Partial and Total Substitution of Zn by Mg in the Cu2ZnSnS4 Structure
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Compositional Analysis
3.2. Size and Structure
3.3. Optical Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Akhavan, V.A.; Goodfellow, B.W.; Panthani, M.G.; Steinhagen, C.; Harvey, T.B.; Stolle, C.J.; Korgel, B.A. Colloidal CIGS and CZTS nanocrystals: A precursor route to printed photovoltaics. J. Solid State Chem. 2012, 189, 2–12. [Google Scholar] [CrossRef]
- Kumar, M.; Dubey, A.; Adhikari, N.; Venkatesan, S.; Qiao, Q. Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells. Energy Environ. Sci. 2015, 8, 3134–3159. [Google Scholar] [CrossRef]
- Kuo, D.H.; Wubet, W. Mg dopant in Cu2ZnSnSe4: An n-type former and a promoter of electrical mobility up to 120 cm2V−1s−1. J. Solid State Chem. 2014, 215, 122–127. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables (version 47). Prog. Photovolt. Res. Appl. 2016, 24, 3–11. [Google Scholar] [CrossRef]
- Monsefi, M.; Kuo, D.H. Influence of Mg doping on electrical properties of Cu(In,Ga)Se2 bulk materials. J. Alloy. Compd. 2014, 582, 547–551. [Google Scholar] [CrossRef]
- Katagiri, H.; Jimbo, K.; Maw, W.S.; Oishi, K.; Yamazaki, M.; Araki, H.; Takeuchi, A. Development of CZTS-based thin film solar cells. Thin Solid Film. 2009, 517, 2455–2460. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, J. Fabrication of CIGS thin films by using spray pyrolysis and post-selenization. J. Korean Phys. Soc. 2012, 60, 2018–2024. [Google Scholar] [CrossRef]
- Kamoun, N.; Bouzouita, H.; Rezig, B. Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. Thin Solid Film. 2007, 515, 5949–5952. [Google Scholar] [CrossRef]
- Matur, U.C.; Akyol, S.; Baydoğan, N.; Cimenoglu, H. The Optical Properties of CIGS Thin Films Derived by Sol-gel Dip Coating Process at Different Withdrawal Speed. Procedia Soc. Behav. Sci. 2015, 195, 1762–1767. [Google Scholar] [CrossRef] [Green Version]
- Yeh, M.Y.; Lee, C.C.; Wuu, D.S. Influences of synthesizing temperatures on the properties of Cu2ZnSnS4 prepared by sol–gel spin-coated deposition. J. Sol-Gel Sci. Technol. 2009, 52, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Caballero, R.; Haass, S.G.; Andres, C.; Arques, L.; Oliva, F.; Izquierdo-Roca, V.; Romanyuk, Y.E. Effect of Magnesium Incorporation on Solution-Processed Kesterite Solar Cells. Front. Chem. 2018, 6, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Chen, S.; Yang, J.H.; Lang, L.; Xiang, H.J.; Gong, X.G.; Walsh, A.; Wei, S.H. Design of I2-II-IV-VI4 Semiconductors through Element Substitution: The Thermodynamic Stability Limit and Chemical Trend. Chem. Mater. 2014, 26, 3411–3417. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Cheng, W.; Jiang, J.; Zuo, S.; Shi, F.; Chu, J. The structural, morphological and optical–electrical characteristic of Cu2XSnS4 (X:Cu,Mg) thin films fabricated by novel ultrasonic co-spray pyrolysis. Mater. Lett. 2016, 172, 68–71. [Google Scholar] [CrossRef]
- Zhong, G.; Tse, K.; Zhang, Y.; Li, X.; Huang, L.; Yang, C.; Zhu, J.; Zeng, Z.; Zhang, Z.; Xiao, X. Induced effects by the substitution of Zn in Cu2ZnSnX4 (X = S and Se). Thin Solid Film. 2016, 603, 224–229. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Yang, J.H.; Gong, X.G.; Walsh, A.; Wei, S.H. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Phys. Rev. B 2010, 81, 245204. [Google Scholar] [CrossRef] [Green Version]
