Eco-Toxicological and Kinetic Evaluation of TiO2 and ZnO Nanophotocatalysts in Degradation of Organic Dye
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Catalyst Loading
2.2. Effect of Pre-Adsorption Time
2.3. Effect of pH
2.4. Kinetic Studies
2.5. Durability of the Catalyst Nanoparticles
2.6. Solubility of ZnO in Darkness and its Photocorrosion
2.7. Effect of Temperature
2.8. Evaluation of EC50 and Biodegradability Tendency
3. Materials and Methods
3.1. Chemicals
3.2. Reactor Setup and Photocatalytic Degradation Procedure
3.3. Eco-Toxicological Evaluations
3.4. Photocatalytic Oxidation Kinetics and Dark Surface Adsorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gomes, K.M.S.; de Oliveira, M.V.G.A.; de Sousa Carvalho, F.R.; Menezes, C.C.; Peron, A.P. Citotoxicity of food dyes sunset yellow (E-110), bordeaux red (E-123), and tatrazine yellow (E-102) on Allium cepa L. root meristematic cells. Food Sci. Technol. 2013, 33, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Arnold, L.E.; Lofthouse, N.; Hurt, E. Artificial food colors and attention-deficit/hyperactivity symptoms: Conclusions to dye for. Neurotherapeutics 2012, 9, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Martins, N.; Roriz, C.L.; Morales, P.; Barros, L.; Ferreira, I.C. Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends Food Sci. Technol. 2016, 52, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Amchova, P.; Kotolová, H.; Ruda-Kucerova, J. Health safety issues of synthetic food colorants. Regul. Toxicol. Pharmacol. 2015, 73, 914–922. [Google Scholar] [CrossRef]
- Gil, C. Toxicological Effects of Food Additives Azo Dyes, Dept. of Biomedical Sciences and Veterinary Public Health; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2014. [Google Scholar]
- Vuono, D.; Catizzone, E.; Aloise, A.; Policicchio, A.; Agostino, R.G.; Migliori, M.; Giordano, G. Modelling of adsorption of textile dyes over multi-walled carbon nanotubes: Equilibrium and kinetic. Chin. J. Chem. Eng. 2017, 25, 523–532. [Google Scholar] [CrossRef]
- Zare, K.; Gupta, V.K.; Moradi, O.; Makhlouf, A.S.H.; Sillanpää, M.; Nadagouda, M.N.; Sadegh, H.; Shahryari-Ghoshekandi, R.; Pal, A.; Wang, Z.-J.; et al. A comparative study on the basis of adsorption capacity between CNTs and activated carbon as adsorbents for removal of noxious synthetic dyes: A review. J. Nanostruct. Chem. 2015, 5, 227–236. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Z.; Liu, D.; Gao, Z. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. 2017, 12, 143. [Google Scholar] [CrossRef]
- Khaki, M.R.D.; Shafeeyan, M.S.; Raman, A.A.A.; Daud, W.M.A.W. Application of doped photocatalysts for organic pollutant degradation—A review. J. Environ. Manag. 2017, 198, 78–94. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 2016, 88, 428–448. [Google Scholar] [CrossRef]
- Reza, K.M.; Kurny, A.; Gulshan, F. Parameters affecting the photocatalytic degradation of dyes using TiO2: A review. Appl. Water Sci. 2017, 7, 1569–1578. [Google Scholar] [CrossRef]
- Jonstrup, M.; Punzi, M.; Mattiasson, B. Comparison of anaerobic pre-treatment and aerobic post-treatment coupled to photo-Fenton oxidation for degradation of azo dyes. J. Photochem. Photobiol. A Chem. 2011, 224, 55–61. [Google Scholar] [CrossRef]
- Butterworth, S.L. Granular Activated Carbon as a Toxicity Reduction Technology for Wastewater Treatment; Preprints of Papers; American Chemical Society, Division of Fuel Chemistry: New Orleans, LA, USA, 1996; Volume 41, pp. 466–471. [Google Scholar]
