Hydrosoluble Complexes Bearing Tris(pyrazolyl)methane Sulfonate Ligand: Synthesis, Characterization and Catalytic Activity for Henry Reaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Complexes
2.2. Description of the X-ray Crystal Structure
2.3. Catalytic Activity
3. Materials and Methods
3.1. General Procedures and Instrumentation
3.2. Synthesis of Complexes
3.2.1. Synthesis of [Cu(Tpms)2] (1)
3.2.2. Synthesis of [Mn(Tpms)2] (2)
3.3. General Procedure for β-Nitro Alcohols Synthesis
3.4. X-ray Structure Determination of Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Trofimenko, S. Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands; Imperial College Press: London, UK, 1999; ISBN 978-1-86094-172-6. [Google Scholar]
- Bigmore, H.R.; Lawrence, S.C.; Mountford, P.; Tredget, C.S. Coordination, organometallic and related chemistry of tris(pyrazolyl)methane ligands. Dalton Trans. 2005, 635–651. [Google Scholar] [CrossRef]
- Pettinari, C.; Pettinari, R. Metal derivatives of poly(pyrazolyl)alkanes: I. Tris(pyrazolyl)alkanes and related systems. Coord. Chem. Rev. 2005, 249, 525–543. [Google Scholar] [CrossRef]
- Breakell, K.R.; Patmore, D.J.; Storr, A. Synthesis of pyrazolyl-borate, -aluminate, -gallate, and -indate ligands, and their chelating properties towards cobalt(II), nickel(II), copper(II), and zinc(II). J. Chem. Soc. Dalton Trans. 1975, 749–754. [Google Scholar] [CrossRef]
- Pullen, E.E.; Rheingold, A.L.; Rabinovich, D. Methyltris(pyrazolyl)silanes: New tripodal nitrogen-donor ligands. Inorg. Chem. Commun. 1999, 2, 194–196. [Google Scholar] [CrossRef]
- Steiner, A.; Stalke, D. Poly(pyrazolyl)germanium(II) and -Tin(II) Derivatives-Tuneable Monoanionic Ligands and Dinuclear Cationic Cages. Inorg. Chem. 1995, 34, 4846–4853. [Google Scholar] [CrossRef]
- Hückel, W.; Bretschneider, H. N-Tripyrazolyl-methan. Chem. Ber. 1937, 9, 2024–2026. [Google Scholar] [CrossRef]
- Reger, D.L. Tris(Pyrazolyl)Methane Ligands: The Neutral Analogs of Tris(Pyrazolyl)Borate Ligands. Comments Inorg. Chem. 1999, 21, 1–28. [Google Scholar] [CrossRef]
- Reger, D.L.; Grattan, T.C.; Brown, K.J.; Little, C.A.; Lamba, J.J.S.; Rheingold, A.L.; Sommer, R.D. Syntheses of tris(pyrazolyl)methane ligands and {[tris(pyrazolyl)methane]Mn(CO)3}SO3CF3 complexes: Comparison of ligand donor properties. J. Organomet. Chem. 2000, 607, 120–128. [Google Scholar] [CrossRef]
- Reger, D.L.; Grattan, T.C. Synthesis of Modified Tris(pyrazolyl)methane Ligands: Backbone Functionalization. Synthesis 2003, 2003, 350–356. [Google Scholar] [CrossRef]
- Martins, L.M.D.R.S.; Pombeiro, A.J.L. Water-Soluble C-Scorpionate Complexes-Catalytic and Biological Applications. Eur. J. Inorg. Chem. 2016, 2016, 2236–2252. [Google Scholar] [CrossRef]
- Martins, L.M.D.R.S.; Pombeiro, A.J.L. C-scorpionate rhenium complexes and their application as catalysts in Baeyer-Villiger oxidation of ketones. Inorg. Chim. Acta 2017, 455, 390–397. [Google Scholar] [CrossRef]
- Martins, L.M.D.R.S.; Pombeiro, A.J.L. Tris(pyrazol-1-yl)methane metal complexes for catalytic mild oxidative functionalizations of alkanes, alkenes and ketones. Coord. Chem. Rev. 2014, 265, 74–88. [Google Scholar] [CrossRef]
