Phytomass Valorization by Deep Eutectic Solvents—Achievements, Perspectives, and Limitations
Abstract
:1. Introduction
2. Deep Eutectic Solvents
3. Deep Eutectic Solvents as Extracting Agents
3.1. Requirements for Extracting Agents
3.2. Thermal Stability
3.3. Temperature Range of Liquid State
3.4. Viscosity
3.5. Polarity
3.6. Acid-Base Properties
4. Therapeutic Effects of Substances Extracted from Phytomass
5. Valorization of Phytomass by Deep Eutectic Solvents
6. Extracted Value-Added Compounds
7. Assessing the Main Opportunities of Using Phytomass for Extraction of High Value-Added Components by Deep Eutectic Solvents
7.1. Total Polyphenols
7.2. Phlorotannins
7.3. Flavonoids
7.4. Catechins
7.5. Curcumin
7.6. Caffeoylquinic Acids
7.7. Isoflavones
7.8. Rutin
7.9. Hesperidin
7.10. Terpenes
7.11. Ginkgolides
7.12. Glycyrrhetinic Acid
7.13. Artemisinin
7.14. Polyprenol Acetates
7.15. Proteins
8. Factors Limiting the Potential of Deep Eutectic Solvents Utilization and How to Overcome Them
8.1. Purity
8.2. Viscosity
8.3. Hygroscopicity
8.4. Long-Term Stability
8.5. Acid-Base Properties
8.6. Toxicity
8.7. Adsorbable Organic Halides
8.8. Recycling
9. Future Trends and Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
[N(Me)(Oc)3]Cl | methyl trioctyl ammonium chloride |
[N(Bu)4]Br | tetrabutylammonium bromide |
[N(Pr)4]Br | tetrapropylammonium bromide |
ChCl | choline chloride |
DES | deep eutectic solvent |
dw | dry weight |
EAE | enzyme-assisted extraction |
GAE | gallic acid equivalents |
HBA | hydrogen bond acceptor |
HBD | hydrogen bond donor |
HDE | hydrodiffusion extraction |
HPLC-ESI-TOF-MS | high performance liquid chromatography coupled to electrospray ionization time-of-flight mass spectrometry |
HPLC-PDA-ESI-IT/MS | high-performance liquid chromatography coupled to photo diode array detector and electrospray ion-trap mass spectrometry |
HPLC-ESI-QTOF-MS | high-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight high-resolution mass spectrometry |
HPLC-ELSD | high performance liquid chromatography-evaporative light scattering detector method |
LC-DAD-MS | high performance liquid chromatographic method coupled with diode-array detection and mass spectrometry |
LTTMs | low-transition temperature mixtures |
LMMs | low-melting mixtures |
MAE | microwave-assisted extraction |
NADES | natural deep eutectic solvent |
NPC | negative pressure cavitation |
PLE | pressurized liquid extraction |
RSM | response surface methodology |
RtE | rutin equivalents |
S/L | solid to solvent ratio |
SFE | supercritical fluid extraction |
VA-DES-DLLME | vortex assisted deep eutectic solvent dispersive liquid-liquid microextraction |
UAE | ultrasound-assisted extraction |
UPHLC-Q-TOF-MS | ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry |
References
- Hall, D.O.; House, J.I. Trees and biomass energy: Carbon storage and/or fossil fuel substitution? Biomass Bioenergy 1994, 6, 11–30. [Google Scholar] [CrossRef]
- Bracmort, K. Biomass: Comparison of Definitions in Legislation; Congressional Research Service 7-5700, CRS Report R40529; Congressional Research Service: Washington, DC, USA, 2013. [Google Scholar]
- FitzPatrick, M.; Champagne, P.; Cunningham, M.F.; Whitney, R.A. A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresour. Technol. 2010, 101, 8915–8922. [Google Scholar] [CrossRef] [PubMed]
- Bar-On, Y.M.; Phillips, R.; Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 2018, 115, 6506–6511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walden, P. Über die Molekulargrösse und elektrische Leitfähigkeiteiniger geschmolzener Salze. Bull. Acad. Imper. Sci. 1914, 8, 405–422. [Google Scholar]
- Ignatyev, I.A. Cellulose Valorisation in Ionic Liquids. Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2011. [Google Scholar]
- Xia, Z.; Li, J.; Zhang, J.; Zhang, X.; Zheng, X.; Zhang, J. Processing and Valorization of Cellulose, Lignin and Lignocellulose Using Ionic Liquids. J. Bioresour. Bioprod. 2020, 5, 79–98. [Google Scholar] [CrossRef]
- Kalhor, P.; Ghandi, K. Deep Eutectic Solvents for Pretreatment, Extraction, and Catalysis of Biomass and Food Waste. Molecules 2019, 24, 4012. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.T.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- van Osch, D.J.; Zubeir, L.F.; van den Bruinhorst, A.; Rocha, M.A.; Kroon, M.C. Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chem. 2015, 17, 4518–4521. [Google Scholar] [CrossRef] [Green Version]
- Jablonský, M.; Šima, J. Deep Eutectic Solvents in Biomass Valorization; Spektrum STU: Bratislava, Slovakia, 2019; p. 176. ISBN 978-80-227-4911-4. [Google Scholar]
- Liu, P.; Hao, J.W.; Mo, L.P.; Zhang, Z.H. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Adv. 2015, 5, 48675–48704. [Google Scholar] [CrossRef]
- Manousaki, A.; Jancheva, M.; Grigorakis, S.; Makris, D.P. Extraction of antioxidant phenolics from agri-food waste biomass using a newly designed glycerol-based natural low-transition temperature mixture: A comparison with conventional eco-friendly solvents. Recycling 2016, 1, 194. [Google Scholar] [CrossRef]
- Kottaras, P.; Koulianos, M.; Makris, D.P. Low-Transition Temperature Mixtures (LTTMs) Made of Bioorganic Molecules: Enhanced Extraction of Antioxidant Phenolics from Industrial Cereal Solid Wastes. Recycling 2017, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Florindo, C.; Lima, F.; Ribeiro, B.D.; Marrucho, I.M. Deep eutectic solvents: Overcoming 21st century challenges. Curr. Opin. Green Sustain. Chem. 2019, 18, 31–36. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abranches, D.O.; Martins, M.A.R.; Silva, L.P.; Schaeffer, N.; Pinho, S.P.; Coutinho, J.A.P. Phenolic hydrogen bond donors in the formation of non-ionic deep eutectic solvents: The quest for type V DES. Chem. Commun. 2019, 55, 10253–10256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usanovich, M. On the “deviations” from Raoult’s law due to chemical interaction between the components. Dokl. Akad. Nauk SSSR 1958, 120, 1304–1306. [Google Scholar]
- Lazerges, M.; Rietveld, I.B.; Corvis, Y.; Céolin, R.; Espeau, P. Thermodynamic studies of mixtures for topical anesthesia: Lidocaine–salol binary phase diagram. Thermochim. Acta 2010, 497, 124–128. [Google Scholar] [CrossRef]
- Suriyanarayanan, S.; Olsson, G.; Kathiravan, S.; Ndizeye, N.; Nicholls, I. Non-Ionic Deep Eutectic Liquids: Acetamide–Urea Derived Room Temperature Solvents. Int. J. Mol. Sci. 2019, 20, 2857. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, I.A.; Suriyanarayanan, S. Non-Ionic Deep Eutectic Mixtures for Use as Solvents and Dispersants. International Application No. PCT/SE2019/050161. Patent Number WO20191664442, 22 February 2019. Available online: https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2019164442 (accessed on 7 August 2020).