- Apostol, L.C.; Gavrilescu, M.; Smaranda, C.; Diaconu, M. Preliminary ecotoxicological evaluation of erythrosin b and its photocatalytic degradation products. Environ. Eng. Manag. J. 2015, 14, 465–471. [Google Scholar] [CrossRef]
- Demir, N.; Gündüz, G.; Dükkancı, M. Degradation of a textile dye, Rhodamine 6G (Rh6G), by heterogeneous sonophotoFenton process in the presence of Fe-containing TiO2 catalysts. Environ. Sci. Pollut. Res. 2015, 22, 3193–3201. [Google Scholar] [CrossRef]
- Gyekye, K.A. An Assessment of Toxic in Urban Soils Using Garden Cress (Lepidium sativum) in Vasileostrovsky Ostrov and Elagin Ostrov, Saint Petersburg, Russia. J. Geogr. Geol. 2013, 5, 63–70. [Google Scholar] [CrossRef]
- Daneshvar, N.; Salari, D.; Khataee, A.; Khataee, A. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. A Chem. 2004, 162, 317–322. [Google Scholar] [CrossRef]
- Kansal, S.; Singh, M.; Sud, D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J. Hazard. Mater. 2007, 141, 581–590. [Google Scholar] [CrossRef]
- Satuf, M.L.; Pierrestegui, M.J.; Rossini, L.; Brandi, R.J.; Alfano, O.M. Kinetic modeling of azo dyes photocatalytic degradation in aqueous TiO2 suspensions. Toxicity and biodegradability evaluation. Catal. Today 2011, 161, 121–126. [Google Scholar] [CrossRef]
- Souza, R.P.; Freitas, T.K.; Domingues, F.S.; Pezoti, O.; Ambrosio, E.; Ferrari-Lima, A.M.; Garcia, J.C. Photocatalytic activity of TiO2, ZnO and Nb2O5 applied to degradation of textile wastewater. J. Photochem. Photobiol. A Chem. 2016, 329, 9–17. [Google Scholar] [CrossRef]
- Khezrianjoo, S.; Revanasiddappa, H.D. Effect of operational parameters and kinetic study on the photocatalytic degradation of m-cresol purple using irradiated ZnO in aqueous medium. Water Qual. Res. J. 2015, 51, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Chebli, D.; Fourcade, F.; Brosillon, S.; Nacef, S.; Amrane, A. Supported photocatalysis as a pre-treatment prior to biological degradation for the removal of some dyes from aqueous solutions; Acid Red 183, Biebrich Scarlet, Methyl Red Sodium Salt, Orange II. J. Chem. Technol. Biotechnol. 2010, 85, 555–563. [Google Scholar] [CrossRef]
- Rauf, M.; Meetani, M.; Hisaindee, S.; Meetani, M. An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 2011, 276, 13–27. [Google Scholar] [CrossRef]
- Hisaindee, S.; Meetani, M.; Rauf, M.; Meetani, M. Application of LC-MS to the analysis of advanced oxidation process (AOP) degradation of dye products and reaction mechanisms. TrAC Trends Anal. Chem. 2013, 49, 31–44. [Google Scholar] [CrossRef]
- Hincapie, M.; Maldonado, M.I.; Oller, I.; Gernjak, W.; Sánchez-Pérez, J.; Ballesteros, M.; Malato, S. Solar photocatalytic degradation and detoxification of EU priority substances. Catal. Today 2005, 101, 203–210. [Google Scholar] [CrossRef]
- Arslan-Alaton, I. Degradation of a commercial textile biocide with advanced oxidation processes and ozone. J. Environ. Manag. 2007, 82, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi, N.M.; Arami, M. Degradation and toxicity reduction of textile wastewater using immobilized titania nanophotocatalysis. J. Photochem. Photobiol. B Boil. 2009, 94, 20–24. [Google Scholar] [CrossRef]
- YPang, L.; Abdullah, A.Z. Fe3+ doped TiO2 nanotubes for combined adsorption–sonocatalytic degradation of real textile wastewater. Appl. Catal. B Environ. 2013, 129, 473–481. [Google Scholar]
- Atitar, M.F.; Bouziani, A.; Dillert, R.; El Azzouzi, M.; Bahnemann, D.W. Photocatalytic degradation of the herbicide imazapyr: Do the initial degradation rates correlate with the adsorption kinetics and isotherms? Catal. Sci. Technol. 2018, 8, 985–995. [Google Scholar] [CrossRef]
