater. Sci. Technol. 2017, 33, 1457–1464. [Google Scholar] [CrossRef]
- Steenken, B.; Rezende, J.L.L.; Senk, D. Hot ductility behaviour of high manganese steels with varying aluminium contents. Mater. Sci. Technol. 2017, 33, 567–573. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Yang, J.; Wang, R.-Z.; Xin, X.-L.; Xu, L.-Y. Effects of Non-metallic Inclusions on Hot Ductility of High Manganese TWIP Steels Containing Different Aluminum Contents. Metall. Mater. Trans. B 2016, 47, 1697–1712. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.; Wu, B.; Shen, Y.; He, Y.; Ding, H.; Su, X. Effect of Mn and Al contents on hot ductility of high alloy Fe-xMn-C-yAl austenite TWIP steels. Mater. Sci. Eng. A 2017, 708, 360–374. [Google Scholar] [CrossRef]
- Kong, L.; Deng, Z.; Zhu, M. Formation and Evolution of Non-metallic Inclusions in Medium Mn Steel during Secondary Refining Process. ISIJ Int. 2017, 57, 1537–1545. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Liu, C. Modification mechanism of spinel inclusions in medium manganese steel with rare earth treatment. Metals (Basel) 2019, 9, 804. [Google Scholar] [CrossRef] [Green Version]
- Grajcar, A.; Woźniak, D.; Kozłowska, A. Non-Metallic Inclusions and Hot-Working Behaviour of Advanced High-Strength Medium-Mn Steels. Arch. Metall. Mater. 2016, 61, 811–820. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, C. Evolution Mechanism of Inclusions in Medium-Manganese Steel by Mg Treatment with Different Aluminum Contents. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2019, 50, 772–781. [Google Scholar] [CrossRef]
- Kang, S.E.; Banerjee, J.R.; Mintz, B. Influence of S and AlN on hot ductility of high Al, TWIP steels. Mater. Sci. Technol. 2012, 28, 589–596. [Google Scholar] [CrossRef]
- Thornton, P.A. The influence of nonmetallic inclusions on the mechanical properties of steel: A review. J. Mater. Sci. 1971, 6, 347–356. [Google Scholar] [CrossRef]
- Maciejewski, J. The Effects of Sulfide Inclusions on Mechanical Properties and Failures of Steel Components. J. Fail. Anal. Prev. 2015, 15, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Ånmark, N.; Karasev, A.; Jönsson, P. The Effect of Different Non-Metallic Inclusions on the Machinability of Steels. Materials (Basel) 2015, 8, 751–783. [Google Scholar] [CrossRef] [PubMed]
- Tomita, Y. Effect of morphology of nonmetallic inclusions on tensile properties of quenched and tempered 0.4C-Cr-Mo-Ni steel. Mater. Charact. 1995, 34, 121–128. [Google Scholar] [CrossRef]
- Alba, M.; Nabeel, M.; Dogan, N. Investigation of Inclusion Formation in Light-Weight Fe–Mn–Al Steels using Automated Scanning Electron Microscope Equipped with Energy-Dispersive X-Ray Spectroscopy. Steel Res. Int. 2019, 91, 1900477. [Google Scholar] [CrossRef]
- Alba, M.; Nabeel, M.; Dogan, N. Effect of aluminium content on the formation of inclusions in Fe–5Mn–xAl steels. Ironmak. Steelmak. 2020. [Google Scholar] [CrossRef]