- Skarpalezos, D.; Detsi, A. Deep eutectic solvents as extraction media for valuable flavonoids from natural sources. Appl. Sci. 2019, 9, 4169. [Google Scholar] [CrossRef] [Green Version]
- Häckl, K.; Kunz, W. Some aspects of green solvents. C. R. Chim. 2018, 21, 572–580. [Google Scholar] [CrossRef]
- Liu, Y.; Friesen, J.B.; McAlpine, J.B.; Lankin, D.C.; Chen, S.N.; Pauli, G.F. Natural deep eutectic solvents: Properties, applications, and perspectives. J. Nat. Prod. 2018, 81, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef] [PubMed]
- Škulcová, A.; Ház, A.; Majova, V.; Sima, J.; Jablonsky, M. Long-term Isothermal Stability of Deep Eutectic Solvents. BioResources 2018, 13, 7545–7559. [Google Scholar]
- Škulcová, A.; Russ, A.; Jablonsky, M.; Šima, J. The pH Behavior of Seventeen Deep Eutectic Solvents. BioResources 2018, 13, 5042–5051. [Google Scholar]
- Jablonsky, M.; Skulcova, A.; Malvis, A.; Sima, J. Extraction of value- added components from food industry based and agro-forest biowastes by deep eutectic solvents. J. Biotechnol. 2018, 282, 46–66. [Google Scholar] [CrossRef] [PubMed]
- Jablonsky, M.; Majova, V.; Ondrigova, K.; Sima, J. Preparation and characterization of physicochemical properties and application of novel ternary deep eutectic solvents. Cellulose 2019, 26, 3031–3045. [Google Scholar] [CrossRef]
- Florindo, C.; Branco, L.C.; Marrucho, I.M. Quest for Green-Solvent Design: From Hydrophilic to Hydrophobic (Deep) Eutectic Solvents. ChemSusChem 2019, 12, 1549–1559. [Google Scholar] [CrossRef]
- Rogošic, M.; Krišto, A.; Kučan, K.Z. Deep eutectic solvents based on betaine and propylene glycol as potential denitrification agents: A liquid-liquid equilibrium study. Braz. J. Chem. Eng. 2019, 36, 1703–1716. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, Y.; Wang, X.; Liu, W. Application of Deep Eutectic Solvents in Food Analysis: A Review. Molecules 2019, 24, 4594. [Google Scholar] [CrossRef] [Green Version]
- Abbott, A.; Capper, G.; Davies, D.; Rasheed, R.; Shikotra, P. Selective Extraction of Metals from Mixed Oxide Matrixes Using Choline-Based Ionic Liquids. Inorg. Chem. 2005, 44, 6497–6499. [Google Scholar] [CrossRef]
- Triaux, Z.; Petitjean, H.; Marchioni, E.; Boltoeva, M.; Marcic, C. Deep eutectic solvent–based headspace single-drop microextraction for the quantification of terpenes in spices. Anal. Bioanal. Chem. 2020, 412, 933–948. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Row, K.H. Development of deep eutectic solvents applied in extraction and separation. J. Sep. Sci. 2016, 39, 3505–3520. [Google Scholar] [CrossRef] [PubMed]
- Kua, Y.L.; Gan, S. Natural Deep Eutectic Solvent (NADES) as a Greener Alternative for the Extraction of Hydrophilic (Polar) and Lipophilic (Non-Polar) Phytonutrients. Key Eng. Mater. 2019, 797, 20–28. [Google Scholar] [CrossRef]
- Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of deep eutectic solvents (DES) for phenolic compounds extraction: Overview, challenges, and opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef]
- Qin, H.; Hu, X.; Wang, J.; Cheng, H.; Chen, L.; Qi, Z. Overview of acidic deep eutectic solvents on synthesis, properties and applications. Green Energy Environ. 2020, 5, 8–21. [Google Scholar] [CrossRef]
- Jablonský, M.; Škulcová, A.; Šima, J. Use of Deep Eutectic Solvents in Polymer Chemistry—A Review. Molecules 2019, 24, 3978. [Google Scholar] [CrossRef] [Green Version]
- Ruß, C.; König, B. Low melting mixtures in organic synthesis—An alternative to ionic liquids? Green Chem. 2012, 14, 2969–2982. [Google Scholar] [CrossRef] [Green Version]
- Rumble, J.R.; Lide, D.R.; Bruno, T.J. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Reichardt, C.W.T. Solvents and Solvent Effects in Organic Chemistry; John Wiley and Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Valvi, A.; Dutta, J.; Tiwari, S. Temperature-Dependent Empirical Parameters for Polarity in Choline Chloride Based Deep Eutectic Solvents. J. Phys. Chem. B 2017, 121, 11356–11366. [Google Scholar] [CrossRef]
- Babusca, D.; Benchea, A.C.; Morosanu, A.C.; Dimitriu, D.G.; Dorohoi, D.O. Solvent Empirical Scales and Their Importance for the Study of Intermolecular Interactions. AIP Conf. Proc. 2017, 1796, 030011. [Google Scholar]
- Florindo, C.; McIntosh, A.J.S.; Welton, T.; Branco, L.C.; Marrucho, I.M. A closer look into deep eutectic solvents: Exploring intermolecular interactions using solvatochromic probes. Phys. Chem. Chem. Phys. 2018, 20, 206–213. [Google Scholar] [CrossRef]
- Ramón, D.J.; Guillena, G. Deep Eutectic Solvents: Synthesis, Propeties, and Applications; Wiley-VCH: Weinheim, Germany, 2020; ISBN 978-3-527-34518-2. [Google Scholar]
- Teles, A.R.R.; Capela, E.V.; Carmo, R.S.; Coutinho, J.A.P.; Silvestre, A.J.D.; Freire, M.G. Solvatochromic parameters of deep eutectic solvents formed by ammonium-based salts and carboxylic acids. Fluid Phase Equilib. 2017, 448, 15–21. [Google Scholar] [CrossRef]
- Yinghuai, Z.; Yuanting, K.T.; Hosmane, N. Applications of ionic liquids in lignin chemistry. In Ionic Liquids—New Aspects for the Future; IntechOpen: London, UK, 2013; pp. 315–346. [Google Scholar]
- Naser, J.; Mjalli, F.; Jibril, B.; Al-Hatmi, S.; Gano, Z. Potassium Carbonate as a Salt for Deep Eutectic Solvents. Int. J. Chem. Eng. Appl. 2013, 4, 114–118. [Google Scholar] [CrossRef] [Green Version]
- Trajano, H.L.; Wyman, C.E. Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals; John Wiley and Sons: Hoboken, NJ, USA, 2013; pp. 103–128. [Google Scholar]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, G.; Bae, H. Therapeutic effects of phytochemicals and medicinal herbs on depression. BioMed Res. Int. 2017, 2017, 6596241. [Google Scholar] [CrossRef]
- Jahan, I.; Ahmet, O.N.A.Y. Potentials of plant-based substance to inhabit and probable cure for the COVID-19. Turk. J. Biol. 2020, 44, 228. [Google Scholar] [CrossRef] [PubMed]
- Yonesi, M.; Rezazadeh, A. Plants as a prospective source of natural anti-viral compounds and oral vaccines against COVID-19 coronavirus. Preprints 2020, 2020040321. [Google Scholar] [CrossRef]
- David, B.; Wolfender, J.L.; Dias, D.A. The pharmaceutical industry and natural products: Historical status and new trends. Phytochem. Rev. 2015, 14, 299–315. [Google Scholar] [CrossRef]
- Zhang, Z.J. Therapeutic effects of herbal extracts and constituents in animal models of psychiatric disorders. Life Sci. 2004, 75, 1659–1699. [Google Scholar] [CrossRef]
- Wagner, H. Synergy research: Approaching a new generation of phytopharmaceuticals. Fitoterapia 2011, 82, 34–37. [Google Scholar] [CrossRef]
- Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar] [CrossRef]
- Wagner, H. Natural products chemistry and phytomedicine in the 21st century: New developments and challenges. Pure Appl. Chem. 2005, 77, 1–6. [Google Scholar] [CrossRef]
- Jablonsky, M.; Nosalova, J.; Sládková, A.; Haz, A.; Kreps, F.; Valka, J.; Miertus, S.; Frecer, V.; Ondrejovic, M.; Sima, J. Valorisation of softwood bark through extraction of utilizable chemicals. A review. Biotechnol. Adv. 2017, 35, 726–750. [Google Scholar] [CrossRef] [PubMed]
- Naoghare, P.K.; Song, J.M. Chip-based high throughput screening of herbal medicines. Comb. Chem. High Throughout Screen. 2010, 13, 923–931. [Google Scholar] [CrossRef]
- Cunha, S.C.; Fernandes, J.O. Extraction Techniques with Deep Eutectic Solvents. Trends Anal. Chem. 2018, 115, 224–239. [Google Scholar] [CrossRef]
- Ivanović, M.; Alañón, M.E.; Arráez-Román, D.; Segura-Carretero, A. Enhanced and green extraction of bioactive compounds from Lippia citriodora by tailor-made natural deep eutectic solvents. Food Res. Int. 2018, 111, 67–76. [Google Scholar] [CrossRef]
- Bonacci, S.; Di Gioia, M.L.; Costanzo, P.; Maiuolo, L.; Tallarico, S.; Nardi, M. Natural Deep Eutectic Solvent as Extraction Media for the Main Phenolic Compounds from Olive Oil Processing Wastes. Antioxidants 2020, 9, 513. [Google Scholar] [CrossRef]
- Zhuang, B.; Dou, L.L.; Li, P.; Liu, E.H. Deep eutectic solvents as green media for extraction of flavonoid glycosides and aglycones from Platycladi Cacumen. J. Pharm. Biomed. 2017, 134, 214–219. [Google Scholar] [CrossRef]
