Broadband Multichannel Optical Vortex Generators via Patterned Double-Layer Reverse-Twist Liquid Crystal Polymer
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Principle
2.2. Sample Preparation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Coullet, P.; Gil, L.; Rocca, F. Optical vortices. Opt. Commun. 1989, 73, 403–408. [Google Scholar]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.; Woerdman, J.P. Orbital angular momentum of light and the transformation of laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [PubMed]
- Marrucci, L.; Manzo, C.; Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 2006, 96, 163905. [Google Scholar] [PubMed]
- Gecevicius, M.; Drevinskas, R.; Beresna, M.; Kazansky, P.G. Single beam optical vortex tweezers with tunable orbital angular momentum. Appl. Phys. Lett. 2014, 104, 288–299. [Google Scholar]
- D’Ambrosio, V.; Spagnolo, N.; Re, L.D.; Slussarenko, S.; Li, Y.; Kwek, L.C.; Sciarrino, F. Photonic polarization gears for ultra-sensitive angular measurements. Nat. Commun. 2013, 4, 2432. [Google Scholar]
- Cardano, F.; Massa, F.; Qassim, H.; Karimi, E.; Slussarenko, S.; Paparo, D.; Marrucci, L. Quantum walks and wavepacket dynamics on a lattice with twisted photons. Sci. Adv. 2015, 1, e1500087. [Google Scholar]
- Kumar, A.; Prabhakar, S.; Vaity, P.; Singh, R.P. Information content of optical vortex fields. Opt. Lett. 2011, 36, 1161–1163. [Google Scholar]
- Wang, Z.; Zhang, N.; Yuan, X.C. High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication. Opt. Express 2011, 19, 482–492. [Google Scholar]
- Tamburini, F.; Mari, E.; Sponselli, A.; Thid, B.; Bianchini, A.; Romanato, F. Encoding many channels on the same frequency through radio vorticity: First experimental test. New J. Phys. 2012, 14, 033001. [Google Scholar]
- Awaji, Y.; Wada, N.; Toda, Y. Demonstration of spatial mode division multiplexing using Laguerre-Gaussian mode beam in telecom-wavelength. In Proceedings of the 2010 IEEE Photonics Society’s 23rd Annual Meeting, Denver, CO, USA, 7–11 November 2010. [Google Scholar]
- Gibson, G.; Courtial, J.; Padgett, M.J.; Vasnetsov, M.; Franke-Arnold, S. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 2004, 12, 5448–5456. [Google Scholar]
- Chen, P.; Ge, S.J.; Duan, W.; Wei, B.Y.; Cui, G.X.; Hu, W.; Lu, Y.Q. Digitalized Geometric Phases for Parallel Optical Spin and Orbital Angular Momentum Encoding. ACS Photonics 2017, 4, 1333–1338. [Google Scholar]
- Kobashi, J.; Yoshida, H.; Ozaki, M. Planar optics with patterned chiral liquid crystals. Nat. Photonics 2016, 10, 389–392. [Google Scholar]
- Rafayelyan, M.S.; Tkachenko, G.; Brasselet, E. Reflective Spin-Orbit Geometric Phase from Chiral Anisotropic Optical Media. Phys. Rev. Lett. 2016, 116, 253902. [Google Scholar] [PubMed]
- Kobashi, J.; Yoshida, H.; Ozaki, M. Polychromatic Optical Vortex Generation from Patterned Cholesteric Liquid Crystals. Phys. Rev. Lett. 2016, 116, 253903. [Google Scholar]
- Barboza, R.; Bortolozzo, U.; Clerc, M.G.; Residori, S. Berry Phase of Light under Bragg Reflection by Chiral Liquid-Crystal Media. Phys. Rev. Lett. 2016, 117, 053903. [Google Scholar]
- Chen, P.; Ma, L.L.; Duan, W.; Chen, J.; Ge, S.J.; Zhu, Z.H.; Lu, Y.Q. Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing. Adv. Mater. 2018, 30, 1705865. [Google Scholar]