- Martins, L.M.D.R.S. C-scorpionate complexes: Ever young catalytic tools. Coord. Chem. Rev. 2019, 396, 89–102. [Google Scholar] [CrossRef]
- Santos, A.M.; Kühn, F.E.; Bruus-Jensen, K.; Lucas, I.; Romão, C.C.; Herdtweck, E. Molybdenum(VI) cis-dioxo complexes bearing (poly)pyrazolyl-methane and -borate ligands: Syntheses, characterization and catalytic applications. J. Chem. Soc. Dalton Trans. 2001, 1332–1337. [Google Scholar] [CrossRef]
- McLauchlan, C.C.; Weberski, M.P.; Greiner, B.A. Synthesis, catalytic activity, phosphatase inhibition activity, and X-ray structural characterization of vanadium scorpionate complexes, (Tpms)VCl2(DMF) and (Tpms)VOCl(DMF). Inorg. Chim. Acta 2009, 362, 2662–2666. [Google Scholar] [CrossRef]
- Duarte, T.A.G.; Carvalho, A.P.; Martins, L.M.D.R.S. Ultra-fast and selective oxidation of styrene to benzaldehyde catalyzed by a C-scorpionate Cu(ii) complex. Catal. Sci. Technol. 2018, 8, 2285–2288. [Google Scholar] [CrossRef]
- Duarte, T.A.G.; Carvalho, A.P.; Martins, L.M.D.R.S. Styrene oxidation catalyzed by copper(II) C-scorpionates in homogenous medium and immobilized on sucrose derived hydrochars. Catal. Today 2019. [Google Scholar] [CrossRef]
- Kläui, W.; Schramm, D.; Schramm, G. Tripodal oxygen and tripodal nitrogen ligands in hydroformylation reactions: Formation of novel rhodium(III) carbonyl bis(acyl) complexes. Inorg. Chim. Acta 2004, 357, 1642–1648. [Google Scholar] [CrossRef]
- Nagaraja, C.M.; Nethaji, M.; Jagirdar, B.R. Tris(pyrazolyl)methane Sulfonate Complexes of Iridium: Catalytic Hydrogenation of 3,3-Dimethyl-1-butene. Organometallics 2007, 26, 6307–6311. [Google Scholar] [CrossRef]
- Ribeiro, A.P.C.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. Carbon dioxide-to-methanol single-pot conversion using a C-scorpionate iron(ii) catalyst. Green Chem. 2017, 19, 4811–4815. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Iida, T.; Yamagishi, T. Syntheses of mixed-ligand ruthenium(II) complexes with a terpyridine or a tris (pyrazolyl) methane and a bidentate ligand: Their application for catalytic hydroxylation of alkanes. Inorg. Chem. Commun. 1998, 1, 299–301. [Google Scholar] [CrossRef]
- Kläui, W.; Schramm, D.; Peters, W. Photoinduced C− H Activation and Catalytic Carbonylation of Benzene—New Features of a Tris (pyrazolyl) methanesulfonato (Tpms) Rhodium (I) Complex. Eur. J. Inorg. Chem. 2001, 3113–3117. [Google Scholar] [CrossRef]
- Bigmore, H.R.; Zuideveld, M.A.; Kowalczyk, R.M.; Cowley, A.R.; Kranenburg, M.; McInnes, E.J.L.; Mountford, P. Synthesis, Structures, and Olefin Polymerization Capability of Vanadium(4+) Imido Compounds with fac-N3 Donor Ligands. Inorg. Chem. 2006, 45, 6411–6423. [Google Scholar] [CrossRef]
- Bigmore, H.R.; Dubberley, S.R.; Kranenburg, M.; Lawrence, S.C.; Sealey, A.J.; Selby, J.D.; Zuideveld, M.A.; Cowley, A.R.; Mountford, P. A remarkable inversion of structure–activity dependence on imido N-substituents with varying co-ligand topology and the synthesis of a new borate-free zwitterionic polymerisation catalyst. Chem. Commun. 2006, 436–438. [Google Scholar] [CrossRef]
- García-Orozco, I.; Quijada, R.; Vera, K.; Valderrama, M. Tris(pyrazolyl)methane–chromium(III) complexes as highly active catalysts for ethylene polymerization. J. Mol. Catal. A Chem. 2006, 260, 70–76. [Google Scholar] [CrossRef]
