Raman Spectra of Diphenylalanine Microtubes: Polarisation and Temperature Effects
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Lattice Vibrations
3.2. Vibrations of Functional Groups
3.2.1. The Mid-Wavenumber Region
3.2.2. Phenyl Rings Vibrations
3.2.3. The High-Wavenumber Region
3.3. The Irreversible Phase Transition
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
FWHM | full width at half maximum |
FF | diphenylalanine |
Appendix A
Geom. | (LO) | (TO) | (LO) | (TO) | A(LO) | A(TO) | ||
---|---|---|---|---|---|---|---|---|
−X(YY)X | x | x | x | |||||
−X(YZ)X | x | x | ||||||
−X(ZZ)X | x | |||||||
−Y(XX)Y | x | x | x | |||||
−Y(XZ)Y | x | x | ||||||
−Y(ZZ)Y | x | |||||||
−Z(XX)Z | x | x | x | |||||
−Z(XY)Z | x | x | ||||||
−Z(YY)Z | x | x | x |
Geom. | (LO + TO) | (TO) | (LO + TO) | (TO) | A(LO + TO) | A(TO) | ||
---|---|---|---|---|---|---|---|---|
X(YY)Z | x | x | x | |||||
X(YZ)Y | x | x | ||||||
X(ZZ)Y | x | |||||||
Y(XX)Z | x | x | x | |||||
Y(XY)X | x | x | ||||||
Y(XY)Z | x | x | x | |||||
Y(XZ)X | x | x | ||||||
Z(XY)X | x | x | ||||||
Z(XZ)X | x | x | ||||||
Z(XZ)Y | x | x | ||||||
Z(YZ)X | x | x | ||||||
Z(YZ)Y | x | x |
References
- Adler-Abramovicha, L.; Ehud Gazit, E. The physical properties of supramolecular peptide assemblies: From building block association to technological applications. Chem. Soc. Rev. 2014, 43, 6881–6893. [Google Scholar] [CrossRef] [Green Version]
- Adler-Abramovich, L.; Aronov, D.; Beker, P.; Yevnin, M.; Stempler, S.; Buzhansky, L.; Rosenman, G.; Gazit, E. Self-assembled arrays of peptide nanotubes by vapour deposition. Nat. Nanotechnol. 2009, 4, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Kholkin, A.; Amdursky, N.; Bdikin, I.; Gazit, E.; Rosenman, G. Strong Piezoelectricity in Bioinspired Peptide Nanotubes. ACS Nano 2010, 4, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Esin, A.; Baturin, I.; Nikitin, A.; Vasilev, T.; Salehli, F.; Shur, V.; Kholkin, A. Pyroelectric effect and polarization instability in self-assembled diphenylalanine microtubes. Appl. Phys. Lett. 2016, 109, 142902. [Google Scholar] [CrossRef]
- Da Silva Filho, J.G.; Mendes Filho, J.; Melo, F.E.A.; Lima, J.A.; Freire, P.T.C. Raman spectroscopy of l,l-diphenylalanine crystal under high pressure. Vib. Spectrosc. 2017, 92, 173–181. [Google Scholar] [CrossRef]
- Krylov, A.; Krylova, S.; Kopyl, S.; Kholkin, A. Non-hydrostatic pressure-induced phase transitions in self-assembled diphenylalanine microtubes. Tech. Phys. 2018, 63, 1311–1315. [Google Scholar] [CrossRef]
- Bosne, E.D.; Heredia, A.; Kopyl, S.; Karpinsky, D.V.; Pinto, A.G.; Kholkin, A.L. Piezoelectric resonators based on self-assembled diphenylalanine microtubes. Appl. Phys. Lett. 2013, 102, 073504. [Google Scholar] [CrossRef]