- Arora, A.K.; Kumar, P.; Kumar, S. Synthesis of ZnO Nanoparticle and its Application in Catalytic Hydrolysis of p-Acetoxynitrobenzene. Int. J. Nanosci. 2017, 16, 1750005. [Google Scholar] [CrossRef]
- Muruganandham, M.; Swaminathan, M. Solar photocatalytic degradation of a reactive azo dye in TiO2-suspension. Sol. Energy Mater. Sol. Cells 2004, 81, 439–457. [Google Scholar] [CrossRef]
- Polat, I.; Bacaksız, E.; Sökmen, M.; Altın, I. ZnO and ZnS microrods coated on glass and photocatalytic activity. Appl. Surf. Sci. 2012, 258, 4861–4865. [Google Scholar]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saien, J.; Khezrianjoo, S. Degradation of the fungicide carbendazim in aqueous solutions with UV/TiO2 process: Optimization, kinetics and toxicity studies. J. Hazard. Mater. 2008, 157, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Shahrezaei, F.; Mansouri, Y.; Zinatizadeh, A.A.L.; Akhbari, A. Photocatalytic degradation of aniline using nanoparticles in a vertical circulating photocatalytic reactor. Int. J. Photoenergy 2012, 2012, 1–8. [Google Scholar] [CrossRef]
- Kusvuran, E.; Samil, A.; Atanur, O.M.; Erbatur, O. Photocatalytic degradation kinetics of di- and tri-substituted phenolic compounds in aqueous solution by TiO2/UV. Appl. Catal. B Environ. 2005, 58, 211–216. [Google Scholar] [CrossRef]
- Gora, A.; Toepfer, B.; Puddu, V.; Puma, G.L. Photocatalytic oxidation of herbicides in single-component and multicomponent systems: Reaction kinetics analysis. Appl. Catal. B Environ. 2006, 65, 1–10. [Google Scholar] [CrossRef]
- Guettaï, N.; Amar, H.A. Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part II: Kinetics study. Desalination 2005, 185, 439–448. [Google Scholar]
- Khezrianjoo, S.; Revanasiddappa, H.D. Langmuir-Hinshelwood kinetic expression for the photocatalytic degradation of metanil yellow aqueous solutions by ZnO catalyst. Chem. Sci. J. 2012, 2012, 1–7. [Google Scholar]
- Han, J.; Qiu, W.; Gao, W. Potential dissolution and photo-dissolution of ZnO thin films. J. Hazard. Mater. 2010, 178, 115–122. [Google Scholar] [CrossRef]
- Kumar, S.G.; Rao, K.S.R.K. Zinc oxide based photocatalysis: Tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 2015, 5, 3306–3351. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, H.; Zong, R.; Zhu, Y. Photocorrosion Suppression of ZnO Nanoparticles via Hybridization with Graphite-like Carbon and Enhanced Photocatalytic Activity. J. Phys. Chem. C 2009, 113, 2368–2374. [Google Scholar] [CrossRef]
- Alexander, B.; Browse, D.; Reading, S.; Benjamin, I.S. A simple and accurate mathematical method for calculation of the EC50. J. Pharmacol. Toxicol. Methods 1999, 41, 55–58. [Google Scholar] [CrossRef]
- Kusic, H.; Papic, S.; Peternel, I.; Krevzelj, Z.; Koprivanac, N. Advanced oxidation of an azo dye and its synthesis intermediates in aqueous solution: Effect of fenton treatment on mineralization, biodegradability and toxicity. Environ. Eng. Manag. J. 2014, 13, 2561–2571. [Google Scholar] [CrossRef]
- Saurav, J.R.; Gupta, A.; Bhattacharya, S. Solar light based degradation of organic pollutants using ZnO nanobrushes for water filtration. RSC Adv. 2015, 5, 71472–71481. [Google Scholar] [Green Version]
- Kim, S.P.; Choi, M.Y.; Choi, H.C. Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation. Mater. Res. Bull. 2016, 74, 85–89. [Google Scholar] [CrossRef]
- Khezrianjoo, S. Photodestruction of Direct Yellow 11 in aqueous TiO2 suspension: Effect of operational parameters on detoxification, Langmuir–Hinshelwood kinetic expression and biodegradability. Desalin. Water Treat. 2019, 153, 264–278. [Google Scholar] [CrossRef]