- Dedousi, M.; Mamoudaki, V.; Grigorakis, S.; Makris, D.P. Ultrasound-Assisted Extraction of Polyphenolic Antioxidants from Olive (Olea europaea) Leaves Using a Novel Glycerol/Sodium-Potassium Tartrate Low-Transition Temperature Mixture (LTTM). Environments 2017, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Fernández, M.L.Á.; Espino, M.; Gomez, F.J.V.; Silva, M.F. Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chem. 2018, 239, 671–678. [Google Scholar] [CrossRef]
- Cao, J.; Yang, M.; Cao, F.; Wang, J.; Su, E. Well-Designed Hydrophobic Deep Eutectic Solvents as Green and Efficient Media for the Extraction of Artemisinin from Artemisia annua Leaves. ACS Sustain. Chem. Eng. 2017, 5, 3270–3278. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, X.; Liu, P.; Huang, J.; Wang, C.; Pan, M.; Kuang, Z. Enhanced phenolic compounds extraction from Morus alba L. leaves by deep eutectic solvents combined with ultrasonic-assisted extraction. Ind. Crops Prod. 2018, 120, 147–154. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, D.; Zhu, X.; Su, A.; Zhang, H. Extraction of Illegal Dyes from Red Chili Peppers with Cholinium-Based Deep Eutectic Solvents. J. Anal. Methods Chem. 2017, 2017, 2753752. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Wang, M.; Guo, H.; Xu, J.; Ye, J.; Zhao, J.; Zhao, L. Ultrasound-assisted deep eutectic solvent as green and efficient media for the extraction of flavonoids from Radix scutellariae. New J. Chem. 2019, 43, 644–650. [Google Scholar] [CrossRef]
- Wang, T.; Jiao, J.; Gai, Q.Y.; Wang, P.; Guo, N.; Niu, L.L.; Fu, Y.J. Enhanced and green extraction polyphenols and furanocoumarins from Fig (Ficus carica L.) leaves using deep eutectic solvents. J. Pharm. Biomed. 2017, 145, 339–345. [Google Scholar] [CrossRef]
- Bajkacz, S.; Adamek, J. Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products. Talanta 2017, 168, 329–335. [Google Scholar] [CrossRef]
- Fu, N.; Lv, R.; Guo, Z.; Guo, Y.; You, X.; Tang, B.; Row, K.H. Environmentally friendly and non-polluting solvent pretreatment of palm samples for polyphenol analysis using choline chloride deep eutectic solvents. J. Chromatogr. A 2017, 1492, 1–11. [Google Scholar] [CrossRef]
- Chanioti, S.; Tzia, C. Extraction of phenolic compounds from olive pomace by using natural deep eutectic solvents and innovative extraction techniques. Innov. Food Sci. Emerg. 2018, 48, 228–239. [Google Scholar] [CrossRef]
- Jeong, K.M.; Ko, J.; Zhao, J.; Jin, Y.; Yoo, D.E.; Han, S.Y.; Lee, J. Multi-functioning deep eutectic solvents as extraction and storage media for bioactive natural products that are readily applicable to cosmetic products. J. Clean. Prod. 2017, 151, 87–95. [Google Scholar] [CrossRef]
- Yoo, D.E.; Jeong, K.M.; Han, S.Y.; Kim, E.M.; Jin, Y.; Lee, J. Deep eutectic solvent-based valorization of spent coffee grounds. Food Chem. 2018, 255, 357–364. [Google Scholar] [CrossRef]
- Duan, L.; Zhang, C.; Zhang, C.; Xue, Z.; Zheng, Y.; Guo, L. Green extraction of phenolic acids from Artemisia argyi leaves by Tailor-made ternary deep eutectic solvents. Molecules 2019, 24, 2842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, V.; Prieto, M.A.; Barros, L.; Coutinho, J.A.; Ferreira, I.C.; Ferreira, O. Enhanced extraction of phenolic compounds using choline chloride based deep eutectic solvents from Juglans regia L. Ind. Crops Prod. 2018, 115, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Xu, W.J.; Wang, S.X.; Kou, P.; Wang, P.; Wang, X.Q.; Fu, Y.J. Integrated and sustainable separation of chlorogenic acid from blueberry leaves by deep eutectic solvents coupled with aqueous two-phase system. Food Bioprod. Process. 2017, 105, 205–214. [Google Scholar] [CrossRef]
- Shikov, A.N.; Kosman, V.M.; Flissyuk, E.V.; Smekhova, I.E.; Elameen, A.; Pozharitskaya, O.N. Natural Deep Eutectic Solvents for the Extraction of Phenyletanes and Phenylpropanoids of Rhodiola rosea L. Molecules 2020, 25, 1826. [Google Scholar] [CrossRef] [Green Version]
- Aryati, W.D.; Nadhira, A.; Febianli, D.; Francisca, F.; Nun´im, A. Natural deep eutectic solvents ultrasound-assisted extraction (NADES-UAE) of trans-cinnamaldehyde and coumarin from cinnamon bark [Cinnamomum burmannii (Nees & T. Nees) Blume]. J. Res. Pharm. 2020, 24, 389–398. [Google Scholar]
- Sakti, A.S.; Saputri, F.C.; Mun’im, A. Optimization of choline chloride-glycerol based natural deep eutectic solvent for extraction bioactive substances from Cinnamomum burmannii barks and Caesalpinia sappan heartwoods. Heliyon 2019, 5, e02915. [Google Scholar] [CrossRef] [Green Version]
- Aydin, F.; Yilmaz, E.; Soylak, M. Vortex assisted deep eutectic solvent (DES)-emulsification liquid-liquid microextraction of trace curcumin in food and herbal tea samples. Food Chem. 2018, 243, 442–447. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, B.; Zhao, J.; Wang, M.; Zhao, L. Efficient extraction and determination of prenylflavonol glycosides in Epimedium pubescens Maxim. using deep eutectic solvents. Phytochem. Anal. 2020, 31, 375–383. [Google Scholar] [CrossRef]
- Guo, H.; Liu, S.; Li, S.; Feng, Q.; Ma, C.; Zhao, J.; Xiong, Z. Deep eutectic solvent combined with ultrasound-assisted extraction as high efficient extractive media for extraction and quality evaluation of Herba Epimedii. J. Pharm. Biomed. 2020, 185, 113228. [Google Scholar] [CrossRef]
- Wang, X.H.; Wang, J.P. Effective extraction with deep eutectic solvents and enrichment by macroporous adsorption resin of flavonoids from Carthamus tinctorius L. J. Pharm. Biomed. 2019, 176, 112804. [Google Scholar] [CrossRef]
- Su, E.; Yang, M.; Cao, J.; Lu, C.; Wang, J.; Cao, F. Deep eutectic solvents as green media for efficient extraction of terpene trilactones from Ginkgo biloba leaves. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 385–391. [Google Scholar] [CrossRef]
- Boyko, N.; Zhilyakova, E.; Malyutina, A.; Novikov, O.; Pisarev, D.; Abramovich, R.; Potanina, O.; Lazar, S.; Mizina, P.; Sahaidak-Nikitiuk, R. Studying and Modeling of the Extraction Properties of the Natural Deep Eutectic Solvent and Sorbitol-Based Solvents in Regard to Biologically Active Substances from Glycyrrhizae Roots. Molecules 2020, 25, 1482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jokić, S.; Šafranko, S.; Jakovljević, M.; Cikoš, A.M.; Kajić, N.; Kolarević, F.; Babić, J.; Molnar, M. Sustainable Green Procedure for Extraction of Hesperidin from Selected Croatian Mandarin Peels. Processes 2019, 7, 469. [Google Scholar] [CrossRef] [Green Version]
- Faraji, M. Novel hydrophobic deep eutectic solvent for vortex assisted dispersive liquid-liquid micro-extraction of two auxins in water and fruit juice samples and determination by high performance liquid chromatography. Microchem. J. 2019, 150, 104130. [Google Scholar] [CrossRef]
- Li, X.; Row, K.H. Application of deep eutectic solvents in hybrid molecularly imprinted polymers and mesoporous siliceous material for solid-phase extraction of levofloxacin from green bean extract. Anal. Sci. 2017, 33, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Yiin, C.L.; Quitain, A.T.; Yusup, S.; Uemura, Y.; Sasaki, M.; Kida, T. Choline chloride (ChCl) and monosodium glutamate (MSG)-based green solvents from optimized cactus malic acid for biomass delignification. Bioresour. Technol. 2017, 244, 941–948. [Google Scholar] [CrossRef]
- Alishlah, T.; Mun’im, A.; Jufri, M. Optimization of Urea-glycerin Based NADES-UAE for Oxyresveratrol Extraction from Morus alba Roots for Preparation of Skin Whitening Lotion. J. Young Pharm. 2019, 11, 151–156. [Google Scholar] [CrossRef]
- Liew, S.Q.; Ngoh, G.C.; Yusoff, R.; Teoh, W.H. Acid and Deep Eutectic Solvent (DES) extraction of pectin from pomelo (Citrus grandis (L.) Osbeck) peels. Biocatal. Agric. Biotechnol. 2018, 13, 1–11. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Daurtseva, A.V.; Pozharitskaya, O.N.; Flisyuk, E.V.; Shikov, A.N. Natural Deep Eutectic Solvents as alternatives for extracting phlorotannins from brown algae. Pharm. Chem. J. 2019, 53, 243–247. [Google Scholar] [CrossRef]
- Cao, J.; Yang, M.; Cao, F.; Wang, J.; Su, E. Tailor-made hydrophobic deep eutectic solvents for cleaner extraction of polyprenyl acetates from Ginkgo biloba leaves. J. Clean. Prod. 2017, 152, 399–405. [Google Scholar] [CrossRef]
