Production of 5-Hydroxymethylfurfural from Glucose in Water by Using Transition Metal-Oxide Nanosheet Aggregates
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Chemicals
3.2. Catalyst Synthesis
3.3. Characterization
3.4. Catalytic Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Takagaki, A.; Takahashi, M.; Nishimura, S.; Ebitani, K. One-Pot Synthesis of 2,5-Diformylfuran from Carbohydrate Derivatives by Sulfonated Resin and Hydrotalcite-Supported Ruthenium Catalysts. ACS Catal. 2011, 1, 1562–1565. [Google Scholar] [CrossRef]
- Gupta, N.K.; Nishimura, S.; Takagaki, K.; Ebitani, K. Hydrotalcite supported gold-nanoparticle-catalyzed highly efficient aqueous oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid using molecular oxygen. Green Chem. 2011, 13, 824–827. [Google Scholar] [CrossRef]
- Li, Q.; Wang, H.; Tian, Z.; Weng, Y.; Wang, C.; Ma, J.; Zhu, C.; Li, W.; Liu, Q.; Ma, L. Selective oxidation of 5-hydroxymethylfurfural to 2,5-furanedicarboxylic acid over Au/CeO2 catalysts: The morphology effect of CeO2. Catal. Sci. Technol. 2019, 9, 1570–1580. [Google Scholar] [CrossRef]
- Hayashi, E.; Yamaguchi, Y.; Kamata, K.; Tsunoda, N.; Kumagai, Y.; Oba, F.; Hara, M. Effect of MnO2 Crystal Structure on Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic acid. J. Am. Chem. Soc. 2019, 141, 890–900. [Google Scholar] [CrossRef] [PubMed]
- Román-Leshkov, Y.; Chheda, J.N.; Dumesic, J.A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 2006, 312, 1933–1937. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Holladay, J.E.; Brown, H.; Zhang, Z.C. Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural. Science 2007, 316, 1597–1600. [Google Scholar] [CrossRef] [PubMed]
- Bhaumik, P.; Chou, H.-J.; Lee, L.-C.; Chung, P.-W. Chemical Transformation for 5-Hydroxymethylfurfural Production from Saccharides Using Molten Salt System. ACS Sustain. Chem. Eng. 2018, 6, 5712–5717. [Google Scholar] [CrossRef]
- Takagaki, A.; Ohara, M.; Nishimura, S.; Ebitani, K. A one-pot reaction for biorefinery: Combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides. Chem. Commun. 2009, 6276–6278. [Google Scholar] [CrossRef]
- Tuteja, J.; Nishimura, S.; Ebitani, K. One-Pot Synthesis of Furans from Various Saccharides Using a Combination of Solid Acid and Base Catalysts. Bull. Chem. Soc. Jpn. 2012, 85, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Otomo, R.; Yokoi, T.; Kondo, J.N.; Tatsumi, T. Dealuminated Beta zeolite as effective bifunctional catalyst for direct transformation of glucose to 5-hydroxymethylfurfural. Appl. Catal. A Gen. 2014, 470, 318–326. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Sakurada, T.; Ogasawara, Y.; Mizuno, N. Tin-Tungsten Mixed Oxide as Efficient Heterogeneous Catalyst for Conversion of Saccharides to Furan Derivatives. Chem. Lett. 2011, 40, 542–543. [Google Scholar] [CrossRef]