- Nuraeva, A.; Vasilev, S.; Vasileva, D.; Zelenovskiy, P.; Chezganov, D.; Esin, A.; Kopyl, S.; Romanyuk, K.; Shur, V.; Kholkin, A. Evaporation-Driven Crystallization of Diphenylalanine Microtubes for Microelectronic Applications. Cryst. Growth Des. 2016, 16, 1472–1479. [Google Scholar] [CrossRef]
- Ryan, K.; Beirne, J.; Redmond, G.; Kilpatrick, J.I.; Guyonnet, J.; Buchete, N.-V.; Kholkin, A.L.; Rodriguez, B.J. Nanoscale Piezoelectric Properties of Self-Assembled Fmoc–FF Peptide Fibrous Networks. ACS Appl. Mater. Interfaces 2015, 7, 12702–12707. [Google Scholar] [CrossRef]
- Vasilev, S.; Zelenovskiy, P.; Vasileva, D.; Nuraeva, A.; Shur, V.Y.; Kholkin, A.L. Piezoelectric properties of diphenylalanine microtubes prepared from the solution. J. Phys. Chem. Solids 2016, 93, 68–72. [Google Scholar] [CrossRef]
- Heredia, A.; Bdikin, I.; Kopyl, S.; Mishina, E.; Semin, S.; Sigov, A.; German, K.; Bystrov, V.; Gracio, J.; Kholkin, A.L. Temperature-driven phase transformation in self-assembled diphenylalanine peptide nanotubes. J. Phys. D Appl. Phys. 2010, 43, 462001. [Google Scholar] [CrossRef] [Green Version]
- Nuansing, W.; Rebollo, A.; Mercero, J.M.; Zuñigac, J.; Bittner, A.M. Vibrational spectroscopy of self-assembling aromatic peptide derivates. J. Raman Spectr. 2012, 43, 1397–1406. [Google Scholar] [CrossRef]
- Moshkina, E.; Krylova, S.; Gudim, I.; Molokeev, M.; Temerov, V.; Pavlovskiy, M.S.; Vtyurin, A.; Krylov, A. Gallium Composition-Dependent Structural Phase Transitions in HoFe3-xGax(BO3)4 Solid Solutions: Crystal Growth, Structure, and Raman Spectroscopy Study. Cryst. Growth Des. 2020, 20, 1058–1069. [Google Scholar] [CrossRef]
- Lerbret, A.; Affouard, F.; Bordat, P.; Hédoux, A.; Guinet, Y.; Descamps, M. Low-frequency vibrational properties of lysozyme in sugar aqueous solutions: A Raman scattering and molecular dynamics simulation study. J. Chem. Phys. 2009, 131, 245103. [Google Scholar] [CrossRef] [PubMed]
- Krylov, A.; Vtyurin, A.; Petkov, P.; Senkovska, I.; Maliuta, M.; Bon, V.; Heine, T.; Kaskel, S.; Slyusareva, E. Raman spectroscopy studies of the terahertz vibrational modes of a DUT-8 (Ni) metal–organic framework. Phys. Chem. Chem. Phys. 2017, 19, 32099–32104. [Google Scholar] [CrossRef] [Green Version]
- Ehrling, S.; Senkovska, I.; Bon, V.; Evans, J.D.; Petkov, P.; Krupskaya, Y.; Kataev, V.; Wulf, T.; Krylov, A.; Vtyurin, A.; et al. Crystal size versus paddle wheel deformability: Selective gated adsorption transitions of the switchable metal-organic frameworks DUT-8(Co) and DUT-8(Ni). J. Mater. Chem. A 2019, 7, 21459–21475. [Google Scholar] [CrossRef] [Green Version]
- Zelenovskiy, P.S.; Nuraeva, A.S.; Kopyl, S.; Arkhipov, S.G.; Vasilev, S.G.; Bystrov, V.S.; Gruzdev, D.A.; Waliczek, M.; Svitlyk, V.; Shur, V.Y.; et al. Chirality-Dependent Growth of Self-Assembled Diphenylalanine Microtubes. Cryst. Growth Des. 2019, 19, 6414–6421. [Google Scholar] [CrossRef]