- Cao, J.; Chen, L.; Li, M.; Cao, F.; Zhao, L.; Su, E. Efficient extraction of proanthocyanidin from Ginkgo biloba leaves employing rationally designed deep eutectic solvent-water mixture and evaluation of the antioxidant activity. J. Pharm. Biomed. 2018, 158, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Wahlström, R.; Rommi, K.; Willberg-Keyriläinen, P.; Ercili-Cura, D.; Holopainen-Mantila, U.; Hiltunen, J.; Mäkinen, O.; Nygren, H.; Mikkelson, A.; Kuutti, L. High Yield Protein Extraction from Brewer’s Spent Grain with Novel Carboxylate Salt-Urea Aqueous Deep Eutectic Solvents. ChemistrySelect 2017, 2, 9355–9363. [Google Scholar] [CrossRef]
- Lin, Z.; Jiao, G.; Zhang, J.; Celli, G.B.; Brooks, M.S.L. Optimization of protein extraction from bamboo shoots and processing wastes using deep eutectic solvents in a biorefinery approach. Biomass Convers. Biorefin. 2020, 1–12. [Google Scholar] [CrossRef]
- Wang, X.; Li, G.; Ho Row, K. Extraction and Determination of Quercetin from Ginkgo biloba by DESs-Based Polymer Monolithic Cartridge. J. Chromatogr. Sci. 2017, 55, 866–871. [Google Scholar] [CrossRef]
- Cui, Q.; Liu, J.Z.; Wang, L.T.; Kang, Y.F.; Meng, Y.; Jiao, J.; Fu, Y.J. Sustainable deep eutectic solvents preparation and their efficiency in extraction and enrichment of main bioactive flavonoids from sea buckthorn leaves. J. Clean. Prod. 2018, 184, 826–835. [Google Scholar] [CrossRef]
- Meng, Z.; Zhao, J.; Duan, H.; Guan, Y.; Zhao, L. Green and efficient extraction of four bioactive flavonoids from Pollen Typhae by ultrasound-assisted deep eutectic solvents extraction. J. Pharm. Biomed. 2018, 161, 246–253. [Google Scholar] [CrossRef]
- Tian, H.; Wang, J.; Li, Y.; Bi, W.; Chen, D.D.Y. Recovery of natural products from deep eutectic solvents by mimicking denaturation. ACS Sustain. Chem. Eng. 2019, 7, 9976–9983. [Google Scholar] [CrossRef]
- Jakovljević, M.; Vladić, J.; Vidović, S.; Pastor, K.; Jokić, S.; Molnar, M.; Jerković, I. Application of Deep Eutectic Solvents for the Extraction of Rutin and Rosmarinic Acid from Satureja montana L. and Evaluation of the Extracts Antiradical Activity. Plants 2020, 9, 153. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Feng, F.; Jiang, J.; Qiao, Y.; Wu, T.; Voglmeir, J.; Chen, Z.G. Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents. Food Chem. 2017, 221, 1400–1405. [Google Scholar] [CrossRef]
- Karageorgou, I.; Grigorakis, S.; Lalas, S.; Makris, D.P. Enhanced extraction of antioxidant polyphenols from Moringa oleifera Lam. leaves using a biomolecule-based low-transition temperature mixture. Eur. Food Res. Technol. 2017, 243, 1839–1848. [Google Scholar] [CrossRef]
- Kurtulbaş, E.; Pekel, A.G.; Bilgin, M.; Makris, D.P.; Şahin, S. Citric acid-based deep eutectic solvent for the anthocyanin recovery from Hibiscus sabdariffa through microwave-assisted extraction. Biomass Convers. Biorefin. 2020, 1–10. [Google Scholar] [CrossRef]
- Lakka, A.; Grigorakis, S.; Kaltsa, O.; Karageorgou, I.; Batra, G.; Bozinou, E.; Lalas, S.; Makris, D.P. The effect of ultrasonication pretreatment on the production of polyphenol-enriched extracts from Moringa oleifera L. (drumstick tree) using a novel bio-based deep eutectic solvent. Appl. Sci. 2020, 10, 220. [Google Scholar] [CrossRef] [Green Version]
- Pavić, V.; Flačer, D.; Jakovljević, M.; Molnar, M.; Jokić, S. Assessment of total phenolic content, in vitro antioxidant and antibacterial activity of Ruta graveolens L. extracts obtained by choline chloride based natural deep eutectic solvents. Plants 2019, 8, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jablonsky, M.; Majova, V.; Strizincova, P.; Sima, J.; Jablonsky, J. Investigation of Total Phenolic Content and Antioxidant Activities of Spruce Bark Extracts Isolated by Deep Eutectic Solvents. Crystals 2020, 10, 402. [Google Scholar] [CrossRef]
- Torres-Vega, J.; Gómez-Alonso, S.; Pérez-Navarro, J.; Pastene-Navarrete, E. Green Extraction of Alkaloids and Polyphenols from Peumus boldus Leaves with Natural Deep Eutectic Solvents and Profiling by HPLC-PDA-IT-MS/MS and HPLC-QTOF-MS/MS. Plants 2020, 9, 242. [Google Scholar] [CrossRef] [Green Version]
- Georgantzi, C.; Lioliou, A.E.; Paterakis, N.; Makris, D.P. Combination of Lactic Acid-Based Deep Eutectic Solvents (DES) with β-Cyclodextrin: Performance Screening Using Ultrasound-Assisted Extraction of Polyphenols from Selected Native Greek Medicinal Plants. Agronomy 2017, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Kaltsa, O.; Lakka, A.; Grigorakis, S.; Karageorgou, I.; Batra, G.; Bozinou, E.; Lalas, S.; Makris, D.P. A green extraction process for polyphenols from elderberry (Sambucus nigra) flowers using deep eutectic solvent and ultrasound-assisted pretreatment. Molecules 2020, 25, 921. [Google Scholar] [CrossRef] [Green Version]
- González, C.G.; Mustafa, N.R.; Wilson, E.G.; Verpoorte, R.; Choi, Y.H. Application of natural deep eutectic solvents for the “green” extraction of vanillin from vanilla pods. Flavour Fragr. J. 2017, 33, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Mbous, Y.P.; Hayyan, M.; Hayyan, A.; Wong, W.F.; Hashim, M.A.; Looi, C.Y. Applications of deep eutectic solvents in biotechnology and bioengineering-Promises and challenges. Biotechnol. Adv. 2017, 35, 105–134. [Google Scholar] [CrossRef]
- Perna, F.M.; Vitale, P.; Capriati, V. Deep eutectic solvents and their applications as green solvents. Curr. Opin. Green Sustain. Chem. 2020, 21, 27–33. [Google Scholar] [CrossRef]
- Jablonsky, M.; Majova, V.; Sima, J.; Hrobonova, K.; Lomenova, A. Involvement of Deep Eutectic Solvents in Extraction by Molecularly Imprinted Polymers—A Minireview. Crystals 2020, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, O.H.; Lee, B.Y.; Lee, J.; Lee, H.B.; Son, J.Y.; Park, C.S.; Shetty, K.; Kim, Y.C. Assessment of phenolics-enriched extract and fractions of olive leaves and their antioxidant activities. Bioresour. Technol. 2009, 100, 6107–6113. [Google Scholar] [CrossRef] [PubMed]
- Philippi, K.; Tsamandouras, N.; Grigorakis, S.; Makris, D.P. Ultrasound-assisted green extraction of eggplant peel (Solanum melongena) polyphenols using aqueous mixtures of glycerol and ethanol: Optimisation and kinetics. Environ. Proc. 2016, 3, 369–386. [Google Scholar] [CrossRef]
- Eom, S.H.; Kim, Y.M.; Kim, S.K. Antimicrobial effect of phlorotannins from marine brown algae. Food Chem. Toxicol. 2012, 50, 3251–3255. [Google Scholar] [CrossRef] [PubMed]
- Kawamura-Konishi, Y.; Watanabe, N.; Saito, M.; Nakajima, N.; Sakaki, T.; Katayama, T.; Enomoto, T. Isolation of a new phlorotannin, a potent inhibitor of carbohydrate-hydrolyzing enzymes, from the brown alga Sargassum patens. J. Agric. Food Chem. 2012, 60, 5565–5570. [Google Scholar] [CrossRef]
- Lopes, G.; Pinto, E.; Andrade, P.B.; Valentao, P. Antifungal activity of phlorotannins against dermatophytes and yeasts: Approaches to the mechanism of action and influence on Candida albicans virulence factor. PLoS ONE 2013, 8, e72203. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, R.S. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- Rashid, M.; Fareed, M.; Rashid, H.; Aziz, H.; Ehsan, N.; Khalid, S.; Ghaffar, I.; Ali, R.; Gul, A.; Hakeem, K. Flavonoids and Their Biological Secrets: Phytochemistry and Molecular Aspects. Plant Hum. Health 2019, 2, 579–605. [Google Scholar]
- Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients 2016, 8, 167. [Google Scholar] [CrossRef]
- Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J. Quercetin and its anti-allergic immune response. Molecules 2016, 21, 623. [Google Scholar] [CrossRef] [PubMed]
- Shindel, A.W.; Chen, Z.C.; Lin, G.; Fandel, T.M.; Huang, Y.C.; Banie, L.; Breyer, B.N.; Garcia, M.M.; Lin, C.S.; Lue, T.F. Erectogenic and neurotrophic effects of icariin, a purified extract of horny goat weed (Epimedium spp.) in vitro and in vivo. J. Sex. Med. 2010, 7, 1518–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Zhao, B.J.; Song, J.; Jia, X.B. Pharmacology and clinical application of plants in Epimedium L. Chin. Herb. Med. 2016, 8, 12–23. [Google Scholar] [CrossRef]
- Jadeja, R.N.; Devkar, R.V. Polyphenols in chronic diseases and their mechanisms of action. Polyphen. Hum. Health Dis. 2014, 1, 615–623. [Google Scholar]
- Meotti, F.C.; Senthilmohan, R.; Harwood, D.T.; Missau, F.C.; Pizzolatti, M.G.; Kettle, A.J. Myricitrin as a substrate and inhibitor of myeloperoxidase: Implications for the pharmacological effects of flavonoids. Free Radic. Biol. Med. 2008, 44, 109–120. [Google Scholar] [CrossRef]