- Paek, M.-K.; Jang, J.-M.; Do, K.-H.; Pak, J.-J. Nitrogen Solubility in High Manganese-Aluminum Alloyed Liquid Steels. Met. Mater. Int. 2013, 19, 1077–1081. [Google Scholar] [CrossRef]
- Jang, J.-M.; Paek, M.-K.; Pak, J.-J. Thermodynamics of Nitrogen Solubility and AlN Formation in Multi-Component High Mn Steel Melts. ISIJ Int. 2017, 57, 1821–1830. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Liu, J.; Michelic, S.K.; Wei, F.; Zhuang, C.; Han, Z.; Li, S. Characteristics of AlN inclusions in low carbon Fe–Mn–Si–Al TWIP steel produced by AOD-ESR method. Ironmak. Steelmak. 2016, 43, 171–179. [Google Scholar] [CrossRef]
- Xin, X.L.; Yang, J.; Wang, Y.N.; Wang, R.Z.; Wang, W.L.; Zheng, H.G.; Hu, H.T. Effects of Al content on non-metallic inclusion evolution in Fe–16Mn– x Al–0.6C high Mn TWIP steel. Ironmak. Steelmak. 2016, 43, 234–242. [Google Scholar] [CrossRef]
- Tuling, A.; Mintz, B. Crystallographic and morphological aspects of AlN precipitation in high Al, TRIP steels. Mater. Sci. Technol. 2016, 32, 568–575. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.; Michelic, S.K.; Shen, S.; Su, X.; Wu, B.; Ding, H. Characterization and Analysis of Non-Metallic Inclusions in Low-Carbon Fe-Mn-Si-Al TWIP Steels. Steel Res. Int. 2016, 87, 1–10. [Google Scholar] [CrossRef]
- Hsiao, C. Fine Aluminium Nitride Precipitates in Steel. Nature 1958, 181, 1527–1528. [Google Scholar] [CrossRef]
- Wilson, F.G.; Gladman, T. Aluminium nitride in steel. Int. Mater. Rev. 1988, 33, 221–286. [Google Scholar] [CrossRef]
- Li, X.; Wang, M.; Bao, Y.; Gong, J.; Wang, X.; Pang, W. Precipitation Behavior of AlN in High-Magnetic-Induction Grain-Oriented Silicon Steel Slab. JOM 2019, 71, 3135–3141. [Google Scholar] [CrossRef]
- Croft, N.H.H.; Entwisle, A.R.R.; Davies, G.J.J. Origins of dendritic AlN precipitates in aluminium-killed-steel castings. Met. Technol. 1983, 10, 125–129. [Google Scholar] [CrossRef]
- LECO Corp. Oxygen and Nitrogen Determination in Refractory Metals and Their Alloys; LECO Corporation: Saint Joseph, MI, USA, 2020; pp. 1–2. [Google Scholar]
- LECO Corp. Carbon and Sulfur Determination in Low Carbon Ferroalloys; LECO Corporation: Saint Joseph, MI, USA, 2018; pp. 1–3. [Google Scholar]
- FEI. ASPEX Explorer-Automated Industrialized SEM with OmegaMax EDX Technology; FEI Company: Fremont, CA, USA, 2014; pp. 1–2. [Google Scholar]
- Paek, M.; Jang, J.; Jiang, M.; Pak, J. Thermodynamics of AlN Formation in High Manganese-Aluminum Alloyed Liquid Steels. ISIJ Int. 2013, 53, 973–978. [Google Scholar] [CrossRef] [Green Version]
- Nabeel, M.; Alba, M.; Karasev, A.; Jönsson, P.G.; Dogan, N. Characterization of Inclusions in 3rd Generation Advanced High-Strength Steels. Metall. Mater. Trans. B 2019, 50, 1674–1685. [Google Scholar] [CrossRef]
- Ericsson, O.T.; Lionet, M.; Karasev, A.V.; Inoue, R.; Jönsson, P.G. Changes in inclusion characteristics during sampling of liquid steel. Ironmak. Steelmak. 2011, 39, 67–75. [Google Scholar] [CrossRef]