- Krylov, A.S.; Kolesnikova, E.M.; Isaenko, L.I.; Krylova, S.N.; Vtyurin, A.N. Measurement of Raman-Scattering Spectra of Rb2KMoO3F3 Crystal: Evidence for Controllable Disorder in the Lattice Structure. Cryst. Growth Des. 2014, 14, 923–927. [Google Scholar] [CrossRef]
- Gorbitz, C.H. Nanotube Formation by Hydrophobic Dipeptides. Chem. Eur. J. 2001, 7, 5153–5159. [Google Scholar] [CrossRef]
- Rousseau, D.L.; Bauman, R.P.; Porto, S.P.S. Normal mode determination in crystals. J. Raman Spectr. 1981, 10, 253–290. [Google Scholar] [CrossRef]
- Heino, S. Vibrational analysis of l-alanine and deuterated analogs. J. Mol. Struct. B 1980, 63, 1–11. [Google Scholar]
- Wu, X.; Xiong, S.; Wang, M.; Shen, J.; Chu, P.K. Low-frequency Raman scattering of bioinspired self-assembled diphenylalanine nanotubes/microtubes. Opt. Express 2012, 20, 5119–5126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolesov, B.A.; Boldyreva, E.V. Micro-conformational transitions in L-alanine single crystals revisited by low wavenumber Raman spectroscopy. J. Raman Spectr. 2011, 42, 696–705. [Google Scholar] [CrossRef]
- Ferreira, P.M.G.L.; Ishikawa, M.S.; Kogikoski, S., Jr.; Alves, W.A.; Martinho, H. Relaxation dynamics of deeply supercooled confined water in L,L-diphenylalanine micro/nanotubes. Phys. Chem. Chem. Phys. 2016, 18, 29681–29685. [Google Scholar] [CrossRef] [Green Version]
- Hernández, B.; Pflüger, F.; Kruglik, S.G.; Ghomi, M. Characteristic Raman lines of phenylalanine analyzed by a multiconformational approach. J. Raman Spectr. 2013, 44, 827–833. [Google Scholar] [CrossRef]
- Lekprasert, B.; Korolkov, V.; Falamas, A.; Chis, V.; Roberts, C.J.; Tendler, S.J.B.; Notinghe, I. Investigations of the Supramolecular Structure of Individual Diphenylalanine Nano- and Microtubes by Polarized Raman Microspectroscopy. Biomacromolecules 2012, 13, 2181–2186. [Google Scholar] [CrossRef]
- Ravikumar, B.; Rajaram, R.K.; Ramakrishnan, V. Raman and IR spectral studies of L-phenylalanine L-phenylalaninium dihydrogenphosphate and DL-phenylalaninium dihydrogenphosphate. J. Raman Spectr. 2006, 37, 597–605. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Rajaram, R.K.; Ramakrishnan, V. Raman and IR spectral studies of D-phenylglycinium perchlorate. J. Raman Spectr. 2002, 33, 589–698. [Google Scholar] [CrossRef]
- Zelenovskiy, P.; Kornev, I.; Vasilev, S.; Kholkin, A. On the origin of the great rigidity of self-assembled diphenylalanine nanotubes. Phys. Chem. Chem. Phys. 2015, 17, 32126–32131. [Google Scholar] [CrossRef] [Green Version]
- Zelenovskiy, P.S.; Davydov, A.O.; Krylov, A.S.; Kholkin, A.L. Raman study of structural transformations in self-assembled diphenylalanine nanotubes at elevated temperatures. J. Raman Spectrosc. 2017, 48, 1401–1405. [Google Scholar] [CrossRef]
- Sereda, V.; Ralbovsky, N.M.; Vasudev, M.C.; Naik, R.R.; Lednev, I.K. Polarized Raman spectroscopy for determining the orientation of di-d-phenylalanine molecules in a nanotube. J. Raman Spectrosc. 2016, 47, 1056–1062. [Google Scholar] [CrossRef] [PubMed]