- Shan, C.X.; Guo, S.C.; Yu, S.; Shan, M.Q.; Li, S.F.Y.; Chai, C.; Cui, X.B.; Zhang, L.; Ding, A.W.; Wu, Q.N. Simultaneous Determination of Quercitrin, Afzelin, Amentoflavone, Hinokiflavone in Rat Plasma by UFLC–MS-MS and Its Application to the Pharmacokinetics of Platycladus orientalis Leaves Extract. J. Chromatogr. Sci. 2018, 56, 895–902. [Google Scholar] [CrossRef]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Horbańczuk, M.; Tzvetkov, N.T.; Mocan, A.; Carradori, S.; Maggi, F.; Marchewka, J.; Sut, S.; Dall’Acqua, S.; Gan, R.Y.; et al. Curcumin: Total-scale analysis of the scientific literature. Molecules 2019, 24, 1393. [Google Scholar] [CrossRef] [Green Version]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Tamayose, C.I.; Santos, E.A.; Roque, N.; Costa-Lotufo, L.V.; Ferreira, M.J.P. Caffeoylquinic acids: Separation method, antiradical properties and cytotoxicity. Chem. Biodivers. 2019, 16, e1900093. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajialyani, M.; Hosein Farzaei, M.; Echeverría, J.; Nabavi, S.M.; Uriarte, E.; Sobarzo-Sánchez, E. Hesperidin as a neuroprotective agent: A review of animal and clinical evidence. Molecules 2019, 24, 648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilmsen, P.K.; Spada, D.S.; Salvador, M. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. J. Agric. Food Chem. 2005, 53, 4757–4761. [Google Scholar] [CrossRef] [PubMed]
- Paduch, R.; Kandefer-Szerszeń, M.; Trytek, M.; Fiedurek, J. Terpenes: Substances useful in human healthcare. Arch. Immunol. Ther. Exp. 2007, 55, 315. [Google Scholar] [CrossRef]
- Gonzalez-Burgos, E.; Gómez-Serranillos, M.P. Terpene compounds in nature: A review of their potential antioxidant activity. Curr. Med. Chem. 2012, 19, 5319–5341. [Google Scholar] [CrossRef]
- Badam, L. In vitro antiviral activity of indigenous glycyrrhizin, licorice and glycyrrhizic acid (Sigma) on Japanese encephalitis virus. J. Commun. Dis. 1997, 29, 91–99. [Google Scholar]
- White, N.J. Qinghaosu (artemisinin): The price of success. Science 2008, 320, 330–334. [Google Scholar] [CrossRef]
- Weathers, P.J.; Arsenault, P.R.; Covello, P.S.; McMickle, A.; Teoh, K.H.; Reed, D.W. Artemisinin production in Artemisia annua: Studies in planta and results of a novel delivery method for treating malaria and other neglected diseases. Phytochem. Rev. 2011, 10, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Tao, R.; Wang, C.Z.; Ye, J.Z.; Zhou, H.; Chen, H.X.; Zhang, C.W. Antibacterial, cytotoxic and genotoxic activity of nitrogenated and haloid derivatives of C 50–C 60 and C 70–C 120 polyprenol homologs. Lipids Health Dis. 2016, 15, 175. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, F.H. Proteins, in Calculations for Molecular Biology and Biotechnology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 375–429. [Google Scholar]
- Tang, B.; Row, K.H. Recent developments in deep eutectic solvents in chemical sciences. Chem. Mon. 2013, 144, 1427–1454. [Google Scholar] [CrossRef]
- Francisco, M.; Bruinhorst, A.V.D.; Kroon, M.C. Low-Transition-Temperature Mixtures (LTTMs): A New Generation of Designer Solvents. Angew. Chem. Int. Ed. 2013, 52, 3074–3085. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Arroyo, C.B.; Hernandez, F.L.; Goeltz, J.C. Ternary Deep Eutectic Solvent Behavior ofWater and Urea? Choline Chloride Mixtures. J. Phys. Chem. B 2019, 123, 5302–5306. [Google Scholar] [CrossRef] [PubMed]
- Emami, S.; Shayanfar, A. Deep eutectic solvents for pharmaceutical formulation and drug delivery applications. Pharm. Dev. Technol. 2020, 1–18. [Google Scholar] [CrossRef] [PubMed]
Compounds | Sample | Solvent | Ratio | Extraction Conditions; Analytical Methods | Ref. |
---|---|---|---|---|---|
Acacetin-7-diglucuronide Apigenin-7-O-diglucuronide, Campneoside, Cistanoside F, Dimethyl quercetin, Durantoside I, Eukovoside, Forsythoside A, Gardoside, Chrysoeriol-7-diglucuronide, Isoverbascoside, Ixoside, Lippioside, Lippioside I derivative, Lippioside II, Luteolin-7-diglucuronide, Martynoside, Oxoverbascoside, Teucardoside, Theveside, Verbascoside, β-hydroxyverbascoside/β-hydroxy-iso verbascoside, Total phenolic compounds | Lippia citriodora | ChCl:lactic acid ChCl:tartaric acid ChCl:1,3-batanediol ChCl:ethylene glycol ChCl:xylitol ChCl:1,2-propanediol ChCl:fructose.water ChCl:sucrose.water ChCl:maltose ChCl:glucose:water ChCl:urea | 1:2 2:1 1:6 1:2 2:1 1:2 2:1:1 4:1:2 3:1 2:1:1 1:2 | Microwave-assisted extraction 200 mg powder, 2 mL DES (with 25% water), 65 °C, 20 min, 700 W, 18 bar spectrometric analysis HPLC-ESI-TOF-MS | [65] |
Aglycone, Demethyloeuropein, Hydroxytyrosol, Oleacein | Olive leaves, ripened olive drupes | ChCl:urea ChCl:glycerol ChCl:Lactic acid ChCl:ethylene glycol ChCl:citric acid | 1:2 1:1 1:1 1:1 1:1 | MAE at 100 W, S/L 1:2.5 (g/mL) with 0 or 20% water, 10 or 30 min at 80 °C, HPLC | [66] |
Amentoflavone, Quercitrin, Hinokiflaveno, Myricitrin | Platycladi Cacumen | ChCl:levulinic acid ChCl:ethylene glycol ChCl:N,N’:dimethylurea ChCl:D-glucose Betaine:levulinic acid Betaine:ethylene glycol Betaine:1-methylurea Betaine:D-glucose L-proline:levulinic acid L-proline:glycerol L-proline:acetamide L-proline:D-glucose | 1:2 1:2 1:1 1:1 1:2 1:2 1:1 1:1 1:2 1:2.5 1:1 1:1 | Ultrasound 200 W, 50 °C, 30 min, centrifugation 20 min (16,200 G), suspension diluted eight times with 50% acetonitrile, HPLC-UV, The optimized DES extraction conditions: 30 min; S/L 1:4 (mg/mL) for ChCl:Levulinic Acid (90%) (1:2) | [67] |
Apigenin rutinoside, Luteolin, Luteolin di-glycoside, Luteolin glucoside, Luteolin rutinoside, Oleuropein | Olive (Olea europaea) Leaves | Glycerol:sodium-potassium tartrate tetrahydrate:water | 7:1:2 | Powder leaves, 10 mL LTTM, ultrasonic power of 140 W, concentration of the LTTM in an aqueous solution (50 and 80%, w/v), S/L (1:15; 1:45 (g/mL)) and temperature (50 to 80 °C), LC-DAD-MS, total polyphenol, and flavonoid yield, antioxidant activity | [68] |
Naringenin, Oleuropein, Caffeic acid, (±) catechin hydrate, Cinnamic acid, Gallic acid, Quercetin dehydrate, Luteolin, p-coumaric acid, Rutin hydrate, Trans-ferulic acid, Tyrosol, 3-hydroxytyrosolapigenin | olive cake, onion seed, and by product from tomato and pear canning industry | Lactic acid:glucose + 15% of water and 0.1% (v/v) formic acid | 5:1 | Ultrasound time (15, 35, 60 min), S/L 1:15, 1:45, 1:75 (mg/mL) and water dilution of the optimal DES (0%, 40% and 75%), temperature 40 °C. Optimization: S/L 1:75 (mg/mL) and homogenized by a vortex during 15 s. Ultrasound treatment (200 W output power, 20 kHz frequency), 60 min, 40 °C, HPLC-DAD analysis | [69] |
Artemisinin | Herba Artemisiae Scopariae | [N(Me)(Oc)3]Cl:ethylene glycol [N(Me)(Oc)3]Cl:1-propanol [N(Me)(Oc)3]Cl:1,3-propanediol [N(Me)(Oc)3]Cl:glycerol [N(Me)(Oc)3]Cl:1-butanol [N(Me)(Oc)3]Cl:1,2-butanediol [N(Me)(Oc)3]Cl:hexyl alcohol [N(Me)(Oc)3]Cl:capryl alcohol [N(Me)(Oc)3]Cl:decyl alcohol [N(Me)(Oc)3]Cl:dodecyl alcohol [N(Me)(Oc)3]Cl:1-tetradecanol [N(Me)(Oc)3]Cl:cyclohexanol [N(Me)(Oc)3]Cl:DL-menthol | 1:2 1:2 1:2 1:2 1:2 1:2 1:2 1:2 1:2 1:2 1:2 1:2 1:2 | S/L 1:10 (g/mL), 250 rpm, 30 °C, 15 min, HPLC-UV | [70] |
[N(Me)(Oc)3]Cl:1-butanol:1-propanol | 1:1:3 1:2:2 1:3:1 1:4:0 | ||||
[N(Me)(Oc)3]Cl:1-butanol:hexyl alcohol | 1:1:3 1:2:2 1:3:1 1:4:0 | ||||
[N(Me)(Oc)3]Cl:1-butanol:capryl alcohol | 1:1:3 1:2:2 1:3:1 1:4:0 | ||||
[N(Me)(Oc)3]Cl:1-butanol:1,2-propanediol | 1:1:3 1:2:2 1:3:1 1:4:0 | ||||
[N(Me)(Oc)3]Cl:1-butanol:1,3-butanediol | 1:1:3 1:2:2 1:3:1 1:4:0 | ||||
[N(Pr)4]Br:1-butanol:1-propanol | 1:1:2 1:1.5:1.5 1:2:1 1:3:0 | ||||
[N(Pr)4]Br:1-butanol:hexyl alcohol | 1:1:2 1:1.5:1.5 1:2:1 1:3:0 | ||||
[N(Pr)4]Br:1-butanol:capryl alcohol | 1:1:2 1:1.5:1.5 1:2:1 1:3:0 | ||||
[N(Pr)4]Br:1-butanol:1,2-propanediol | 1:1:2 1:1.5:1.5 1:2:1 1:3:0 | ||||
[N(Pr)4]Br:1-butanol:1,3:butanediol | 1:1:2 1:1.5:1.5 1:2:1 1:3:0 | ||||
[N(Bu)4]Br:1-butanol:1:propanol | 1:0.5:1.5 1:1:1 1:1.5:0.5 1:2:0 | ||||
[N(Bu)4]Br:1-butanol:hexyl alcohol | 1:0.5:1.5 1:1:1 1:1.5:0.5 1:2:0 | ||||
[N(Bu)4]Br:1-butanol:capryl alcohol | 1:0.5:1.5 1:1:1 1:1.5:0.5 1:2:0 | ||||
[N(Bu)4]Br:1-butanol:1,2-propanediol | 1:0.5:1.5 1:1:1 1:1.5:0.5 1:2:0 | ||||