- Liang, S.; Jensen, M.P. Half-Sandwich Scorpionates as Nitrene Transfer Catalysts. Organometallics 2012, 31, 8055–8058. [Google Scholar] [CrossRef]
- Rocha, B.G.M.; Mac Leod, T.C.O.; Guedes da Silva, M.F.C.; Luzyanin, K.V.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. Ni II, Cu II and Zn II complexes with a sterically hindered scorpionate ligand (Tpms Ph) and catalytic application in the diasteroselective nitroaldol (Henry) reaction. Dalton Trans. 2014, 43, 15192–15200. [Google Scholar] [CrossRef]
- Mahmoud, A.G.; Martins, L.M.D.R.S.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Copper complexes bearing C-scorpionate ligands: Synthesis, characterization and catalytic activity for azide-alkyne cycloaddition in aqueous medium. Inorg. Chim. Acta 2018, 483, 371–378. [Google Scholar] [CrossRef]
- Matias, I.A.S.; Ribeiro, A.P.C.; Martins, L.M.D.R.S. New C-scorpionate nickel(II) catalyst for Heck C–C coupling under unconventional conditions. J. Organomet. Chem. 2019, 896, 32–37. [Google Scholar] [CrossRef]
- Martins, L.; Wanke, R.; Silva, T.; Pombeiro, A.; Servin, P.; Laurent, R.; Caminade, A.-M.; Martins, L.M.D.R.S.; Wanke, R.; Silva, T.F.S.; et al. Novel Methinic Functionalized and Dendritic C-Scorpionates. Molecules 2018, 23, 3066. [Google Scholar] [CrossRef]
- Kläui, W.; Berghahn, M.; Rheinwald, G.; Lang, H. Tris(pyrazolyl)methanesulfonates: A Novel Class of Water-Soluble Ligands. Angew. Chem. Int. Ed. 2000, 39, 2464–2466. [Google Scholar] [CrossRef]
- Silva, T.F.S.; Alegria, E.C.B.A.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. Half-Sandwich Scorpionate Vanadium, Iron and Copper Complexes: Synthesis and Application in the Catalytic Peroxidative Oxidation of Cyclohexane under Mild Conditions. Adv. Synth. Catal. 2008, 350, 706–716. [Google Scholar] [CrossRef]
- Silva, T.F.S.; Luzyanin, K.V.; Kirillova, M.V.; da Silva, M.F.G.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. Novel Scorpionate and Pyrazole Dioxovanadium Complexes, Catalysts for Carboxylation and Peroxidative Oxidation of Alkanes. Adv. Synth. Catal. 2010, 352, 171–187. [Google Scholar] [CrossRef]
- Martins, L.M.D.R.S.; Alegria, E.C.B.A.; Smoleński, P.; Kuznetsov, M.L.; Pombeiro, A.J.L. Oxorhenium Complexes Bearing the Water-Soluble Tris(pyrazol-1-yl)methanesulfonate, 1,3,5-Triaza-7-phosphaadamantane, or Related Ligands, as Catalysts for Baeyer–Villiger Oxidation of Ketones. Inorg. Chem. 2013, 52, 4534–4546. [Google Scholar] [CrossRef]
- Henry, L. Nitro-alcohols. C. R. Hebd. Seances Acad. Sci. 1895, 120, 1265. [Google Scholar]
- Rosini, G. The Henry (nitroaldol) reaction. In Comprehensive Organic Synthesis; Trost, B.M., Fleming, I., Heathcock, C.H., Eds.; Elsevier ltd.: Oxford, UK, 1991; pp. 321–340. [Google Scholar]
- Luzzio, F.A. The Henry reaction: Recent examples. Tetrahedron 2001, 57, 915–945. [Google Scholar] [CrossRef]
- Palomo, C.; Oiarbide, M.; Laso, A. Recent Advances in the Catalytic Asymmetric Nitroaldol (Henry) Reaction. Eur. J. Org. Chem. 2007, 2007, 2561–2574. [Google Scholar] [CrossRef]
- Rosini, G.; Ballini, R.; Petrini, M.; Marotta, E.; Righi, P. RECENT PROGRESS IN THE SYNTHESIS AND REACTIVITY OF NITROKETONES. A REVIEW. Org. Prep. Proced. Int. 1990, 22, 707–746. [Google Scholar] [CrossRef]