- Lekprasert, B.; Sedman, V.; Roberts, C.J.; Tedler, S.J.B.; Notingher, I. Nondestructive Raman and atomic force microscopy measurement of molecular structure for individual diphenylalanine nanotubes. Opt. Lett. 2010, 35, 4193–4195. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xiong, S.; Wang, M.; Shen, J.; Chu, P.K. Water-Sensitive High-Frequency Molecular Vibrations in Self-Assembled Diphenylalanine Nanotubes. J. Phys. Chem. C 2012, 116, 9793–9799. [Google Scholar] [CrossRef]
- Amdursky, N.; Beker, P.; Koren, I.; Bank-Srour, B.; Mishina, E.; Semin, S.; Rasing, T.; Rosenberg, Y.; Barkay, Z.; Gazit, E.; et al. Structural Transition in Peptide Nanotubes. Biomacromolecules 2011, 12, 1349–1354. [Google Scholar] [CrossRef] [PubMed]
- Ziganshin, M.A.; Gerasimov, A.V.; Ziganshina, S.A.; Gubina, N.S.; Abdullina, G.R.; Klimovitskii, A.E.; Gorbatchuk, V.V.; Bukharaev, A.A. Thermally induced diphenylalanine cyclization in solid phase. J. Therm. Anal. Calorim. 2016, 125, 905–912. [Google Scholar] [CrossRef]
- Andrade-Filho, T.; Martins, T.C.; Ferreira, F.F.; Alves, W.A.; Rocha, A.R. Water-driven stabilization of diphenylalanine nanotube structures. Theor. Chem. Acc. 2016, 135, 185. [Google Scholar] [CrossRef] [Green Version]
- Kolesov, B.A. How the vibrational frequency varies with temperature. J. Raman Spectrosc. 2017, 48, 323–326. [Google Scholar] [CrossRef]
- Kolesov, B.A. Experimental determination of vibrational anharmonic contributions. J. Raman Spectrosc. 2013, 44, 1786–1788. [Google Scholar] [CrossRef]
- Debernardi, A. Anharmonic effects in the phonons of III–V semiconductors: First principles calculations. Sol. State Com. 2000, 113, 1–10. [Google Scholar] [CrossRef]
- Lucazeau, G. Effect of pressure and temperature on Raman spectra of solids: Anharmonicity. J. Raman Spectrosc. 2003, 34, 478–496. [Google Scholar] [CrossRef]
- Klemens, P.G. Anharmonic decay of optical phonons. Phys. Rev. 1966, 148, 845–848. [Google Scholar] [CrossRef]
- Balkanski, M.; Wallis, R.F.; Haro, E. Anharmonic effects in light scattering due to optical phonons in silicon. Phys. Rev. B 1978, 28, 1928–1934. [Google Scholar] [CrossRef]
- Menendez, J.; Cardona, M. Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and a-Sn: Anharmonic effects. Phys. Rev. B 1984, 29, 2051–2059. [Google Scholar] [CrossRef]
Region | Line Position, cm | Assignment to Functional Groups | |
---|---|---|---|
This Work | i [21,22,23,24], ii [25,26], iii [27,28] | ||
17 | lattice mode | ||
26 | lattice mode | ||
33 | 33 | lattice mode | |
35 | lattice mode | ||
39 | 41 | skeletal torsion+asymmetric twisting HO | |
45 | lattice mode | ||
57 | 54 | C out of plane + CHCH stretching | |
60 | lattice mode | ||
64 | 65 | C out of plane + CHCH stretching | |
72 | lattice mode | ||
78 | 82 | lattice mode | |
i | 86 | lattice mode | |
89 | lattice mode | ||