[N(Bu)4]Br:1-butanol:1,3-butanediol | 1:0.5:1.5 1:1:1 1:1.5:0.5 1:2:0 | ||||
[N(Bu)4]Br:1-butanol [N(Me)(Oc)3]Cl:1-butanol [N(Me)(Oc)3]Cl:1-butanol:capryl alcohol | 1:2 1:4 1:3:1 | Extraction by air-bath shaking at 250 rpm and 30 or 60 °C, water-bath shaking at 150 rpm and 30 or 60 °C, magnetic stirring at 150 rpm and 30 or 60 °C, heating at 60 °C and 0 rpm, or ultrasonication at 200 W and 30 or 60 °C. | |||
[N(Me)(Oc)3]Cl:1-butanol | 1:4 | S/L (from 1:10 to 1:20 g/mL), ultrasonic powers (120 to 200 W), Temperature (40–60 °C), particle sizes (20 to 80 mesh), time (40–80 min) | |||
Astragalin, Benzoic acid, Caffeic acid, Catechinic acid, Epicatechin, Gallic acid, Gentisic acid, Hyperin, Chlorogenic acid, Quercetin Rutin, Syringic acid, Vanillic acid | Morus alba L. | ChCl:urea ChCl:ethylene glycol ChCl:glycerol ChCl:citric acid ChCl:malic acid Betaine:levullinic acid Betaine:lactic acid Betaine.glycerol Proline:malic acid Proline:glycerol Proline:levullinic acid Proline:lactic acid | 1:2 1:2 1:2 2:1 1:1 1:2 1:1 1:2 1:1 2:5 1:2 1:1 | 0.2 g powder, 4 mL (DES:water 3:1 v/v) sonicated at 40 °C, 30 min, centrifuged 120 rpm for 10 min HPLC-UV | [71] |
Astrazon orange G, astrazon orange R, chrysoidine | Red chili peppers | ChCl:ethyl glycol ChCl:1,2 butanediol ChCl:glycerol ChCl:1,3 butanediol ChCl:1,4 butanediol | 1:3 1:3 1:3 1:3 1:3 | S/L 1:10 (g/mL), temperature: 30 °C, time: 20 min, and ultrasonic power: 75 W, HPLC-UV | [72] |
Baicalein, Baicalin, Scutellarin, Wogonoside, Wogonin | Radix scutellatiae | ChCl:glycerol ChCl:glycol ChCl:1,2-propylene ChCl:1,4-butanediol ChCl:lactic acid ChCl:malic acid:water ChCl:glucose:water L-proline:glycerol L-proline:glucose:water L-proline:fructose:water Citric acid:fructose:water Citric acid:glucose:water | 1:4 1:4 1:4 1:4 1:4 1:1:3 1:1:2 1:4 5:3:8 1:1:5 1:1:3 1:1:5 | 50 mg powder, 42 min, 1.2 mL DES (66.7% DES and 33.3% water), vortexed 5 min, ultrasonification 42 min, HPLC | [73] |
Bergapten, Caffeoylmalic acid, Rutin, Psoralen Psoralic acid-glucoside | Ficus carica L. | Glycerol:xylitol:D-(−)-fructose | 1:3:1 1:3:2 1:3:3 2:3:1 2:3:2 2:3:3 3:3:1 3:3:2 3:3:3 | DES-MAE, S/L 1:20 (g/mL), temperature 55 °C, time 10 min, microwave power 250 W, HPLC | [74] |
Glycerol:L-proline:D-(-)-fructose | 3:3:3 | DES-UAE, water concentration 20%, S/L 1:20 (g/mL), temperature 60 °C, time 20 min, ultrasonic power 250, 700 W, HPLC | |||
ChCl:D-(+)-Galactose ChCl:L-proline ChCl:DL-malic acid ChCl:xylitol ChCl:glycerol ChCl:D-(+)-Glucose ChCl:citric acid ChCl:sucrose ChCl:D-(−)-fructose | 1:1 2:1 1:1 5:2 1:1 1:1 2:1 1:1 1:1 | DES-MAE, S/L 1:20 (g/mL), temperature 55 °C, time 10 min, microwave power 250 W, HPLC | |||
Glycerol:L-proline:D-(−)-fructose | 3:3:3 | DES-MAE, water concentration 10–40%, S/L 1:5, 1:15, 1:25 (g/mL), temperature 40–80 °C, time 20–60 min, microwave power 250 W, HPLC | |||
Biochanin A, Daidzein, Daidzin, Genistein, Genistin | spike samples | ChCl:(+)-glucose ChCl:L(+)-tartaric acid ChCl:citric acid ChCl:saccharose ChCl:glycerine ChCl:D(+)-xylose Urea:ChCl Urea:L(+)-tartaric acid Glycerine:D(+)-glucose Glycerine:L(+)-tartaric acid Glycerine:citric acid Urea:citric acid ChCl:citric acid:glycerine ChCl:citric acid | 2:1 1:1 1:1; 2:1; 1:2 2:1 1:2 1:1; 2:1 1:1 2:1 2:1 1:1 2:1 2:1 1:1:1; 2:2:1 1:1 | water content 30%, S/L 1:3 (g/mL), extraction time 60 min, extraction temperature 60 °C, ultrasonic power 616 W, UHPLC-UV | [75] |
ChCl:citric acid | 1:1 | Central composite design: time 40–120 min, temperature 30–80 °C, ultrasonic power 264–616 W, S/L 1:3 (g/mL), 30% water content | |||
Caffeic acid, Catechins, Epicatechin, Protocatechuic acid | Palm bark | ChCl:ethyleneglycol ChCl:glycerol ChCl:xylitol ChCl:formic acid ChCl:citric acid ChCl:oxalic acid ChCl:malonic acid ChCl:phenol | 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1, 1:2, 1:3, 1:4, 1:5 | 0.5 g of the palm powder was soaked in 7.5 g of the DES and 2.5 g of H2O in a 50 mL round-bottom flask. The mixture was refluxed at 40 °C for 6 h in a water bath for extraction. HPLC-MS | [76] |
Caffeic acid, Hydroxytyrosol, Luteolin, Rutin, Vanillin Total phenolic content | Olive pomace | ChCl:citric acid ChCl:lactic acid ChCl:maltose ChCl:glycerol | 1:2 1:2 1:2 1:2 | Homogenate-assisted extraction 2 g olive pomace, 25 mL NADES, 30 min, 40 or 60 °C, homogenization 4000, 12,000 rpm Microwave-assisted extraction 2 g olive pomace, 25 mL NADES, 200 W, 40 or 60 °C, 30 min. Ultrasound-assisted extraction 2 g olive pomace, 25 mL NADES, 60 kHz, 280 W, 40 or 60 °C, 30 min. High hydrostatic pressure-assisted extraction 2 g olive pomace, 25 mL NADES, 300 or 600 MPa, 5 and 10 min, HPLC-DAD, spectrometric analysis | [77] |
Caffeine, Catechin, Catechin gallate, Epicatechin, Epigallocatechin, Epicatechin-3-gallate, Epigallocatechin-3-gallate Gallatecatechin, Gallic acid, Gallocatechin | Green tea | Betaine:glycerol:glucose | 4:20:1 | Power irradiation 500 W, ultrasonic irradiation time 6.4–73.6 min, content of DES in the extraction solvent 24.7–100% w/w, volume of the extraction solvent per 100 mg of green tea powder 0.6–0.8 mL, LC-UV | [78] |
Chlorogenic acid, (+)-catechin Gallic acid, trolox Total phenolic content, Total flavonoid content, Antioxidant activity | Coffee grounds | ChCl:urea ChCl:acetamide ChCl:glycerol ChCl:sorbitol ChCl:ethylene glycol ChCl:1,4-buatnediol ChCl:1,6-hexanediol ChCl:malonic acid ChCl:citric acid ChCl:fructose:water ChCl:xylose:water ChCl:sucrose:water ChCl:glucose:water | 1:2 1:2 1:2 1:2 1:2 1:2 1:2 1:2 1:2 5:2:5 2:1:2 4:1:4 5:2:5 | 50 mg grounds, 0.85 mL DES irradiated at ambient temperature for 45 min, centrifuged at 12,300 g for 20 min, UPHLC-Q-TOF-MS | [79] |
Chlorogenic acid, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid | Artemisia argyi leaves | ChCl:malic acid ChCl:urea ChCl:glutaric acid ChCl:malonic acid ChCl:ethylene glycol ChCl:glycerol | 1:1 1:2 1:1 1:1 1:3 1:2 | 20 mg powder, 1 mL solvents, ultrasonic 200 W, 40 kHz, 30 min, HPLC | [80] |
ChCl:malic acid:glutaric acid ChCl:malic acid:ethylene glycol ChCl:malic acid:glycerol ChCl:malic acid. urea ChCl:malic acid:malonic acid | 2:1:1,2:2:1, 1:2:0.5, 2:2:1 1:2:0.5, 2:2:1 2:1:1, 2:2:1, 2:1:2 2:1:1, 2:2:1, 1:1:1, 2:1:2 | ||||
Chlorogenic acid, Quercetin-3-O-glucoside, Quercetin-O-pentoside | Juglans regia L. | ChCl:acetic acid ChCl:propionic acid ChCl:butyric acid ChCl:valeric acid ChCl:glycolic acid ChCl:lactic acid ChCl:phenylacetic acid ChCl:3-phenylacetic acid ChCl:malic acid ChCl:glutaric acid ChCl:citric acid ChCl:3-phenylpropionic acid ChCl:3-phenylbutyric acid ChCl:3-phenylvaleric acid | 1:2 1:2 1:2 1:2 1:2 1:2 1:2 1:2 1:1 1:1 2:1 1:2 1:2 1:2 | 0.15 g powder, 5 mL DES with 20% (w/w) of water, 50 °C, 1 h, 600 rpm, HPLC | [81] |
Chlorogenic acid | blueberry leaves | ChCl:ethylene glycol ChCl:glycerin ChCl:1,3-butanediol ChCl:citric acid ChCl:oxalic acid ChCl:glucose ChCl:maltose ChCl:sucrose | 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 | NPCE-DES-ATPS, temperature 60 °C, S/L 1:20 (g/mL), water concentration 20% (v/v) in DES, time 30 min and negative pressure −0.07 Pa, HPLC | [82] |
ChCl:1,3-butanediol | 1:4 | S/L 1:15; 1:25 (g/mL), the extraction temperature (50–70 °C) and extraction time (20–40 min), HPLC | |||
Cinnamyl alcohol, Rosavin, Rosin, Salidroside, Tyrosol | Rhodiola rosea L. | Lactic acid:glucose:water Lactic acid:fructose:water | 6:1:6 5:1:1, 5:1:5 | S/L 1:20 (g/mL), sonification 50 W, 35 kHz, 60 min, 36 °C, HPLC | [83] |
Coumarin, trans-cinnamaldehyde | Cinnamomum burmannii (cinnamon bark) | ChCl:glycerol ChCl:sorbitol ChCl:xylitol ChCl:lactic acid ChCl:malic acid ChCl:citric acid Betaine:lactic acid Betaine:malic acid Betaine:citric acid | 1:2 1:2 4:1 1:1 1:1 1:1 1:1 1:1 1:1 | Ultrasound-assisted extraction, S/L 1:10 (g/mL) | [84] |
Coumarin, trans-cinnamaldehyde | Cinnamomum burmannii (cinnamon bark), Caesalpinia sappan heartwoods | ChCl:glycerol | Ultrasonic extraction: 35 W, 42 Hz, S/L 1:66–1:93.75(g/mL), water content 10–80%, different ratio of glycerol to ChCl (66–20%), HPLC | [85] | |
Curcumin | herbal tea, turmeric drug (food supplement), turmeric powder | ChCl:phenol | 1:2 1:3 1:4 | VAS-DES-ELLME, HPLC, UV-VIS methodology | [86] |