- Colvin, E.W.; Beck, A.K.; Seebach, D. Improved Nitroaldol Reactions and Reductive Routes to Vicinal Aminoalcohols. Helv. Chim. Acta 1981, 64, 2264–2271. [Google Scholar] [CrossRef]
- Buckley, G.D.; Scaife, C.W. Aliphatic nitro-compounds. Part I. Preparation of nitro-olefins by dehydration of 2-nitro-alcohols. J. Chem. Soc. 1947, 1471–1472. [Google Scholar] [CrossRef]
- Sutradhar, M.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. A new cyclic binuclear Ni(II) complex as a catalyst towards nitroaldol (Henry) reaction. Catal. Commun. 2014, 57, 103–106. [Google Scholar] [CrossRef]
- Karmakar, A.; Hazra, S.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Synthesis, structure and catalytic applications of amidoterephthalate copper complexes in the diastereoselective Henry reaction in aqueous medium. New J. Chem. 2014, 38, 4837–4846. [Google Scholar] [CrossRef]
- Ribeiro, A.P.C.; Karabach, Y.Y.; Martins, L.M.D.R.S.; Mahmoud, A.G.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Nickel((ii))-2-amino-4-alkoxy-1,3,5-triazapentadienate complexes as catalysts for Heck and Henry reactions. RSC Adv. 2016, 6, 29159–29163. [Google Scholar] [CrossRef]
- Martins, N.M.R.; Mahmudov, K.T.; da Silva, M.F.C.G.; Martins, L.M.D.R.S.; Guseinov, F.I.; Pombeiro, A.J.L. 1D Zn(II) coordination polymer of arylhydrazone of 5,5-dimethylcyclohexane-1,3-dione as a pre-catalyst for the Henry reaction. Catal. Commun. 2016, 87, 49–52. [Google Scholar] [CrossRef]
- Tiago, G.A.O.; Mahmudov, K.T.; Guedes da Silva, M.F.C.; Ribeiro, A.P.C.; Huseynov, F.E.; Branco, L.C.; Pombeiro, A.J.L. Copper(II) coordination polymers of arylhydrazone of 1H-indene-1,3(2H)-dione linked by 4,4′-bipyridineor hexamethylenetetramine: Evaluation of catalytic activity in Henry reaction. Polyhedron 2017, 133, 33–39. [Google Scholar] [CrossRef]
- Kopylovich, M.N.; Mizar, A.; Guedes da Silva, M.F.C.; Mac Leod, T.C.O.; Mahmudov, K.T.; Pombeiro, A.J.L. Template Syntheses of Copper(II) Complexes from Arylhydrazones of Malononitrile and their Catalytic Activity towards Alcohol Oxidations and the Nitroaldol Reaction: Hydrogen Bond-Assisted Ligand Liberation and E/Z Isomerisation. Chem. A Eur. J. 2013, 19, 588–600. [Google Scholar] [CrossRef]
- Gurbanov, A.V.; Huseynov, F.E.; Mahmoudi, G.; Maharramov, A.M.; Guedes da Silva, F.C.; Mahmudov, K.T.; Pombeiro, A.J.L. Mononuclear nickel(II) complexes with arylhydrazones of acetoacetanilide and their catalytic activity in nitroaldol reaction. Inorg. Chim. Acta 2018, 469, 197–201. [Google Scholar] [CrossRef]
- Sutradhar, M.; Alegria, E.C.B.A.; Roy Barman, T.; Guedes da Silva, M.F.C.; Mahmudov, K.T.; Guseynov, F.I.; Pombeiro, A.J.L. New copper(II) tetramer with arylhydrazone of barbituric acid and its catalytic activity in the oxidation of cyclic C5–C8 alkanes. Polyhedron 2016, 117, 666–671. [Google Scholar] [CrossRef]
- Ma, Z.; Gurbanov, A.V.; Maharramov, A.M.; Guseinov, F.I.; Kopylovich, M.N.; Zubkov, F.I.; Mahmudov, K.T.; Pombeiro, A.J.L. Copper(II) arylhydrazone complexes as catalysts for CH activation in the Henry reaction in water. J. Mol. Catal. A Chem. 2017, 426, 526–533. [Google Scholar] [CrossRef]