- Huang, F.; Li, W.; Liu, Q.; Zhang, T.; An, S.; Li, D.; Zhu, X. Sulfonated tobacco stem carbon as efficient catalyst for dehydration of C6 carbohydrate to 5-hydrxymethylfurfural in γ-valerolactone/water. Fuel Process. Technol. 2018, 181, 294–303. [Google Scholar] [CrossRef]
- Xu, S.; Pan, D.; Hu, F.; Wu, Y.; Wang, H.; Chen, Y.; Yuan, H.; Gao, L.; Xiao, G. Highly efficient Cr/β zeolite catalyst for conversion of carbohydrates into 5-hydroxymethylfurfural: Characterization and performance. Fuel Process. Technol. 2019, 190, 38–46. [Google Scholar] [CrossRef]
- Wiesfeld, J.J.; Gaquere, R.; Hensen, E.J.M. Mesoporous Doped Tungsten Oxide for Glucose Dehydration to 5-Hydroxymethylfurfural. ACS Sustain. Chem. Eng. 2019, 7, 7552–7562. [Google Scholar] [CrossRef]
- Xu, S.; Pan, D.; Wu, Y.; Song, X.; Gao, L.; Li, W.; Das, L.; Xiao, G. Efficient production of furfural from xylose and wheat straw by bifunctional chromium phosphate catalyst in biphasic systems. Fuel Process. Technol. 2018, 175, 90–96. [Google Scholar] [CrossRef]
- Jadhav, H.; Pedersen, C.M.; Sølling, T.; Bols, M. 3-Deoxy-glucosone in an intermediate in the formation of furfurals from D-glucose. ChemSusChem 2011, 4, 1049–1051. [Google Scholar] [CrossRef]
- Takagaki, A.; Sugisawa, M.; Lu, D.; Kondo, J.N.; Hara, M.; Domen, K.; Hayashi, S. Exfoliated Nanosheets as a New Strong Solid Acid Catalyst. J. Am. Chem. Soc. 2003, 125, 5479–5485. [Google Scholar] [CrossRef] [PubMed]
- Takagaki, A.; Lu, D.; Kondo, J.N.; Hara, M.; Hayashi, S.; Domen, K. Exfoliated HNb3O8 Nanosheets as a Strong Protonic Solid Acid. Chem. Mater. 2005, 17, 2487–2489. [Google Scholar] [CrossRef]
- Tagusagawa, C.; Takagaki, A.; Hayashi, S.; Domen, K. Characterization of HNbWO6 and HTaWO6 Metal Oxide Nanosheet Aggregates as Solid Acid Catalysts. J. Phys. Chem. C 2009, 113, 7831–7837. [Google Scholar] [CrossRef]
- Takagaki, A.; Tagusagawa, C.; Hayashi, S.; Hara, M.; Domen, K. Nanosheets as highly active solid acid catalysts for green chemical syntheses. Energy Environ. Sci. 2010, 3, 82–93. [Google Scholar] [CrossRef]
- Dias, A.S.; Kima, S.; Carriazo, D.; Rives, V.; Pillinger, M.; Valente, A.A. Exfoliated titanate niobite and titanoniobate nanosheets as solid acid catalysts for the liquid-phase dehydration of D-xylose into furfural. J. Catal. 2006, 244, 230–237. [Google Scholar] [CrossRef]
- Wu, Q.; Yan, Y.; Zhang, Q.; Lu, J.; Yang, Z.; Zhang, Y.; Tang, Y. Catalytic Dehydration of Carbohydrates on in Situ Exfoliatable Layered Niobic Acid in an Aqueous System under Microwave Irradiation. ChemSusChem 2013, 6, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M.; Nakato, T.; Okuhara, T. Water-tolerant solid acid catalysis of Cs2.5H0.5PW12O40 for hydrolysis of esters in the presence of excess water. Appl. Catal. A Gen. 1997, 165, 227–240. [Google Scholar] [CrossRef]
