Facile Synthesis of Co3O4 Nanoparticle-Functionalized Mesoporous SiO2 for Catalytic Degradation of Methylene Blue from Aqueous Solutions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Surface Properties
2.2. Catalytic Performance
2.3. Mechanisms for the Degradation of MB
3. Materials and Methods
3.1. Synthesis of Co–SiO2 Catalysts
3.2. Characterizations
3.3. Catalytic Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sapkota, K.P.; Lee, I.; Hanif, M.A.; Islam, M.A.; Hahn, J.R. Solar-Light-Driven Efficient ZnO–Single-Walled Carbon Nanotube Photocatalyst for the Degradation of a Persistent Water Pollutant Organic Dye. Catalysts 2019, 9, 498. [Google Scholar] [CrossRef]
- Samanta, P.; Desai, A.V.; Let, S.; Ghosh, S.K. Advanced Porous Materials for Sensing, Capture and Detoxification of Organic Pollutants toward Water Remediation. ACS Sustain. Chem. Eng. 2019, 7, 7456–7478. [Google Scholar] [CrossRef]
- Dong, C.; Ji, J.; Shen, B.; Xing, M.; Zhang, J. Enhancement of H2O2 Decomposition by the Co-catalytic Effect of WS2 on the Fenton Reaction for the Synchronous Reduction of Cr(VI) and Remediation of Phenol. Environ. Sci. Technol. 2018, 52, 11297–11308. [Google Scholar] [CrossRef] [PubMed]
- Mahamuni, N.N.; Adewuyi, Y.G. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrason. Sonochem. 2010, 17, 990–1003. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.H.S.; Yeong Wu, T.; Juan, J.C.; Teh, C.Y. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J. Chem. Technol. Biotechnol. 2011, 86, 1130–1158. [Google Scholar] [CrossRef]
- Yang, C.; Wang, D.; Tang, Q. The synthesis of NdFeB magnetic activated carbon and its application in degradation of azo dye methyl orange by Fenton-like process. J. Taiwan Inst. Chem. Eng. 2014, 45, 2584–2589. [Google Scholar] [CrossRef]
- Zhang, Z.; Balogh, D.; Wang, F.; Sung, S.Y.; Nechushtai, R.; Willner, I. Biocatalytic Release of an Anticancer Drug from Nucleic-Acids-Capped Mesoporous SiO2 Using DNA or Molecular Biomarkers as Triggering Stimuli. ACS Nano 2013, 7, 8455–8468. [Google Scholar] [CrossRef]
- Ding, M.; Huang, Y.; Guo, T.; Sun, L.-P.; Guan, B.-O. Mesoporous nanospheres functionalized optical microfiber biosensor for low concentration neurotransmitter detection. Opt. Express 2016, 24, 27152. [Google Scholar] [CrossRef]
- Du, H.; Ma, L.; Liu, X.; Zhang, F.; Yang, X.; Wu, Y.; Zhang, J. A Novel Mesoporous SiO2 Material with MCM-41 Structure from Coal Gangue: Preparation, Ethylenediamine Modification, and Adsorption Properties for CO2 Capture. Energy Fuels 2018, 32, 5374–5385. [Google Scholar] [CrossRef]
- Hong, Y.; Cha, B.J.; Kim, Y.D.; Seo, H.O. Mesoporous SiO2 Particles Combined with Fe Oxide Nanoparticles as a Regenerative Methylene Blue Adsorbent. ACS Omega 2019, 4, 9745–9755. [Google Scholar] [CrossRef]
- Han, Y.-F.; Chen, F.; Ramesh, K.; Zhong, Z.; Widjaja, E.; Chen, L. Preparation of nanosized Mn3O4/SBA-15 catalyst for complete oxidation of low concentration EtOH in aqueous solution with H2O2. Appl. Catal. B Environ. 2007, 76, 227–234. [Google Scholar] [CrossRef]
- Panda, N.; Sahoo, H.; Mohapatra, S. Decolourization of Methyl Orange using Fenton-like mesoporous Fe(2)O(3)-SiO(2) composite. J. Hazard. Mater. 2011, 185, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Lyu, L.; Zhang, L.; Hu, C. Enhanced Fenton-like degradation of pharmaceuticals over framework copper species in copper-doped mesoporous silica microspheres. Chem. Eng. J. 2015, 274, 298–306. [Google Scholar] [CrossRef]
- Li, X.; Kong, Y.; Zhou, S.; Wang, B. In situ incorporation of well-dispersed Cu-Fe oxides in the mesochannels of AMS and their utilization as catalysts towards the Fenton-like degradation of methylene blue. J. Mater. Sci. 2016, 52, 1432–1445. [Google Scholar] [CrossRef]
- Do, Q.C.; Kim, D.-G.; Ko, S.-O. Catalytic activity enhancement of a Fe3O4@SiO2 yolk-shell structure for oxidative degradation of acetaminophen by decoration with copper. J. Clean. Prod. 2018, 172, 1243–1253. [Google Scholar] [CrossRef]