- Sutradhar, M.; Roy Barman, T.; Pombeiro, A.J.L.; Martins, L.M.D.R.S.; Sutradhar, M.; Roy Barman, T.; Pombeiro, A.J.L.; Martins, L.M.D.R.S. Ni(II)-Aroylhydrazone Complexes as Catalyst Precursors Towards Efficient Solvent-Free Nitroaldol Condensation Reaction. Catalysts 2019, 9, 554. [Google Scholar] [CrossRef]
- Mahmoud, A.G.; Guedes da Silva, M.F.C.; Śliwa, E.I.; Smoleński, P.; Kuznetsov, M.L.; Pombeiro, A.J.L. Copper(II) and Sodium(I) Complexes based on 3,7-Diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane-5-oxide: Synthesis, Characterization, and Catalytic Activity. Chem. Asian J. 2018, 13, 2868–2880. [Google Scholar] [CrossRef]
- Trost, B.M.; Yeh, V.S.C.; Ito, H.; Bremeyer, N. Effect of Ligand Structure on the Zinc-Catalyzed Henry Reaction. Asymmetric Syntheses of (−)-Denopamine and (−)-Arbutamine. Org. Lett. 2002, 4, 2621–2623. [Google Scholar]
- Evans, D.A.; Seidel, D.; Rueping, M.; Lam, H.W.; Shaw, J.T.; Downey, C.W. A New Copper Acetate-Bis(oxazoline)-Catalyzed, Enantioselective Henry Reaction. J. Am. Chem. Soc. 2003, 125, 12692–12693. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.-F.; Du, D.-M.; Zhang, S.-W.; Xu, J. Facile synthesis of C2-symmetric tridentate bis(thiazoline) and bis(oxazoline) ligands and their application in the enantioselective Henry reaction. Tetrahedron Asymmetry 2004, 15, 3433–3441. [Google Scholar] [CrossRef]
- Blay, G.; Domingo, L.R.; Hernández-Olmos, V.; Pedro, J.R. New Highly Asymmetric Henry Reaction Catalyzed by CuII and a C1-Symmetric Aminopyridine Ligand, and Its Application to the Synthesis of Miconazole. Chem. A Eur. J. 2008, 14, 4725–4730. [Google Scholar] [CrossRef]
- Qiong Ji, Y.; Qi, G.; Judeh, Z.M.A. Catalytic anti-selective asymmetric Henry (nitroaldol) reaction catalyzed by Cu(I)–amine–imine complexes. Tetrahedron Asymmetry 2011, 22, 2065–2070. [Google Scholar] [CrossRef]
- Subba Reddy, B.V.; George, J. Enantioselective Henry reaction catalyzed by a copper(II) glucoBOX complex. Tetrahedron Asymmetry 2011, 22, 1169–1175. [Google Scholar] [CrossRef]
- Paul, A.; Karmakar, A.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Amide functionalized metal–organic frameworks for diastereoselective nitroaldol (Henry) reaction in aqueous medium. RSC Adv. 2015, 5, 87400–87410. [Google Scholar] [CrossRef]
- Karmakar, A.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Zinc metal–organic frameworks: Efficient catalysts for the diastereoselective Henry reaction and transesterification. Dalton Trans. 2014, 43, 7795–7810. [Google Scholar] [CrossRef]
- Karmakar, A.; Hazra, S.; Guedes da Silva, M.F.C.; Paul, A.; Pombeiro, A.J.L. Nanoporous lanthanide metal–organic frameworks as efficient heterogeneous catalysts for the Henry reaction. CrystEngComm 2016, 18, 1337–1349. [Google Scholar] [CrossRef]
- Christensen, C.; Juhl, K.; Hazell, R.G.; Jørgensen, K.A. Copper-Catalyzed Enantioselective Henry Reactions of α-Keto Esters: An Easy Entry to Optically Active β-Nitro-α-hydroxy Esters and β-Amino-α-hydroxy Esters. J. Org. Chem. 2002, 67, 4875–4881. [Google Scholar] [CrossRef]
- Du, D.-M.; Lu, S.-F.; Fang, T.; Xu, J. Asymmetric Henry Reaction Catalyzed by C2-Symmetric Tridentate Bis(oxazoline) and Bis(thiazoline) Complexes: Metal-Controlled Reversal of Enantioselectivity. J. Org. Chem. 2005, 70, 3712–3715. [Google Scholar] [CrossRef]