- Li, L.; Yoshinaga, T.; Okuahra, T. Water-tolerant catalysis by Mo-Zr mixed oxides calcined at high temperatures. Phys. Chem. Chem. Phys. 1999, 1, 4913–4918. [Google Scholar] [CrossRef]
- Zheng, A.; Liu, S.-B.; Deng, F. 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts. Chem. Rev. 2017, 117, 12475–12531. [Google Scholar] [CrossRef] [PubMed]
- Okuhara, T. Water-Tolerant Solid Acid Catalysts. Chem. Rev. 2002, 102, 3641–3666. [Google Scholar] [CrossRef]
- Tagusagawa, C.; Takagaki, A.; Hayashi, S.; Domen, K. Evaluation of strong acid properties of layered HNbMoO6 and catalytic activity for Friedel-Crafts alkylation. Catal. Today 2009, 142, 267–271. [Google Scholar] [CrossRef]
- Kao, H.-M.; Yu, C.-Y.; Yeh, M.-C. Detection of the inhomogeneity of Brønsted acidity in H-mordenite and H-β zeolites: A comparative NMR study using trimethylphosphine and trimethylphosphine oxide as 31P NMR probes. Micropor. Mesopor. Mater. 2002, 53, 1–12. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, W.-H.; Huang, S.-J.; Wu, Y.-C.; Lee, H.-K.; Liu, S.-B. Discernment and Quantification of Internal and External Acid Sites on Zeolites. J. Phys. Chem. B 2002, 106, 14462–14469. [Google Scholar] [CrossRef]
- Nakajima, K.; Baba, Y.; Noma, R.; Kitano, M.; Kondo, J.N.; Hayashi, S.; Hara, M. Nb2O5·nH2O as a Heterogeneous Catalyst with Water-Tolerant Lewis Acid Sites. J. Am. Chem. Soc. 2011, 133, 4224–4227. [Google Scholar] [CrossRef]
- Takagaki, A.; Ebitani, K. Glucose to Value-added Chemicals: Anhydroglucose Formation by Selective Dehydration over Solid Acid Catalysts. Chem. Lett. 2009, 38, 650–651. [Google Scholar] [CrossRef]
- Takagaki, A.; Tagusagawa, C.; Domen, K. Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalyst. Chem. Commun. 2008, 5363–5365. [Google Scholar] [CrossRef] [PubMed]
- Tagusagawa, C.; Takagaki, A.; Takanabe, K.; Ebitani, K.; Hayashi, S.; Domen, K. Layered and nanosheet tantalum molybdate as strong solid acid catalysts. J. Catal. 2010, 270, 206–212. [Google Scholar] [CrossRef]
- Lanziano, C.A.S.; Moya, S.F.; Barrett, D.H.; Teixeira-Neto, E.; Guirardello, R.; de Souto da Silva, F.; Rinaldi, R.; Rodella, C.B. Hybrid Organic-Inorganic Anatase as a Bifunctional Catalyst for Enhanced Production of 5-Hydroxyethylfurfural from Glucose in Water. ChemSusChem 2018, 11, 872–880. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Li, X.; Liu, X.; Xia, Y.; Hu, B.; Lu, G.; Wang, Y. Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurfural over water-tolerant niobium-based catalysts. Fuel 2015, 139, 301–307. [Google Scholar] [CrossRef]