105 | 104 | Phe-Phe twisting | |
110 | 107 | lattice mode | |
115 | |||
121 | lattice mode | ||
127 | 130 | lattice mode | |
136 | lattice mode | ||
164 | lattice mode | ||
170 | 171 | H−C, amine, H wagging | |
195 | lattice mode | ||
224 | lattice mode | ||
230 | lattice mode | ||
298 | 295 | C−H torsional motion | |
348 | 348 | C−H torsional motion | |
496 | 496 | N−H torsional motion | |
621 | 622 | O−C=O deformation, phenyl group | |
1002 | 1001 | phenyl ring breathing mode (C-C) | |
1032 | 1032 | vibrations of the phenyl group | |
1038 | 1038 | vibrations of the phenyl group (C-H) | |
1189 | 1190 | vibrations of the phenyl group | |
1206 | 1208 | vibrations of the phenyl group (mainly C-C) | |
ii | 1249 | 1249 | amide III (mainly C−N) stretching) |
1282 | 1327 | CH rock, (C−C−H) | |
1353 | 1360 | (N−C−H), (C−C−H), CH rock, CH twist | |
1394 | 1413 | CH bend | |
1425 | 1446 | CH bond deformation | |
1584 | 1586 | vibrations of the phenyl group (C-C) | |
1604 | 1606 | vibrations of the phenyl group (C-C), C=O vibrations | |
1687 | 1686 | amide I | |
2920 | 2912 | CH symmetric stretching | |
2938 | 2933 | C-H symmetric stretching | |
2966 | 2967 | CH asymmetric stretching | |
2985 | 2979 | C-H stretching | |
iii | 3004 | C-H stretching | |
3037 | C-H stretching | ||
3044 | NH symmetric stretching | ||
3055 | C-H stretching | ||
3069 | 3068 | NH asymmetric stretching | |
3262 | O−H stretching, crystalline water region |
Symm. Type | ZZ | YZ | YY |
---|---|---|---|
A | 16.9 | ||
24 | |||
A | 25.4 | ||
33 | |||
34 | |||
A | 42.7 | ||
43 | |||
44 | |||
A | 56.5 | ||
57 | |||
58 | |||
63 | |||
76 | |||
76.8 | |||
85 | |||
A | 103 | ||
108 | |||
109 | |||
120 | |||
A | 121 | ||
131 | |||
165 | |||
168 | |||
A | 188 | ||
219 | |||
A | 227 | ||
A | 235 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krylov, A.; Krylova, S.; Kopyl, S.; Krylov, A.; Salehli, F.; Zelenovskiy, P.; Vtyurin, A.; Kholkin, A. Raman Spectra of Diphenylalanine Microtubes: Polarisation and Temperature Effects. Crystals 2020, 10, 224. https://doi.org/10.3390/cryst10030224
Krylov A, Krylova S, Kopyl S, Krylov A, Salehli F, Zelenovskiy P, Vtyurin A, Kholkin A. Raman Spectra of Diphenylalanine Microtubes: Polarisation and Temperature Effects. Crystals. 2020; 10(3):224. https://doi.org/10.3390/cryst10030224
Chicago/Turabian StyleKrylov, Alexander, Svetlana Krylova, Svitlana Kopyl, Aleksandr Krylov, Ferid Salehli, Pavel Zelenovskiy, Alexander Vtyurin, and Andrei Kholkin. 2020. "Raman Spectra of Diphenylalanine Microtubes: Polarisation and Temperature Effects" Crystals 10, no. 3: 224. https://doi.org/10.3390/cryst10030224
APA StyleKrylov, A., Krylova, S., Kopyl, S., Krylov, A., Salehli, F., Zelenovskiy, P., Vtyurin, A., & Kholkin, A. (2020). Raman Spectra of Diphenylalanine Microtubes: Polarisation and Temperature Effects. Crystals, 10(3), 224. https://doi.org/10.3390/cryst10030224