- Santini, C.; Pellei, M.; Lobbia, G.G.; Cingolani, A.; Spagna, R.; Camalli, M. Unprecedented phosphino copper(I) derivatives of tris(pyrazolyl)methanesulfonate ligand co-ordinated to metal in an unusual κ3-N,N′,O fashion. Inorg. Chem. Commun. 2002, 5, 430–433. [Google Scholar] [CrossRef]
- Wanke, R.; Smoleński, P.; Guedes da Silva, M.F.C.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. Cu(I) Complexes Bearing the New Sterically Demanding and Coordination Flexible Tris(3-phenyl-1-pyrazolyl)methanesulfonate Ligand and the Water-Soluble Phosphine 1,3,5-Triaza-7-phosphaadamantane or Related Ligands. Inorg. Chem. 2008, 47, 10158–10168. [Google Scholar] [CrossRef]
- Silva, T.F.S.; Rocha, B.G.M.; Guedes Da Silva, M.F.C.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. V(iv), Fe(ii), Ni(ii) and Cu(ii) complexes bearing 2,2,2-tris(pyrazol-1-yl)ethyl methanesulfonate: Application as catalysts for the cyclooctane oxidation. New J. Chem. 2016, 40, 528–537. [Google Scholar] [CrossRef]
- Jahn, H.A.; Teller, E. Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy. Proc. R. Soc. A 1937, 161, 220–235. [Google Scholar]
- Bersuker, I.B. Modern Aspects of the Jahn−Teller Effect Theory and Applications To Molecular Problems. Chem. Rev. 2001, 101, 1067–1114. [Google Scholar] [CrossRef]
- Murphy, B.; Hathaway, B. The stereochemistry of the copper(II) ion in the solid-state—some recent perspectives linking the Jahn–Teller effect, vibronic coupling, structure correlation analysis, structural pathways and comparative X-ray crystallography. Coord. Chem. Rev. 2003, 243, 237–262. [Google Scholar] [CrossRef]
- Boruwa, J.; Gogoi, N.; Saikia, P.P.; Barua, N.C. Catalytic asymmetric Henry reaction. Tetrahedron Asymmetry 2006, 17, 3315–3326. [Google Scholar] [CrossRef]
- Qi, N.; Liao, R.-Z.; Yu, J.-G.; Liu, R.-Z. DFT study of the asymmetric nitroaldol (Henry) reaction catalyzed by a dinuclear Zn complex. J. Comput. Chem. 2009, 31, 1376–1384. [Google Scholar] [CrossRef]
- Liu, S.; Wolf, C. Asymmetric Nitroaldol Reaction Catalyzed by a C2-Symmetric Bisoxazolidine Ligand. Org. Lett. 2008, 10, 1831–1834. [Google Scholar] [CrossRef]
- Pettinari, C.; Marchetti, F.; Cerquetella, A.; Pettinari, R.; Monari, M.; Mac Leod, T.C.O.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. Coordination Chemistry of the (η6-p-Cymene)ruthenium(II) Fragment with Bis-, Tris-, and Tetrakis(pyrazol-1-yl)borate Ligands: Synthesis, Structural, Electrochemical, and Catalytic Diastereoselective Nitroaldol Reaction Studies. Organometallics 2011, 30, 1616–1626. [Google Scholar] [CrossRef]
- Shixaliyev, N.Q.; Maharramov, A.M.; Gurbanov, A.V.; Nenajdenko, V.G.; Muzalevskiy, V.M.; Mahmudov, K.T.; Kopylovich, M.N. Zinc(II)-1,3,5-triazapentadienate complex as effective catalyst in Henry reaction. Catal. Today 2013, 217, 76–79. [Google Scholar] [CrossRef]
- Karmakar, A.; Martins, L.M.D.R.S.; Hazra, S.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Metal–Organic Frameworks with Pyridyl-Based Isophthalic Acid and Their Catalytic Applications in Microwave Assisted Peroxidative Oxidation of Alcohols and Henry Reaction. Cryst. Growth Des. 2016, 16, 1837–1849. [Google Scholar] [CrossRef]
