1.3 μm p-Modulation Doped InGaAs/GaAs Quantum Dot Lasers with High Speed Direct Modulation Rate and Strong Optical Feedback Resistance
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. P–I–V Curves
3.2. Small-Signal Modulation Responses
3.3. Eye Diagrams
3.4. Relative Intensity Noise Spectra
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lenstra, D.; Van Schaijk, T.T.M.; Williams, K.A. Toward a feedback-insensitive semiconductor laser. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1502113. [Google Scholar]
- Kobayashi, W.; Ito, T.; Yamanaka, T.; Fujisawa, T.; Shibata, Y.; Kurosaki, T.; Kohtoku, M.; Tadokoro, T.; Sanjoh, H. 50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1500908. [Google Scholar] [CrossRef]
- Matsui, T.; Pham, T.; Sudo, T.; Carey, G.; Young, B.; Xu, J.; Cole, C.; Roxlo, C. 28-G baud PAM4 and 56-Gb/s NRZ performance comparison using 1310-nm Al-BH DFB Laser. Lightwave Technol. 2016, 34, 2677. [Google Scholar]
- Petermann, K. External optical feedback phenomena in semiconductor lasers. IEEE J. Sel. Top. Quantum Electon. 1995, 1, 480. [Google Scholar]
- O’Brien, D.; Hegarty, S.P.; Huyet, G.; McInerney, J.G.; Kettler, T.; Laemmlin, M.; Bimberg, D.; Ustinov, V.M.; Zhukov, A.E.; Mikhrin, S.S.; et al. Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers. Electron. Lett. 2003, 39, 1819. [Google Scholar]
- Huang, H.; Arsenijević, D.; Schires, K.; Sadeev, T.; Bimberg, D.; Grillot, F. Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states. AIP Adv. 2016, 6, 125114. [Google Scholar]
- Zubov, F.; Maximov, M.; Moiseev, E.; Savelyev, A.; Shernyakov, Y.; Livshits, D.; Kryzhanovskaya, N.; Zhukov, A. Observation of zero linewidth enhancement factor at excited state band in quantum dot laser. Electron. Lett. 2015, 51, 1686. [Google Scholar] [CrossRef]
- Mizutani, K.; Yashiki, K.; Kurihara, M.; Suzuki, Y.; Hagihara, Y.; Hatori, N.; Shimizu, T.; Urino, Y.; Nakamura, T.; Kurata, K.; et al. Isolator free optical I/O core transmitter by using quantum dot laser. In Proceedings of the IEEE 12th International Conference on Group IV Photonics, Vancouver, BC, Canada, 26–28 August 2015; Volume 3, p. 177. [Google Scholar]
- Deppe, D.G.; Shavritranuruk, K.; Ozgur, G.; Chen, H.; Freisem, S. Quantum dot laser diode with low threshold and low internal loss. Electron. Lett. 2009, 45, 54. [Google Scholar] [CrossRef]
- Dieter, B.; Udo, W.P. Quantum dots: Promises and accomplishments. Mater. Today 2011, 14, 388. [Google Scholar]
- Lv, Z.R.; Ji, H.M.; Yang, X.G.; Luo, S.; Gao, F.; Xu, F.; Yang, T. Large signal modulation characteristics in the transition regime for two-state lasing quantum dot lasers. Chin. Phys. Lett. 2016, 33, 124204. [Google Scholar] [CrossRef]
- Arakawa, Y.; Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 1982, 40, 939. [Google Scholar] [CrossRef]
- Asryan, L.V.; Suris, R.A. Upper limit for the modulation bandwidth of a quantum dot laser. Appl. Phys. Lett. 2010, 96, 221112. [Google Scholar] [CrossRef]
- Carroll, O.; Hegarty, S.P.; Huyet, G.; Corbett, B. Length dependence of feedback sensitivity of InAs/GaAs quantum dot lasers. Electron. Lett. 2005, 41, 911. [Google Scholar] [CrossRef]