- Saravanan, K.; Park, K.S.; Jeon, S.; Bae, J.W. Aqueous Phase Synthesis of 5-Hydroxymethylfurfural from Glucose over Large Pore Mesoporous Zirconium Phosphates: Effect of Calcination Temperature. ACS Omega 2018, 3, 808–820. [Google Scholar] [CrossRef] [Green Version]
- Candu, N.; Fergani, M.E.; Verziu, M.; Cojocaru, B.; Jurca, B.; Apostol, N.; Teodorescu, C.; Pavulescu, V.I.; Coman, S.M. Efficient glucose dehydration to HMF onto Nb-BEA catalysts. Catal. Today 2019, 325, 109–116. [Google Scholar] [CrossRef]
- Takagaki, A.; Jung, J.C.; Hayashi, S. Solid Lewis acidity of boehmite γ-AlO(OH) and its catalytic activity for transformation of sugars in water. RSC Adv. 2014, 4, 43785–43791. [Google Scholar] [CrossRef]
- Marianou, A.A.; Michailof, C.M.; Pineda, A.; Iliopoulou, E.F.; Triantafyllidis, K.S. Effect of Lewis and Brønsted acidity on glucose conversion to 5-HMF and lactic acid in aqueous and organic media. Appl. Catal. A Gen. 2018, 555, 75–87. [Google Scholar] [CrossRef]
- Romo, J.E.; Wu, T.; Huang, X.; Lucero, J.; Irwin, J.L.; Bond, J.Q.; Carreon, M.A.; Wettstein, S.G. SAPO-34/5A Zeolite Bead Catalysts for Furan Production from Xylose and Glucose. ACS Omega 2018, 3, 16253–16259. [Google Scholar] [CrossRef]
- Lopes, M.; Dussan, K.; Leahy, J.J.; da Silva, V.T. Conversion of D-Glucose to 5- hydroxymethylfurfural using Al2O3-promoted sulphated tin oxide as catalyst. Catal. Today 2017, 279, 233–243. [Google Scholar] [CrossRef]
- Xu, S.; Pan, D.; Li, W.; Shen, P.; Wu, Y.; Song, X.; Zhu, Y.; Xu, N.; Gao, L.; Xiao, G. Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurfural using an efficient and inexpensive manganese phosphate catalyst. Fuel Proc. Technol. 2018, 181, 199–206. [Google Scholar] [CrossRef]
- Benesi, H.A. Determination of proton acidity of solid catalysts by chromatographic adsorption of sterically hindered amines. J. Catal. 1973, 28, 176–178. [Google Scholar] [CrossRef]
- Jacobs, P.A.; Heylen, C.F. Active sites in zeolites. III. Selective poisoning of Brønsted sites on synthetic Y zeolites. J. Catal. 1974, 34, 267–274. [Google Scholar] [CrossRef]
Catalyst | SBET /m2 g−1 | Acid Amount /mmol g−1 a | NH3-TPD Peak Position /K b | 31P MAS NMR Peal Position /ppm c |
---|---|---|---|---|
HNbWO6 nanosheets | 66 | 0.34 | 560 | 71 |
HNb3O8 nanosheets | 101 | 0.28 | 550 | 70 |
HTiNbO5 nanosheets | 153 | 0.24 | 535 | 63 |
Nb2O5·nH2O | 128 | 0.30d | 550e | 65f |
Amberlyst-15 | 50 | 4.8 | N.A. | 81 |
Nafion NR50 | <0.1 | 0.9 | N.A. | N.A. |
H-Beta g | 420 | 1.0 | 600 | 78h |
H-ZSM5 i | 326 | 0.2 | 580 | 86j |
Entry | Catalyst | Glucose Conversion /% | HMF Yield /% | HMF Selectivity /% | Fructose Yield /% | Formic Acid Yield /% | Unknown Yield /% b |
---|---|---|---|---|---|---|---|
1 | HNbWO6 nanosheets | 56 | 20 | 36 | 5 | 5 | 25 |
2 | KNbWO6 nanosheets | 36 | 9 | 25 | 7 | N.D. | 21 |
3 | HNb3O8 nanosheets | 43 | 14 | 32 | 4 | N.D. | 26 |