- Siebentritt, S.; Schorr, S. Kesterites-a challenging material for solar cells. Prog. Photovolt. Res. Appl. 2012, 20, 512–519. [Google Scholar] [CrossRef]
- Ananthoju, B.; Mohapatra, J.; Jangid, M.K.; Bahadur, D.; Medhekar, N.V.; Aslam, M. Cation/Anion Substitution in Cu2ZnSnS4 for Improved Photovoltaic Performance. Sci. Rep. 2016, 6, 35369. [Google Scholar] [CrossRef]
- Fontané, X.; Calvo-Barrio, L.; Izquierdo-Roca, V.; Saucedo, E.; Pérez-Rodríguez, A.; Morante, J.R.; Berg, D.M.; Dale, P.J.; Siebentritt, S. In-depth resolved Raman scattering analysis for the identification of secondary phases: Characterization of Cu2ZnSnS4 layers for solar cell applications. Appl. Phys. Lett. 2011, 98, 181905. [Google Scholar] [CrossRef]
- Rudisch, K.; Davydova, A.; Platzer-Björkman, C.; Scragg, J. The effect of stoichiometry on Cu-Zn ordering kinetics in Cu2ZnSnS4 thin films. J. Appl. Phys. 2018, 123, 161558. [Google Scholar] [CrossRef]
- Bekki, B.; Amara, K.; Keurti, M.E. First-principles study of the new potential photovoltaic absorber: Cu2MgSnS4 compound. Chin. Phys. B 2017, 26, 076201. [Google Scholar] [CrossRef]
- Wei, M.; Du, Q.; Wang, R.; Jiang, G.; Liu, W.; Zhu, C. Synthesis of New Earth-abundant Kesterite Cu2MgSnS4 Nanoparticles by Hot-injection Method. Chem. Lett. 2014, 43, 1149–1151. [Google Scholar] [CrossRef]
- Huang, C.; Chan, Y.; Liu, F.; Tang, D.; Yang, J.; Lai, Y.; Li, J.; Liu, Y. Synthesis and characterization of multicomponent Cu2(FexZn1−x)SnS4 nanocrystals with tunable band gap and structure. J. Mater. Chem. A 2013, 1, 5402–5407. [Google Scholar] [CrossRef]
- Oueslati, H.; Rabeh, M.B.; Martin, J.; Kanzari, M. Structural, morphological and optical properties of Cu2ZnxFe1−xSnS4 thin films grown by thermal evaporation. Thin Solid Film. 2019, 669, 633–640. [Google Scholar] [CrossRef]
- Agawane, G.; Vanalakar, S.; Kamble, A.; Moholkar, A.; Kim, J. Fabrication of Cu2(ZnxMg1−x)SnS4 thin films by pulsed laser deposition technique for solar cell applications. Mater. Sci. Semicond. Process. 2018, 76, 50–54. [Google Scholar] [CrossRef]
- Azanza Ricardo, C.L.; Girardi, F.; Cappelletto, E.; D’Angelo, R.; Ciancio, R.; Carlino, E.; Ricci, P.C.; Malerba, C.; Mittiga, A.; Di Maggio, R.; et al. Chloride-based route for monodisperse Cu2ZnSnS4 nanoparticles preparation. J. Renew. Sustain. Energy 2015, 7, 043150. [Google Scholar] [CrossRef]
- Xu, Y.; Xiao, X. Accelerated microwave synthesis of magnesium sulfide with the pro-heating medium of graphite. J. Mater. Res. 1995, 10, 334–338. [Google Scholar] [CrossRef]
- Li, M.; Zhou, W.H.; Guo, J.; Zhou, Y.L.; Hou, Z.L.; Jiao, J.; Zhou, Z.J.; Du, Z.L.; Wu, S.X. Synthesis of Pure Metastable Wurtzite CZTS Nanocrystals by Facile One-Pot Method. J. Phys. Chem. C 2012, 116, 26507–26516. [Google Scholar] [CrossRef]
- Khadka, D.B.; Kim, J. Structural Transition and Band Gap Tuning of Cu2(Zn,Fe)SnS4 Chalcogenide for Photovoltaic Application. J. Phys. Chem. C 2014, 118, 14227–14237. [Google Scholar] [CrossRef]
- Khadka, D.B.; Kim, J. Band Gap Engineering of Alloyed Cu2ZnGexSn1−xQ4 (Q = S,Se) Films for Solar Cell. J. Phys. Chem. C 2015, 119, 1706–1713. [Google Scholar] [CrossRef]
- Malerba, C.; Biccari, F.; Azanza Ricardo, C.; Valentini, M.; Chierchia, R.; Müller, M.; Santoni, A.; Esposito, E.; Mangiapane, P.; Scardi, P.; et al. CZTS stoichiometry effects on the band gap energy. J. Alloy. Compd. 2014, 582, 528–534. [Google Scholar] [CrossRef]