- Mahmudov, K.T.; Kopylovich, M.N.; Haukka, M.; Mahmudova, G.S.; Esmaeila, E.F.; Chyragov, F.M.; Pombeiro, A.J.L. Aqua complex of iron(III) and 5-chloro-3-(2-(4,4-dimethyl-2,6-dioxocyclohexylidene)hydrazinyl)-2-hydroxybenzenesulfonate: Structure and catalytic activity in Henry reaction. J. Mol. Struct. 2013, 1048, 108–112. [Google Scholar] [CrossRef]
- Mahmudov, K.T.; Guedes da Silva, M.F.C.; Sutradhar, M.; Kopylovich, M.N.; Huseynov, F.E.; Shamilov, N.T.; Voronina, A.A.; Buslaeva, T.M.; Pombeiro, A.J.L. Lanthanide derivatives comprising arylhydrazones of β-diketones: Cooperative E/Z isomerization and catalytic activity in nitroaldol reaction. Dalton Trans. 2015, 44, 5602–5610. [Google Scholar] [CrossRef]
- Ma, Z.; Sutradhar, M.; Gurbanov, A.V.; Maharramov, A.M.; Aliyeva, R.A.; Aliyeva, F.S.; Bahmanova, F.N.; Mardanova, V.I.; Chyragov, F.M.; Mahmudov, K.T. CoII, NiII and UO2II complexes with β-diketones and their arylhydrazone derivatives: Synthesis, structure and catalytic activity in Henry reaction. Polyhedron 2015, 101, 14–22. [Google Scholar] [CrossRef]
- Kopylovich, M.N.; Mac Leod, T.C.O.; Mahmudov, K.T.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Zinc(ii) ortho-hydroxyphenylhydrazo-β-diketonate complexes and their catalytic ability towards diastereoselective nitroaldol (Henry) reaction. Dalton Trans. 2011, 40, 5352–5361. [Google Scholar] [CrossRef]
- Cwik, A.; Fuchs, A.; Hell, Z.; Clacens, J.-M. Nitroaldol-reaction of aldehydes in the presence of non-activated Mg:Al 2:1 hydrotalcite; a possible new mechanism for the formation of 2-aryl-1,3-dinitropropanes. Tetrahedron 2005, 61, 4015–4021. [Google Scholar] [CrossRef]
- Jammi, S.; Ali, M.A.; Sakthivel, S.; Rout, L.; Punniyamurthy, T. Synthesis, Structure, and Application of Self-Assembled Copper(II) Aqua Complex by H-Bonding for Acceleration of the Nitroaldol Reaction on Water. Chem. Asian J. 2009, 4, 314–320. [Google Scholar] [CrossRef]
- Reddy, K.R.; Rajasekhar, C.V.; Krishna, G.G. Zinc–Proline Complex: An Efficient, Reusable Catalyst for Direct Nitroaldol Reaction in Aqueous Media. Synth. Commun. 2007, 37, 1971–1976. [Google Scholar] [CrossRef]
- Denmark, S.E.; Kesler, B.S.; Moon, Y.C. Inter- and intramolecular [4 + 2] cycloadditions of nitroalkenes with olefins. 2-Nitrostyrenes. J. Org. Chem. 1992, 57, 4912–4924. [Google Scholar] [CrossRef]
- Bulbule, V.J.; Deshpande, V.H.; Velu, S.; Sudalai, A.; Sivasankar, S.; Sathe, V.T. Heterogeneous Henry reaction of aldehydes: Diastereoselective synthesis of nitroalcohol derivatives over Mg-Al hydrotalcites. Tetrahedron 1999, 55, 9325–9332. [Google Scholar] [CrossRef]
- Bruker. APEX2; SMART and SAINT; Bruker AXS Inc.: Madison, WI, USA, 2012. [Google Scholar]
- Bruker. SADABS; Program for Empirical Absorption Correction; Bruker AXS Inc.: Madison, WI, USA, 2001. [Google Scholar]
- Altomare, A.; Burla, M.C.; Camalli, M.; Cascarano, G.L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A.G.G.; Polidori, G.; Spagna, R. SIR 97: A new tool for crystal structure determination and refinement. J. Appl. Cryst. 1999, 32, 115–119. [Google Scholar] [CrossRef]
- Sheldrick, G.M. IUCr A short history of SHELX. Acta Cryst. Sect. A Found. Cryst. 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Cryst. 2012, 45, 849–854. [Google Scholar] [CrossRef]