- Lencioni, G.; Imperiale, D.; Cavirani, N.; Marmiroli, N.; Marmiroli, M. Environmental application and phytotoxicity of anaerobic digestate from pig farming by in vitro and in vivo trials. Int. J. Environ. Sci. Technol. 2016, 13, 2549–2560. [Google Scholar] [CrossRef]
- Nastro, R.A.; Suglia, A.; Pasquale, V.; Toscanesi, M.; Trifuoggi, M.; Guida, M. Efficiency measures of polycyclic aromatic hydrocarbons bioremediation process through ecotoxicological tests. Int. J. Perform. Eng. 2014, 10, 411–418. [Google Scholar]
- Franklin, N.M.; Rogers, N.J.; Apte, S.C.; Batley, G.E.; Gadd, G.E.; Casey, P.S. Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO, and ZnCl2to a Freshwater Microalga (Pseudokirchneriella subcapitata): The Importance of Particle Solubility. Environ. Sci. Technol. 2007, 41, 8484–8490. [Google Scholar] [CrossRef]
- Ma, H.; Williams, P.L.; Diamond, S.A. Ecotoxicity of manufactured ZnO nanoparticles–A review. Environ. Pollut. 2013, 172, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Bridgewater, L.; Rice, E.W. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Water Works Association: Washington, DC, USA, 2012. [Google Scholar]
Irradiation Time (min) | GI% in pH of 5 for | GI% in pH of 8 for | (A/A0)% in pH of 5 for | (A/A0)% in pH of 8 for | |||||
---|---|---|---|---|---|---|---|---|---|
TiO2 | ZnO | TiO2 | ZnO | TiO2 | ZnO | TiO2 | ZnO | ||
1 | 60 | 36 | 20 | 29 | 38 | 68 | 89 | 80 | 71 |
2 | 120 | 57 | 32 | 42 | 60 | 37 | 77 | 51 | 50 |
3 | 180 | 74 | 21 | 59 | 76 | 21 | 65 | 37 | 28 |
4 | 240 | 95 | 22 | 73 | 97 | 5 | 54 | 19 | 6 |
5 | 300 | - | 24 | 92 | - | 0 | 42 | 10 | 0 |
kdtox (1/min) | 0.345 | - | 0.266 | 0.352 | - | - | - | - | |
Decolorization rate × 102 (1/min) | 1.46 | 0.73 | 1.97 | 1.56 | - | - | - | - | |
COD reduction rate × 103 (1/min) | 3.91 | 1.79 | 4.12 | 3.50 | - | - | - | - | |
Dark adsorption % after 60 min | 24.1 | 15.5 | 7.3 | 12.8 | - | - | - | - |
TiO2 | ZnO | ||||||||
---|---|---|---|---|---|---|---|---|---|
Initial pH | kc | KLH | Qmax | Kads | kc | KLH | Qmax | Kads | |
1 | 5 | 0.908 | 0.533 | 15.74 | 0.506 | - | - | 7.17 | 0.233 |
2 | 6.7 | 0.733 | 0.614 | 14.30 | 0.305 | 0.622 | 0.418 | 6.85 | 0.143 |
3 | 8 | 1.032 | 0.860 | 5.29 | 0.145 | 0.803 | 0.760 | 6.41 | 0.122 |
Temperature °C | 5 | 15 | 35 | 45 | |||||
---|---|---|---|---|---|---|---|---|---|
Catalyst Type | TiO2 | ZnO | TiO2 | ZnO | TiO2 | ZnO | TiO2 | ZnO | |
1 | Dark surface adsorption % | 22.7 | 16.1 | 22.0 | 14.9 | 19.2 | 13.1 | 18.3 | 12.2 |
2 | kobs × 102 (1/min) | 1.72 | 1.18 | 1.77 | 1.21 | 1.86 | 1.25 | 1.92 | 1.27 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khezrianjoo, S.; Lee, J.; Kim, K.-H.; Kumar, V. Eco-Toxicological and Kinetic Evaluation of TiO2 and ZnO Nanophotocatalysts in Degradation of Organic Dye. Catalysts 2019, 9, 871. https://doi.org/10.3390/catal9100871
Khezrianjoo S, Lee J, Kim K-H, Kumar V. Eco-Toxicological and Kinetic Evaluation of TiO2 and ZnO Nanophotocatalysts in Degradation of Organic Dye. Catalysts. 2019; 9(10):871. https://doi.org/10.3390/catal9100871
Chicago/Turabian StyleKhezrianjoo, Sajjad, Jechan Lee, Ki-Hyun Kim, and Vanish Kumar. 2019. "Eco-Toxicological and Kinetic Evaluation of TiO2 and ZnO Nanophotocatalysts in Degradation of Organic Dye" Catalysts 9, no. 10: 871. https://doi.org/10.3390/catal9100871
APA StyleKhezrianjoo, S., Lee, J., Kim, K. -H., & Kumar, V. (2019). Eco-Toxicological and Kinetic Evaluation of TiO2 and ZnO Nanophotocatalysts in Degradation of Organic Dye. Catalysts, 9(10), 871. https://doi.org/10.3390/catal9100871