- Park, K.H.; Lee, J.K.; Han, J.H.; Cho, H.S.; Jang, D.H.; Park, C.S.; Pyun, K.E. The effects of external optical feedback on the power penalty of DFB-LD modules for 2.5 Gb s−1 optical transmission systems. Opt. Quant. Electron. 1998, 30, 23. [Google Scholar] [CrossRef]
- Zhang, Z.K.; Lv, Z.R.; Yang, X.G.; Chai, H.Y.; Meng, L.; Yang, T. 25 Gb/s directly modulated ground-state operation of 1.3 μm InAs/GaAs quantum dot lasers up to 75 °C. Chin. Opt. Lett. 2020, 18, 071401. [Google Scholar] [CrossRef]
- Badcock, T.J.; Liu, H.Y.; Groom, K.M.; Jin, C.Y.; Gutiérrez, M.; Hopkinson, M.; Mowbray, D.J.; Skolnick, M.S. 1.3 µm InAs/GaAs quantum-dot laser with low-threshold current density and negative characteristic temperature above room temperature. Electron. Lett. 2006, 42, 922. [Google Scholar] [CrossRef]
- Ji, H.M.; Yang, T.; Cao, Y.L.; Ma, W.Q.; Cao, Q.; Chen, L.H. Theoretical analysis of modal gain in p-doped 1.3 μm InAs/GaAs quantum dot lasers. Phys. Status Solidi C 2009, 6, 948. [Google Scholar] [CrossRef]
- Deppe, D.G.; Huang, H.; Shchekin, O.B. Modulation characteristics of quantum-dot lasers: The influence of p-type doping and the electronic density of states on obtaining high speed. IEEE J. Quantum Electron. 2002, 38, 1587. [Google Scholar] [CrossRef]
- Inoue, D.; Jung, D.; Norman, J.; Wan, Y.; Nishiyama, N.; Arai, S.; Gossard, A.C.; Bowers, J.S. Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon. Opt. Express 2018, 26, 7022–7033. [Google Scholar] [CrossRef]
- Henry, C.H.; Olsson, N.A.; Dutta, N.K. Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor lasers. IEEE J. Quantum Electron. 1985, 21, 1152–1156. [Google Scholar] [CrossRef]
- Helms, J.; Petermann, K. A simple analytic expression for the stable operation of laser diodes with optical feedback. IEEE J. Quantum Electron. 1990, 26, 833–836. [Google Scholar] [CrossRef]
- Huang, H.; Duan, J.; Dong, B.; Norman, J.; Jung, D.; Bowers, J.E.; Grillot, F. Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback. APL Photon. 2020, 5, 016103. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
MaXueer, X.-Y.; He, Y.-M.; Lv, Z.-R.; Zhang, Z.-K.; Chai, H.-Y.; Lu, D.; Yang, X.-G.; Yang, T. 1.3 μm p-Modulation Doped InGaAs/GaAs Quantum Dot Lasers with High Speed Direct Modulation Rate and Strong Optical Feedback Resistance. Crystals 2020, 10, 980. https://doi.org/10.3390/cryst10110980
MaXueer X-Y, He Y-M, Lv Z-R, Zhang Z-K, Chai H-Y, Lu D, Yang X-G, Yang T. 1.3 μm p-Modulation Doped InGaAs/GaAs Quantum Dot Lasers with High Speed Direct Modulation Rate and Strong Optical Feedback Resistance. Crystals. 2020; 10(11):980. https://doi.org/10.3390/cryst10110980
Chicago/Turabian StyleMaXueer, Xia-Yida, Yi-Ming He, Zun-Ren Lv, Zhong-Kai Zhang, Hong-Yu Chai, Dan Lu, Xiao-Guang Yang, and Tao Yang. 2020. "1.3 μm p-Modulation Doped InGaAs/GaAs Quantum Dot Lasers with High Speed Direct Modulation Rate and Strong Optical Feedback Resistance" Crystals 10, no. 11: 980. https://doi.org/10.3390/cryst10110980
APA StyleMaXueer, X.-Y., He, Y.-M., Lv, Z.-R., Zhang, Z.-K., Chai, H.-Y., Lu, D., Yang, X.-G., & Yang, T. (2020). 1.3 μm p-Modulation Doped InGaAs/GaAs Quantum Dot Lasers with High Speed Direct Modulation Rate and Strong Optical Feedback Resistance. Crystals, 10(11), 980. https://doi.org/10.3390/cryst10110980