- Singh, O.P.; Vijayan, N.; Sood, K.; Singh, B.; Singh, V. Controlled substitution of S by Se in reactively sputtered CZTSSe thin films for solar cells. J. Alloy. Compd. 2015, 648, 595–600. [Google Scholar] [CrossRef]
EDX (At%) | Expected Ratios | EDX/Cu = 2 | Cation Ratios | |||||||||||||||
ID | Cu | Zn | Mg | Sn | S | Total | Zn | Mg | Zn | Zn | Mg | Mg | Sn | Sn | S | S | ||
KA1 | 25.14 | 9.22 | 0 | 15.24 | 50.40 | 100 | 1 | 0 | 0.73 | 0.16 | 0 | 0 | 1.21 | 0.20 | 4.01 | 0.74 | 1.03 | 0.61 |
KA2 | 20.95 | 9.03 | 7.67 | 12.14 | 50.20 | 100 | 0.75 | 0.5 | 0.86 | 0.10 | 0.73 | 0.18 | 1.16 | 0.14 | 4.79 | 0.68 | 0.73 | 1.38 |
KA3 | 18.62 | 6.03 | 11.09 | 12.20 | 52.06 | 100 | 0.50 | 1 | 0.65 | 0.08 | 1.19 | 0.27 | 1.31 | 0.16 | 5.59 | 0.44 | 0.64 | 1.40 |
KA4 | 25.77 | 3.74 | 10.23 | 13.92 | 46.35 | 100 | 0.25 | 1.5 | 0.29 | 0.04 | 0.79 | 0.18 | 1.08 | 0.13 | 3.60 | 0.50 | 0.92 | 1.00 |
KA5 | 20.82 | 0 | 28.62 | 11.61 | 38.95 | 100 | 0 | 2 | 0 | 0 | 2.75 | 0.58 | 1.12 | 0.14 | 3.74 | 0.55 | 0.52 | 2.47 |
EDX (At%) | Expected Ratios | EDX/Cu = 2 | Cation Ratios | |||||||||||||||
ID | Cu | Zn | Mg | Sn | S | Total | Zn | Mg | Zn | Zn | Mg | Mg | Sn | Sn | S | S | ||
KB1 | 29.47 | 6.76 | 0 | 14.81 | 48.96 | 100 | 1 | 0 | 0.46 | 0.02 | 0 | 0 | 1.00 | 0.04 | 3.32 | 0.16 | 1.37 | 0.46 |
KB2 | 25.91 | 5.59 | 3.24 | 13.95 | 51.30 | 100 | 0.75 | 0.25 | 0.43 | 0.02 | 0.25 | 0.03 | 1.08 | 0.05 | 3.96 | 0.19 | 1.14 | 0.63 |
KB3 | 26.86 | 5.97 | 5.91 | 14.27 | 47.00 | 100 | 0.50 | 0.5 | 0.44 | 0.02 | 0.44 | 0.04 | 1.06 | 0.05 | 3.50 | 0.17 | 1.03 | 0.83 |
KB4 | 25.98 | 1.50 | 7.26 | 15.04 | 50.21 | 100 | 0.25 | 0.75 | 0.12 | 0.01 | 0.56 | 0.05 | 1.16 | 0.05 | 3.87 | 0.19 | 1.09 | 0.58 |
KB5 | 28.94 | 0 | 7.80 | 15.22 | 48.04 | 100 | 0 | 1 | 0 | 0 | 0.54 | 0.04 | 1.05 | 0.05 | 3.32 | 0.16 | 1.26 | 0.51 |
KA Series Size (nm) | KB Series Size (nm) | ||||||||
---|---|---|---|---|---|---|---|---|---|
ID | DLS | DLS | XRD | XRD | ID | DLS | DLS | XRD | XRD |
KA1 | 223.4 | - | 12.9 | 0.2 | KB1 | 272.5 | - | 38.9 | 0.4 |
KA2 | 193.3 | - | 10.0 | 0.1 | KB2 | 264.8 | - | 33.2 | 0.3 |
KA3 | 27.1 | 208.6 | 9.4 | 0.1 | KB3 | 50.7 | 198.2 | 25.9 | 0.2 |
KA4 | 60.5 | 161.2 | 9.4 | 0.1 | KB4 | 33.0 | 334.9 | 28.4 | 0.2 |
KA5 | 58.7 | 187.6 | 5.6 | 0.1 | KB5 | 51.0 | 123.9 | 12.1 | 0.1 |
Sample | (eV) | Sample | (eV) |
---|---|---|---|
KA1 | 1.24 | KB1 | 1.42 |
KA2 | 1.88 | KB2 | 1.07 |
KA3 | 1.96 | KB3 | 1.50 |
KA4 | 2.49 | KB4 | 1.60 |
KA5 | 2.56 | KB5 | 1.96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mena Romero, D.M.; Victoria Valenzuela, D.; Azanza Ricardo, C.L. Partial and Total Substitution of Zn by Mg in the Cu2ZnSnS4 Structure. Crystals 2020, 10, 578. https://doi.org/10.3390/cryst10070578
Mena Romero DM, Victoria Valenzuela D, Azanza Ricardo CL. Partial and Total Substitution of Zn by Mg in the Cu2ZnSnS4 Structure. Crystals. 2020; 10(7):578. https://doi.org/10.3390/cryst10070578
Chicago/Turabian StyleMena Romero, Diana M., David Victoria Valenzuela, and Cristy L. Azanza Ricardo. 2020. "Partial and Total Substitution of Zn by Mg in the Cu2ZnSnS4 Structure" Crystals 10, no. 7: 578. https://doi.org/10.3390/cryst10070578
APA StyleMena Romero, D. M., Victoria Valenzuela, D., & Azanza Ricardo, C. L. (2020). Partial and Total Substitution of Zn by Mg in the Cu2ZnSnS4 Structure. Crystals, 10(7), 578. https://doi.org/10.3390/cryst10070578