- Dammann, H.; Klotz, E. Coherent Optical Generation and Inspection of Two-dimensional Periodic Structures. J. Mod. Opt. 1977, 24, 505–515. [Google Scholar]
- Fan, F.; Yao, L.; Wang, X.; Shi, L.; Srivastava, A.K.; Chigrinov, V.G.; Kwok, H.-S.; Wen, S. Ferroelectric Liquid Crystal Dammann Grating by Patterned Photoalignment. Crystals 2017, 7, 79. [Google Scholar]
- Zhou, C.; Liu, L. Numerical study of Dammann array illuminators. Appl. Opt. 1995, 34, 5961–5969. [Google Scholar]
- Yu, J.; Zhou, C.; Jia, W.; Hu, A.; Cao, W.; Wu, J.; Wang, S. Three-dimensional Dammann vortex array with tunable topological charge. Appl. Opt. 2012, 51, 2485–2490. [Google Scholar]
- Chen, P.; Wei, B.Y.; Hu, W.; Lu, Y.Q. Liquid-Crystal-Mediated Geometric Phase: From Transmissive to natBroadband Reflective Planar Optics. Adv. Mater. 2019, 1903665. [Google Scholar] [CrossRef]
- Samoylov, A.V.; Samoylov, V.S.; Vidmachenko, A.P.; Perekhod, A.V. Achromatic and super-achromatic zero-order waveplates. J. Quant. Spectrosc. Radiat. Transf. 2004, 88, 319–325. [Google Scholar]
- Komanduri, R.K.; Lawler, K.F.; Escuti, M.J. Multi-twist retarders: Broadband retardation control using self-aligning reactive liquid crystal layers. Opt. Express 2013, 21, 404–420. [Google Scholar] [PubMed]
- Tang, S.T.; Kwok, H.S. Mueller calculus and perfect polarization conversion modes in liquid crystal displays. J. Appl. Phys. 2001, 89, 5288–5294. [Google Scholar]
- Chigrinov, V.G.; Pikin, S.A.; Verevochnikov, A.M.; Kozenkov, V.M.; Khazimullin, M.V.; Ho, J.Y.; Kwok, H.S. Diffusion model of photoaligning in azo-dye layers. Phys. Rev. E 2004, 69, 061713. [Google Scholar]
- Chigrinov, V.G.; Prudnikova, E.; Kozenkov, V.M.; Kwok, H.S.; Akiyama, H.; Kawara, T.; Takatsu, H. Synthesis and properties of azo dye aligning layers for liquid crystal cells. Liq. Cryst. 2002, 29, 1321–1327. [Google Scholar]
- Wu, H.; Hu, W.; Hu, H.C.; Lin, X.W.; Zhu, G.; Choi, J.W. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system. Opt. Express 2012, 20, 16684–16689. [Google Scholar]
- Duan, W.; Chen, P.; Ge, S.J.; Liang, X.; Hu, W. A Fast-Response and Helicity-Dependent Lens Enabled by Micro-Patterned Dual-Frequency Liquid Crystals. Crystals 2019, 9, 111. [Google Scholar]
- White, T.J.; Broer, D.J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14, 1087–1098. [Google Scholar]
- Yao, A.M.; Padgett, M.J. Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photonics 2011, 3, 161–204. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Duan, W.; Wei, T.; Xu, C.; Hu, W. Broadband Multichannel Optical Vortex Generators via Patterned Double-Layer Reverse-Twist Liquid Crystal Polymer. Crystals 2020, 10, 882. https://doi.org/10.3390/cryst10100882
Zhang H, Duan W, Wei T, Xu C, Hu W. Broadband Multichannel Optical Vortex Generators via Patterned Double-Layer Reverse-Twist Liquid Crystal Polymer. Crystals. 2020; 10(10):882. https://doi.org/10.3390/cryst10100882
Chicago/Turabian StyleZhang, Hanqing, Wei Duan, Ting Wei, Chunting Xu, and Wei Hu. 2020. "Broadband Multichannel Optical Vortex Generators via Patterned Double-Layer Reverse-Twist Liquid Crystal Polymer" Crystals 10, no. 10: 882. https://doi.org/10.3390/cryst10100882
APA StyleZhang, H., Duan, W., Wei, T., Xu, C., & Hu, W. (2020). Broadband Multichannel Optical Vortex Generators via Patterned Double-Layer Reverse-Twist Liquid Crystal Polymer. Crystals, 10(10), 882. https://doi.org/10.3390/cryst10100882