4 | HTiNbO5 nanosheets | 55 | 11 | 21 | 2 | 10 | 31 |
5 | Nb2O5·nH2O | 63 | 20 | 31 | 2 | 4 | 37 |
6 | Amberlyst-15 | 7 | 0 | — | 0 | 0 | 7 |
7 | Nafion NR50 | 7 | 0 | — | 0 | 0 | 7 |
8 | H-Beta c | Trace | 0 | — | 0 | 0 | — |
9 | H-ZSM5 d | Trace | 0 | — | 0 | 0 | — |
Entry | Catalyst | HMF Yield (Selectivity) /% | RS/C a | Temp. /K | Time /h | Reference |
---|---|---|---|---|---|---|
1 | HNbWO6 nanosheets | 23 (44) | 1 | 393 | 24 | This study |
2 | HNbWO6 nanosheets | 20 (36) | 1 | 413 | 3 | This study |
3 | HNb3O8 nanosheets | 14 (34) | 50 | 428 | 2.5 | [22] |
4 | Nb2O5·nH2O | 12 (12) | 0.1 | 393 | 3 | [30] |
5 | meso-Nb2O5 | 18 (36) | 1 | 413 | 1 | [35] |
6 | Nb-BEA | 17 (41) | 6 | 453 | 24 | [37] |
7 | γ-AlO(OH) | 17 (18) | 1 | 443 | 24 | [38] |
8 | SnO2/γ-Al2O3 | 12 (14) | 1 | 423 | 1 | [39] |
9 | SAPO-34/5A | 20 (N.A.) | 1.7 | 463 | 3 | [40] |
10 | H-ZSM-5 (Si/Al = 90) | 0 (0) | 0.1 | 413 | 3 | [30] |
11 | H-mordenite (Si/Al = 90) | 0 (0) | 0.1 | 413 | 3 | [30] |
12 | SO42-/Al2O3-SnO2 | 19 (53) | 2 | 393 | 6 | [41] |
13 | Hybrid-TiO2 | 45 (60) | 1.2 | 403 | 7 | [34] |
14 | H3PO4/Nb2O5·nH2O | 48 (53) | 0.1 | 413 | 3 | [30] |
15 | meso-NbP | 34 (49) | 1 | 413 | 1 | [35] |
16 | meso-ZrP | 47 (56) | 1.6 | 428 | 6 | [36] |
17 | MnPO4 | 18 (25) | 2.5 | 433 | 1.5 | [42] |
18 | Amberlyst-15 | 0 (0) | 0.1 | 413 | 3 | [30] |
19 | Nafion NR50 | 0 (0) | 0.1 | 413 | 3 | [30] |
Entry | Solvent | Temp./ K | Time /h | Glucose Conversion /% | HMF Yield /% | HMF Selectivity /% | Fructose Yield /% | Formic Acid Yield /% | Unknown Yield /% |
---|---|---|---|---|---|---|---|---|---|
1 | Water 1.5 mL | 393 | 3 | 27 | 11 | 40 | 0 | 0 | 16 |
2 | Water 1.5 mL | 403 | 3 | 37 | 14 | 38 | 0 | 0 | 23 |
3 | Water 1.5 mL | 413 | 3 | 56 | 20 | 36 | 5 | 5 | 25 |
4 | Water 1.5 mL | 423 | 3 | 70 | 24 | 35 | 4 | 6 | 36 |
5 | Water 3 mL | 393 | 24 | 52 | 23 | 44 | 4 | 5 | 31 |
6 | Water 3 mL + 1-butanol 3 mL | 393 | 36 | 71 | 37 | 52 | 4 | 0 | 31 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takagaki, A. Production of 5-Hydroxymethylfurfural from Glucose in Water by Using Transition Metal-Oxide Nanosheet Aggregates. Catalysts 2019, 9, 818. https://doi.org/10.3390/catal9100818
Takagaki A. Production of 5-Hydroxymethylfurfural from Glucose in Water by Using Transition Metal-Oxide Nanosheet Aggregates. Catalysts. 2019; 9(10):818. https://doi.org/10.3390/catal9100818
Chicago/Turabian StyleTakagaki, Atsushi. 2019. "Production of 5-Hydroxymethylfurfural from Glucose in Water by Using Transition Metal-Oxide Nanosheet Aggregates" Catalysts 9, no. 10: 818. https://doi.org/10.3390/catal9100818
APA StyleTakagaki, A. (2019). Production of 5-Hydroxymethylfurfural from Glucose in Water by Using Transition Metal-Oxide Nanosheet Aggregates. Catalysts, 9(10), 818. https://doi.org/10.3390/catal9100818