Epigallocatechin-3-gallate | Green tea | Betaine:glycerol:glucose | 4:20:1 4:15:1 4:10:1 4:5:1 | S/L 1:10 (g/mL), 45 min, irradiation power 500 W, room temperature, LC-UV | [78] |
Betaine:maltitol Betaine:urea Betaine:glycerol Betaine:citric acid Betaine:glucose Betaine:maltose Betaine:sucrose Betaine:D-sorbitol Betaine:Xylitol Citric acid:Xylitol Citric acid:maltitol Citric acid:fructose Citric acid:glycerol Citric acid:glucose Citric acid:maltose Citric acid:sucrose Citric acid:D-sorbitol Glycerol:D-sorbitol Glycerol:fructose Glycerol:galactose Glycerol:urea Glycerol:glucose Glycerol:maltose Glycerol:sucrose Glycerol:maltitol Glycerol:xylitol Citric acid:glycerol:glucose Citric acid:glycerol:maltose Citric acid:glycerol:maltitol Betaine:glycerol:glucose Betaine:glycerol:urea Betaine:glycerol:maltitol Betaine:glycerol:citric acid Betaine:glycerol:maltose Urea:glycerol:maltose Urea:glycerol:maltitol Urea:glycerol:glucose | 4:1 1:2 1:1 1:1 4:1 4:1 4:1 2:1 4:1 1:1 2:1 1:1 1:2 1:1 2:1 1:1 1:1 2:1 3:1 3:1 1:1 3:1 3:1 3:1 3:1 2:1 1:2:1 2:4:1 2:4:1 4:4:1 1:1:2 4:4:1 1:1:1 4:4:1 3:3:1 3:3:1 2:2:1 | ||||
Epimedin A, Epimedin B, Epimedin C, Icariin | Epidemium pubescens Maxim. | ChCl:1,4-butanediol ChCl:ethylene glycol ChCl:1,2-propanediol ChCl:lactic acid ChCl:glycerol | 1:5, 1:6 1:3, 1:4, 1:5, 1:6 1:4, 1:5, 1:6 1:2, 1:3, 1:6 1:1, 1:2, 1:3, 1:4, 1:5, 1:6 | 0.02 g of E. pubescens powder, 3 mL extractant, vortexing 10 min., and ultrasonic radiation at 25 °C for 20 min, and supernatant was mixed water, molar ratio 1:1 (DES/water v/v), HPLC-UV | [87] |
Epimedin A, Epimedin B, Epimcedin C, Icariin Icarisid II | Herba Epimedii | ChCl:urea ChCl:ethylene glycol ChCl:1,4-buatnediol ChCl:glycerol ChCl:glucose:water ChCl:malic acid ChCl:citric acid ChCl:lactic acid L-proline:1,2 propylene glycol L-proline:glycerol L-proline:ethylene glycol ChCl:1,2-propylene glycol | 2:1 1:2, 1:3 1:3 1:4 2:1:1 1:1 1:1 1:2 1:3 1:4 1:3, 1:4, 1:5, 1:6 1:2, 1:3, 1:4, 1:5, 1:6 | 0.2 g powder, 4 mL solvent (DES:water 7:3, v/v), mixed by vortex 5 min, ultrasonic extractionat room temperature for 45 min. HPLC | [88] |
Flavonoids | Carthamus tinctorius | ChCl:oxalic acid ChCl:ethylene glycol ChCl:1,3-butanediol ChCl:1,6-hexanediol | 1:1 | Ultrasonic treatment: 0.5 g powder, solvents 10–35 mL, 45 °C, 20 min, 150 W Other ultrasonic treatment: different conditions, change the parameters: 10–60 min, 60–240 W, 25–45 °C Spectrometric analysis | [89] |
Ginkgolide A | Ginkgo biloba | ChCl:glycerol ChCl:gthylene glycol Xylitol:levulinic acid 1, 2-propanediol:levulinic acid 1, 3-butanediol:levulinic acid Betaine:ethylene glycol Betaine:levulinic acid Betaine:glycerol ChCl:urea ChCl:levulinic acid ChCl:glycolic acid ChCl:glutaric acid ChCl:D-sorbitol ChCl:xylitol ChCl:1, 3-butanediol ChCl:1,2-propanediol | 1:2 1:2 1:1 1:1 1:1 1:3 1:3 1:2 1:2 1:2 1:1 1:1 1:1 1:1 1:3 1:2 | UAE, 70% (w/w) aqueous solution at 100 W and 25 °C for 10 min, S/L 1:15 (g/mL), colorimetric method | [90] |
Betaine:ethylene glycol + water | 6:4 | Magnetic stirring at 45 °C for 20 min, colorimetric method | |||
UAE at 45 °C and 100 W for 20 min, colorimetric method | |||||
Bilobalide Ginkgolide A, Ginkgolide B, Ginkgolide C | Ginkgo biloba | Betaine:ethylene glycol + water ChCl:urea + water | 1:2 1:2 | DES containing water 0–100% w/w, S/L 1:15 (g/mL) with ultrasound at 100 W and 25 °C for 10 min., colorimetric and HPLC-ELSD method | [90] |
Betaine:ethylene glycol + water ChCl:urea + water | 1:2 1:2 | Water 40% w/w, S/L 1:15 (g/mL) with ultrasound at varied temperature (25–60 °C) and 100 W for 10 min., colorimetric and HPLC-ELSD method | |||
Betaine:ethylene glycol + water | 1:3 | Water 40% w/w, S/L (1:7.5, 1:10, 1:12.5, 1:15, 1:20, 1:30, and 1:50 (g/mL)), with ultrasound at 45 °C and 100 W for 10 min., colorimetric and HPLC-ELSD method | |||
Betaine:ethylene glycol + water | 1:3 | S/L 1:10 (g/mL) with ultrasound at 45 °C and 100 w for different time 5–40 min., colorimetric and HPLC-ELSD method | |||
Glycyram, Licuroside | Glycxyrrhizae roots | Sorbitol:malic acid:water | 1.1:3 | S/L 1:10 (g/mL), 24 h, 25 °C, RP HPLC | [91] |
Hespederin | Mandarin peels | ChCl:acetamide ChCl:1,4-butanediol ChCl:citric acid ChCl:ethylene glycol ChCl:glycerol ChCl:lactic acid ChCl:levulinic acid ChCl:malonic acid ChCl:malic acid ChCl:N-methyl urea ChCl:oxalic acid ChCl:sorbitol ChCl:urea ChCl:thiourea ChCl:xylitol | 1:2 1:2 1:1 1:1 1:2 1:1 1:1 1:1 1:1 1:3 1:1 1:1 1:1 1:1 1:1 | 50 mg powder, 1 mL solvent (DES with 20% (v/v) water), stirring 50 °C for 30 min, HPLC-DAD | [92] |
Indole-3-acetic acid, 1-naphtaleneacetic acid | Fruit juice | Benzyltriethylammonium chloride:thymol [N(Me)(Oc)3]Cl:butanol [N(Me)(Oc)3]Cl:isoamyl alcohol [N(Me)(Oc)3]Cl:octanol | 1:4 1:4 1:4 1:4 | Fruit juice samples diluted with in ratio 1:10, VA-DES-DLLME, HPLC | [93] |
Levofloxacin | Green bean | Betaine:ethyleneglycol:water | 1:2:1 | SPE-HPLC | [94] |
Lignin content in delignified biomass | oil palm biomass residues, empty fruit bunch | Malic acid:ChCl-water | 2:4:2 (L-malic acid) | S/L 1:20 (w/w), 85 °C, overnight | [95] |
Malic acid:ChCl-water | 2:4:2 (cactus) | ||||
Malic acid:monosodium glutamate:water | 3:1:5 (L-malic acid) | ||||
Malic acid:monosodium glutamate:water | 3:1:5 (cactus) | ||||
Oxyresveratrol | Morus alba Roots | Urea:glycerin | 1:1, 1:2, 1:3 | 1 g powder, 20 mL NADES, ultrasonic treatment 10, 15, 20 min, HPLC | [96] |
Pectin | pomelo (Citrus grandis (L.) Osbeck) peels | Lactic acid:glucose:water Lactic acid:glycine Lactic acid:glucose Lactic acid:Glycine:water | 6:1:6, 5:1:3 9:1 5:1 3:1:3 | S/L 1:20 (g/mL), 60 min, 50 °C, 500 rpm S/L 1:20 (g/mL), 45 min, 70 °C, 55 rpm | [97] |
Phlorotannin content | Brown algae: Fucus vesiculous L., Ascophyllum nodosum L. | ChCl:lactic acid ChCl:malic acid. Water Glucose:lactic acid:water Betaine:malic acid:water Betaine:lactic acid:water Betaine:malic acid:glucose Betaine:glycerin:glucose | 1:1, 1:2, 1:3 1:1:1, 2:1:1 1:5:3 1:1:1 1:2:1 1:1:1 1:5:1 | 20 g algae, 100 mL solvents (pure DES or with water content 50–70%), 120 min, 50 °C, spectrometric analysis | [98] |
Polyprenyl acetates | Ginkgo biloba leaves | [N(Me)(Oc)3]Cl:hexanoic acid [N(Me)(Oc)3]Cl:octanoic acid [N(Me)(Oc)3]Cl:capric acid [N(Me)(Oc)3]Cl:lauric acid [N(Me)(Oc)3]Cl:myristic acid [N(Me)(Oc)3]Cl:palmitic acid [N(Me)(Oc)3]Cl:octadecenoic acid [N(Me)(Oc)3]Cl:ricinoleic acid [N(Me)(Oc)3]Cl:1-propanol [N(Me)(Oc)3]Cl:1-butanol [N(Me)(Oc)3]Cl:hexyl alcohol [N(Me)(Oc)3]Cl:capryl alcohol [N(Me)(Oc)3]Cl:decyl alcohol [N(Me)(Oc)3]Cl:dodecyl alcohol [N(Me)(Oc)3]Cl:1-tetradecanol [N(Me)(Oc)3]Cl:1-hexadecanol [N(Me)(Oc)3]Cl:cyclohexanol [N(Me)(Oc)3]Cl:DL-menthol [N(Me)(Oc)3]Cl:capryl alcohol:octylic acid | 1:2 1:2 1:2 1:2 1:1 1:1 1:2 1:2 1:2 1:2 1:2 1:2 1:2 1:1 1:2 1:2 1:2 1:2 1:2:3 | 80 mg of Ginkgo biloba leaves powder was extracted with 0.80 mL of the DES by heating at 60 °C and 0 rpm, stirring at 150 rpm and 25 or 60 °C, water-bath shaking at 150 rpm and 25 or 60 °C, air-bath shaking at 250 rpm and 25 or 60 °C, ultrasonic treating at 200 W and 25 or 60 °C, HPLC-DAD | [99] |
Proanthocyanidin | Gingko biloba leaves | ChCl:glycerol ChCl:ethylene glycol ChCl:propylene glycol ChCl:1,3-buatnediol ChCl:sorbitol ChCl:xylitol ChCl:1,5-pentanedioic acid ChCl:glycolic acid ChCl:malonic acid ChCl:malic acid ChCl:levulinic acid ChCl:lactic acid ChCl:citric acid ChCl:tartaric acid ChCl:urea ChCl:oxalic acid | 1:2 1:2 1:2 1:3 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:2 1:1 1:1 2:1 1:1 | 100 mg powder, 1 mL DES with 30% water, shaking at 250 rpm, 25 °C, 5 min, centrifugation at 10,000 rpm for 10 min, spectrometric analysis | [100] |
Protein | Brewer’s spent grain | Sodium formate:urea Potassium acetate:urea Sodium acetate:urea | 1:2, 1:3 1:2, 1:3 1:2, 1:3 | 90 wt% carboxylate salt—urea DESs at 10 wt% consistency, 90 °C and time 4 h | [101] |
ChCl:urea Sodium acetate:urea | 1:2 1:2 | consistency 5 or 10% wt, defat samples, 80 °C, 20 h extraction | |||
Protein | Bamboo shoots and sheath | ChCl:levulinic acid | 1:2, 1:3, 1:4, 1:5, 1:6 | S/L 1:30 to 1:60; Temperature 20–40 °C, water content 5–30% | [102] |
Quercetin | Ginkgo biloba | ChCl:glycerol ChCl:ethylene glycol ChCl:1,4-butanediol | 1:2, 1:3, 1:4, 1:5 1:2, 1:3, 1:4, 1:5 1:2, 1:3, 1:4, 1:5 | powder (2.0 g) was dissolved in 40 mL methanol, ultrasonic treated (60 W), 30 min, HPLC | [103] |