Entry | Catalyst | Cat. load b (mol%) | Time (h) | Temp. (°C) | Solvent | Yield c (%) | TON d |
---|---|---|---|---|---|---|---|
1 | 1 | 5 | 24 | 75 | water | 56 | 11 |
2 | 2 | 5 | 24 | 75 | water | 27 | 5 |
3 | 3 | 5 | 24 | 75 | water | 41 | 8 |
4 | 1 | 5 | 6 | 75 | water | 27 | 5 |
5 | 1 | 5 | 8 | 75 | water | 33 | 7 |
6 | 1 | 5 | 12 | 75 | water | 40 | 8 |
7 | 1 | 5 | 36 | 75 | water | 68 | 14 |
8 | 1 | 5 | 48 | 75 | water | 77 | 15 |
9 | 1 | 5 | 72 | 75 | water | 76 | 15 |
10 | 1 | 5 | 24 | 60 | MeOH | 61 | 12 |
11 | 1 | 5 | 24 | 60 | EtOH | 23 | 5 |
12 | 1 | 5 | 24 | 60 | MeCN | 7 | 1 |
13 | 1 | 5 | 24 | 60 | CH2Cl2 | <5 | - |
14 | 1 | 5 | 24 | 60 | toluene | <5 | - |
15 | 1 | 5 | 24 | 60 | water | 49 | 10 |
16 | 1 | 5 | 24 | 60 | water + MeOH | 59 | 12 |
17 | 1 | 5 | 24 | 60 | water + EtOH | 47 | 9 |
18 | 1 | 5 | 24 | 60 | water + MeCN | 36 | 7 |
19 | 1 | 5 | 24 | 60 | water + CH2Cl2 | 28 | 6 |
20 | 1 | 5 | 24 | 60 | water + toluene | 31 | 6 |
21 | 1 | 5 | 48 | 23 | water/MeOH | 51 | 10 |
22 | 1 | 5 | 48 | 60 | water/MeOH | 78 | 16 |
23 | 1 | 5 | 48 | 100 | water/MeOH | 89 | 18 |
24 | 1 | 0.5 | 48 | 60 | water/MeOH | 14 | 28 |
25 | 1 | 1 | 48 | 60 | water/MeOH | 39 | 39 |
26 | 1 | 3 | 48 | 60 | water/MeOH | 51 | 17 |
27 e | 1 | 5 | 12 | 23 | water | >99 | 20 |
28 | CuSO4.5H2O | 5 | 24 | 75 | water | 12 | 2 |
29 | Cu(OAc)2.H2O | 5 | 24 | 75 | water | 38 | 8 |
30 | CuCl2.2H2O | 5 | 24 | 75 | water | 18 | 4 |
31 | Cu(NO3)2.2.5H2O | 5 | 24 | 75 | water | 26 | 5 |
32 | 1 | 5 | 24 | 60 | solvent free | - | - |
33 | - | - | 24 | 60 | water/MeOH | - | - |
34 | (C2H5)3N | 5 | 12 | 23 | water | 41 | 8 |
Entry | Time (h) | Temp. (°C) | Total yield b (%) | Selectivity c (syn:anti) | TON d |
---|---|---|---|---|---|
1 | 6 | 100 | 29 | 77:23 | 5.8 |
2 | 12 | 100 | 47 | 74:26 | 9.4 |
3 | 24 | 100 | 61 | 73:27 | 12.2 |
4 | 48 | 100 | 85 | 75:25 | 17.4 |
5 e | 24 | 23 | 96 | 51:49 | 19.2 |
Entry | X | R | Yield b (%) | Selectivity b (syn:anti) | TON c |
---|---|---|---|---|---|
1 | MeO | H | 53 | - | 11 |
2 | Me | 47 | 68:32 | 9 | |
3 | Me | H | 81 | - | 16 |
4 | Me | 74 | 72:28 | 15 | |
5 | H | H | 89 | - | 18 |
6 | Me | 85 | 74:26 | 17 | |
7 | NO2 | H | 94 | - | 19 |
8 | Me | 88 | 73:27 | 18 | |
9 | Br | H | 91 | - | 18 |
10 | Me | 86 | 70:30 | 17 | |
11 | Cl | H | 89 | - | 18 |
12 | Me | 86 | 71:29 | 17 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, A.G.; Martins, L.M.D.R.S.; Silva, M.F.C.G.d.; Pombeiro, A.J.L. Hydrosoluble Complexes Bearing Tris(pyrazolyl)methane Sulfonate Ligand: Synthesis, Characterization and Catalytic Activity for Henry Reaction. Catalysts 2019, 9, 611. https://doi.org/10.3390/catal9070611
Mahmoud AG, Martins LMDRS, Silva MFCGd, Pombeiro AJL. Hydrosoluble Complexes Bearing Tris(pyrazolyl)methane Sulfonate Ligand: Synthesis, Characterization and Catalytic Activity for Henry Reaction. Catalysts. 2019; 9(7):611. https://doi.org/10.3390/catal9070611
Chicago/Turabian StyleMahmoud, Abdallah G., Luísa M. D. R. S. Martins, M. Fátima C. Guedes da Silva, and Armando J. L. Pombeiro. 2019. "Hydrosoluble Complexes Bearing Tris(pyrazolyl)methane Sulfonate Ligand: Synthesis, Characterization and Catalytic Activity for Henry Reaction" Catalysts 9, no. 7: 611. https://doi.org/10.3390/catal9070611