- Kang, S.E.; Tuling, A.; Banerjee, J.R.; Gunawardana, W.D.; Mintz, B. Hot ductility of TWIP steels. Mater. Sci. Technol. 2011, 27, 95–100. [Google Scholar] [CrossRef]
- Ushioda, K.; Suzuki, H.G.; Komatsu, H.; Esaka, K. Influence of sulfur on AlN precipitation during cooling after solidification and resulting hot shortness in low carbon steel. Nippon Kinzoku Gakkaishi J. Jpn. Inst. Met. 1995, 59, 373–380. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Wang, Y.; Zhao, A.-M. Precipitation of AlN and MnS in Low Carbon Aluminium-Killed Steel. J. Iron Steel Res. Int. 2012, 19, 51–56. [Google Scholar] [CrossRef]
- Li, F.; Li, H.; Huang, D.; Zheng, S.; You, J. Mechanism of MnS Precipitation on Al2O3–SiO2 Inclusions in Non-oriented Silicon Steel. Met. Mater. Int. 2018, 24, 1394–1402. [Google Scholar] [CrossRef]
- Ohta, H.; Suito, H. Precipitation and Dispersion Control of MnS by Deoxidation Products of ZrO2, Al2O3, MgO and MnO–SiO2 Particles in Fe–10mass%Ni Alloy. ISIJ Int. 2006, 46, 480–489. [Google Scholar] [CrossRef] [Green Version]
533N-P | 533N-I |
---|---|
| |
Steel Set | Sample | Time (min) | Mn (%) | Al (%) | Si (%) | C (%) | S (%) | N (ppm) | O (ppm) |
---|---|---|---|---|---|---|---|---|---|
533N-P | S1 | 0 | 4.96 | 2.63 | 3.77 | 0.103 | 0.0028 | 2 | 14 |
S2 | 15 | 23 | 3 | ||||||
S3 | 45 | 33 | 9 | ||||||
S4 | 90 | 47 | 2 | ||||||
S5 | 270 | 54 | 2 | ||||||
S6 | 300 | 52 | 3 | ||||||
533N-I | S1 | 0 | 4.77 | 2.74 | 4.12 | 0.102 | 0.0027 | - | 4 |
S2 | 10 | 54 | 16 | ||||||
S3 | 15 | 54 | 25 | ||||||
S4 | 30 | - | - | ||||||
S5 | 60 | 54 | 11 |
533N-P | S1 | S2 | S3 | S4 | S5 | S6 |
---|---|---|---|---|---|---|
AlN-MnS (mm−2) | 2.08 | 1.70 | 1.05 | 0.76 | 0.41 | 0.23 |
AlON-MnS (mm−2) | 0.58 | 0.20 | 0.14 | 0.12 | 0.08 | 0.03 |
533N-I | S1 | S2 | S3 | S4 | S5 | |
AlN-MnS (mm−2) | 4.57 | 1.78 | 3.20 | 6.58 | 3.10 | |
AlON-MnS (mm−2) | 2.21 | 0.11 | 0.50 | 1.10 | 0.45 |
533N Steel Melt | N (%) | TAlN (K) | TMnS (K) | Tliq (K) | Tsol (K) |
---|---|---|---|---|---|
Low N | 0.0002 | 1679.05 | 1472.78 | 1726.3 | 1611 |
Medium N | 0.0023 | 1796.09 | 1473.89 | ||
0.0047 | 1865.39 | 1473.96 | |||
High N | 0.0054 | 1879.46 | 1473.97 |
Plate-like | Angular | Needle | Agglomerate | Irregular |
---|---|---|---|---|
| | | | |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alba, M.; Nabeel, M.; Dogan, N. Effect of Nitrogen Content on the Formation of Inclusions in Fe-5Mn-3Al Steels. Crystals 2020, 10, 836. https://doi.org/10.3390/cryst10090836
Alba M, Nabeel M, Dogan N. Effect of Nitrogen Content on the Formation of Inclusions in Fe-5Mn-3Al Steels. Crystals. 2020; 10(9):836. https://doi.org/10.3390/cryst10090836
Chicago/Turabian StyleAlba, Michelia, Muhammad Nabeel, and Neslihan Dogan. 2020. "Effect of Nitrogen Content on the Formation of Inclusions in Fe-5Mn-3Al Steels" Crystals 10, no. 9: 836. https://doi.org/10.3390/cryst10090836
APA StyleAlba, M., Nabeel, M., & Dogan, N. (2020). Effect of Nitrogen Content on the Formation of Inclusions in Fe-5Mn-3Al Steels. Crystals, 10(9), 836. https://doi.org/10.3390/cryst10090836