Quercetin, Quercetin-3-O-glucoside, Isorhamnetin, Kaempferol, Rutin | Sea buckthorn leaves | ChCl:citric acid ChCl:malic acid ChCl:lactic acid ChCl:ethylene glycol ChCl:1,3-butanediol ChCl:1,4-butanediol ChCl:1,6-hexanediol ChCl:1,2-propanediol ChCl:glycerol ChCl:glucose ChCl:fructose ChCl:sucrose | 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 | microwave-assisted extraction, 1.0 g of leaves, 20 mL DES with 20% (v/v) water, 600 W, 17 min, HPLC | [104] |
Quercetin, Isorhamnetin, Kaempferol, Naringenin | Pollen Typhae | ChCl:1,4-butanediol ChCl:glucose ChCl:glycerol ChCl:1,4-buatnediol:glycerol L-proline:glycerol ChCl:lactic acid ChCl:ethylene glycol ChCl:1,2-propanediol | 1:4 1:4 1:4 1:2:2 4:11 1:4 1:4 1:4 | 100 mg powder, 2 mL DES, vortexed 5 min, and ultrasonic irradiation 35 min, centrifugation at 4200 rpm for 25 min, HPLC-UV | [105] |
Quercetin, Isorhamnetin, Naringenin, Kaempferol, Myrecetin, | Flos Sophorae | ChCl:malic acid ChCl:citric acid ChCl:malonic acid ChCl:methylurea ChCl:urea ChCl:N,N-dimethylurea ChCl:1,3-butanediol ChCl:ethylene glycol ChCl:glycerol | 1:1, 1:3 1:1, 1:3 1:1, 1:3 1:1, 1:3 1:1, 1:3 1:1, 1:3 1:1, 1:3 1:1, 1:3 1:1, 1:3 | 200 mg powder, 1 mL DES, and short homogenization, AP/MALDI-MS | [106] |
Rosmarinic acid, Rutin | Satureja montana L. | ChCl:urea ChCl:sorbitol ChCl:1,4-butanediol ChCl:lactic acid ChCl:levulinic acid | 1:2 1:1 1:2 1:2 1:2 | 50 mg leaves, 1 mL solvents (DES + water (10, 30, 50% of water, v/v), stirring at 1500 rpm, 30, 50, 70 °C for 60 min, HPLC | [107] |
Rutin | tartary buckwheat hull | ChCl:1,2-propanediol ChCl:glycerol ChCl:glucose ChCl:sucrose ChCl:xylitol ChCl:sorbitol Glycerol:L-proline Glycerol:L-alanine Glycerol:L-histidine Glycerol:L-threonine Glycerol:L-lysine Glycerol:L-arginine | 1:1 1:1 2:5 1:1 1:2 2:5 3:1 3:1 3:1 3:1 4.5:1 4.5:1 | 40 mg of tartary buckwheat hull powder, 1.0 mL solvent, 40 °C, 60 min, UAE power 200 W, | [108] |
Total flavonoids and polyphenols, and total polyphenols at saturation tentative identity: Apigenin C-glycoside, Chlorogenic acid, Quercetin diglycoside, Quercetin glycoside, Quercetin glycoside derivative, Quercetin rhamnoside derivative, Quercetin malonylglycoside derivative, Kaempferol glycoside derivative, Kaempferol malonylglucoside, Multiflorin B | Moringa oleifera Lam. leaves | Glycerol:sodium acetate | 4:1 5:1 6:1 | 2.5 g of lyophilized leaves was mixed with 50 mL of aqueous LTTM mixture and stirred at 600 rpm for 180 min, at 50 °C, LC–DAD–MS, total flavonoids and polyphenols | [109] |
Total phenolic and anthocyanin content | Hibiscus sabdariffa | Citric acid:glycerol Citric acid:ethylene glycol | 1:4 1:4 | Microwave-assisted extraction, 60 to 150 s, power 250, 350, 450, 550, 600 W, spectrometric analysis antioxidant activity determined | [110] |
Total polyphenolic and flavonoid contents, Chlorogenic acid, chlorogenic acid isomer, Quercetin glucoside, quercetin malonylglycoside derivate, Kaempferol glucoside, kaempferol malonylglucoside, Multiflorin B, Neochlorogenic acid | Moringa oleifera L. | Glycerol:nicotinamide | 5:1 | Ultrasonic pretreatment: 0.57 g plant, 20 mL solvent (70% w/v aqueous solution), 50 Hz, 550 W, acoustic energy density 78.6 W/L, 23 °C, 5–40 min Batch stirred-tank extraction: 0.57 g plant, 20 mL solvent (70% w/v aqueous solution), 50 °C, 150 min, spectrometric analysis, HPLC antiradical activity, reducing power | [111] |
Total phenolic content | Ruta graveolens L. | ChCl:citric acid | 2:1 | 50 mg leaves, 1 mL solvent with different content of water (10–30%), stirring at time 30, 52, 60, 90 min, 30, 50, 70 °C, RP-HPLC | [112] |
Total phenolic content | Spruce bark | ChCl:lactic acid:water ChCl:lactic acid:water ChCl:lactic acid:water ChCl:lactic acid:water ChCl:lactic acid:1,3-propanediol:water ChCl:lactic acid:1,3-propanediol:water ChCl:lactic acid:1,3-propanediol:water ChCl:lactic acid:1,3-propanediol:water ChCl:lactic acid:1,3-propanediol:water ChCl:lactic acid:1,3-butanediol:water ChCl:lactic acid:1,3-butanediol:water ChCl:lactic acid:1,3-butanediol:water ChCl:lactic acid:1,3-butanediol:water ChCl:lactic acid:1,3-butanediol:water ChCl:lactic acid:1,4-butanediol:water ChCl:lactic acid:1,4-butanediol:water ChCl:lactic acid:1,4-butanediol:water ChCl:lactic acid:1,4-butanediol:water ChCl:lactic acid:1,4-butanediol:water ChCl:lactic acid:1,5-pentanediol:water ChCl:lactic acid:1,5-pentanediol:water ChCl:lactic acid:1,5-pentanediol:water ChCl:lactic acid:1,5-pentanediol:water ChCl:lactic acid:1,5-pentanediol:water | 1:2:0.96 1:3:0.97 1:4:0.99 1:5:0.98 1:1:1:0.92 1:2:1:0.95 1:3:1:0.91 1:4:1:0.92 1:5:1:0.91 1:1:1:0.93 1:2:1:0.92 1:3:1:1 1:4:1:1 1:5:1:1 1:1:1:0.96 1:2:1:0.92 1:3:1:0.92 1:4:1:0.91 1:5:1:0.91 1:1:1:0.87 1:2:1:0.98 1:3:1:0.90 1:4:1:0.90 1:5:1:0.96 | 0.5 g powder, 10 mL DESs, stirring at 60 °C for 2 h, spectrometric analysis antioxidant activity determined | [113] |
Total phenolic content, boldine, 9 alkaloids and 22 phenolic compounds | Peumus boldus leaves | ChCl:1,2-propanediol ChCl:glycerol ChCl:lactic acid ChCl:levulinic acid L-proline:citric acid L-proline:oxalic acid L-proline:levulinic acid | 1:3 1:2 1:2 1:1 1:2 1:1 1:1 | Plant 0.1 g, 10 mL NADES (80% aqueous solution), vortexed 30 s, stirring extraction 60 °C, 50 min, 340 rpm Ultrasound extraction: room temperature, 20 min, 140 W, 37 Hz HPLC-PDA-ESI-IT/MS, HPLC-ESI-QTOF-MS | [114] |
Total polyphenolic and flavonoid contents | Thyme (Coridothymus capitatus, Thymus vulgaris), Oregano (Origanum vulgare hirtum), Greek sage (Salvia fruticosa), Sage (Salvia officinalis) | Lactic acid:nicotinamide Lactic acid:ChCl Lactic acid:sosium acetate Lactic acid:ammonium acetate Lactic acid:glycine Lactic acid:L-alanine: | 7:1 7:1 7:1 7:1 7:1 7:1 | 0.57 g of dried plant material, added 20 mL solvent, S/L 1:30 (g/mL), treated UAE, 37 Hz, 140 W, extraction time 60 min, 55 °C, extraction by aqueous DES solutions (75% v/v), other extraction β-cyclodextrin was added to the mixture (1.5% w/v), antiradical activities, reducing power determined | [115] |
Total polyphenolic and flavonoid contents Chlorogenic acid, Di-caffeoylquinic acid, di-p-coumaroylquinic acid derivate, Isoquercetin, Quercetin, Narcissin, neochlorogenic acid, rutin | Sambucus nigra flowers | Lactic acid:glycín | 5:1, 7:1, 9:1, 11.1, 13:1 | Ultrasonic pretreatment: 0.57 g plant, 20 mL solvent (70% w/v aqueous solution), 50 Hz, 550 W, acoustic energy density 75.3 W/L, 22 °C, 5–40 min Batch stirred-tank extraction: 0.57 g plant, 20 mL solvent (70% w/v aqueous solution), 50 °C, 150 min, spectrometric analysis, HPLC-DAD, LC-DAD-MS antiradical activities, reducing power determined | [116] |
Vanillin | Vanilla pods (Vanilla planifolia) | Betaine:citric acid Lactic acid:1,2-propandiol Lactic acid:fructose Fructose:glucose | 15 mg of vanilla pods were extracted 1 mL NADES, water content (90:10, 75:25, 60:40, 40:60 (v/v)), HPLC-DAD | [117] | |
Vanillin | Vanilla pods (Vanilla planifolia) | ChCl:citric acid:water ChCl:malic acid:water ChCl:glycerol Fructose:glucose:water Malic acid:glucose:water Betaine:sucrose:water Betaine:citric acid:water Betaine:malic acid:glucose:water Citric acid:fructose:glucose:water Malic acid:glucose:fructose:water L-Serine:malic acid:water Β-alanine:citric acid:water Lactic acid:1,2-propanediol Lactic acid:fructose | 1:1:6 1:1:6 1:1 1:1:6 1:1:6 2:1:6 1:1:6 1:1:1:9 1:1:1:9 1:1:1:9 1:1:6 1:1:6 1:1 5:1 | 50 mg of vanilla pods were extracted 50 °C, 1 h, HPLC-DAD | [117] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jablonský, M.; Šima, J. Phytomass Valorization by Deep Eutectic Solvents—Achievements, Perspectives, and Limitations. Crystals 2020, 10, 800. https://doi.org/10.3390/cryst10090800
Jablonský M, Šima J. Phytomass Valorization by Deep Eutectic Solvents—Achievements, Perspectives, and Limitations. Crystals. 2020; 10(9):800. https://doi.org/10.3390/cryst10090800
Chicago/Turabian StyleJablonský, Michal, and Jozef Šima. 2020. "Phytomass Valorization by Deep Eutectic Solvents—Achievements, Perspectives, and Limitations" Crystals 10, no. 9: 800. https://doi.org/10.3390/cryst10090800
APA StyleJablonský, M., & Šima, J. (2020). Phytomass Valorization by Deep Eutectic Solvents—Achievements, Perspectives, and Limitations. Crystals, 10(9), 800. https://doi.org/10.3390/cryst10090800