- Wu, Z.; Zhu, W.; Zhang, M.; Lin, Y.; Xu, N.; Chen, F.; Wang, D.; Chen, Z. Adsorption and Synergetic Fenton-like Degradation of Methylene Blue by a Novel Mesoporous α-Fe2O3/SiO2 at Neutral pH. Ind. Eng. Chem. Res. 2018, 57, 5539–5549. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, J.; He, Z.; Shi, P.; Qin, X.; Yao, W. Direct fabrication of lamellar self-supporting Co3O4/N/C peroxymonosulfate activation catalysts for effective aniline degradation. Chem. Eng. J. 2017, 313, 1088–1098. [Google Scholar] [CrossRef]
- Da’na, E.; Sayari, A. Adsorption of heavy metals on amine-functionalized SBA-15 prepared by co-condensation: Applications to real water samples. Desalination 2012, 285, 62–67. [Google Scholar] [CrossRef]
- Xu, X.; Wu, J.; Xu, W.; He, M.; Fu, M.; Chen, L.; Zhu, A.; Ye, D. High-efficiency non-thermal plasma-catalysis of cobalt incorporated mesoporous MCM-41 for toluene removal. Catal. Today 2017, 281, 527–533. [Google Scholar] [CrossRef]
- Martínez, A.N.; López, C.; Márquez, F.; Díaz, I. Fischer–Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: The influence of metal loading, cobalt precursor, and promoters. J. Catal. 2003, 220, 486–499. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Wang, H.J.; Zhuang, T.T.; Sun, L.B.; Wang, Y.M.; Zhu, J.H. Multiple Functionalization of Mesoporous Silica in One-Pot: Direct Synthesis of Aluminum-Containing Plugged SBA-15 from Aqueous Nitrate Solutions. Adv. Funct. Mater. 2008, 18, 82–94. [Google Scholar] [CrossRef]
- Deng, J.; Kang, L.; Bai, G.; Li, Y.; Li, P.; Liu, X.; Yang, Y.; Gao, F.; Liang, W. Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials. Electrochim. Acta 2014, 132, 127–135. [Google Scholar] [CrossRef]
- Ungár, T. Microstructural parameters from X-ray diffraction peak broadening. Scr. Mater. 2004, 51, 777–781. [Google Scholar] [CrossRef]
- Wang, C.; Lim, S.; Du, G.; Loebicki, C.Z.; Li, N.; Derrouiche, S.; Haller, G.L. Synthesis, Characterization, and Catalytic Performance of Highly Dispersed Co-SBA-15. J. Phys. Chem. C 2009, 113, 14863–14871. [Google Scholar] [CrossRef]
- Hu, L.; Yang, X.; Dang, S. An easily recyclable Co/SBA-15 catalyst: Heterogeneous activation of peroxymonosulfate for the degradation of phenol in water. Appl. Catal. B Environ. 2011, 102, 19–26. [Google Scholar] [CrossRef]
- Wojnarowicz, J.; Chudoba, T.; Koltsov, I.; Gierlotka, S.; Dworakowska, S.; Lojkowski, W. Size control mechanism of ZnO nanoparticles obtained in microwave solvothermal synthesis. Nanotechnology 2018, 29, 065601. [Google Scholar] [CrossRef]
- Weckhuysen, B.M.; Schoonheydt, R.A. Recent progress in diffuse reflectance spectroscopy of supported metal oxide catalysts. Catal. Today 1999, 49, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Karthik, M. Characterization of Co,Al-MCM-41 and its activity in the t-butylation of phenol using isobutanol. Appl. Catal. A Gen. 2004, 268, 139–149. [Google Scholar] [CrossRef]
- Somanathan, T.; Pandurangan, A.; Sathiyamoorthy, D. Catalytic influence of mesoporous Co-MCM-41 molecular sieves for the synthesis of SWNTs via CVD method. J. Mol. Catal. A Chem. 2006, 256, 193–199. [Google Scholar] [CrossRef]
- Bhoware, S.S.; Shylesh, S.; Kamble, K.R.; Singh, A.P. Cobalt-containing hexagonal mesoporous molecular sieves (Co-HMS): Synthesis, characterization and catalytic activity in the oxidation reaction of ethylbenzene. J. Mol. Catal. A Chem. 2006, 255, 123–130. [Google Scholar] [CrossRef]
- Abdelrazek, E.M.; Elashmawi, I.S. Characterization and physical properties of CoCl2filled polyethyl-methacrylate films. Polym. Compos. 2008, 29, 1036–1043. [Google Scholar] [CrossRef]
- Teh, L.P.; Triwahyono, S.; Jalil, A.A.; Firmansyah, M.L.; Mamat, C.R.; Majid, Z.A. Fibrous silica mesoporous ZSM-5 for carbon monoxide methanation. Appl. Catal. A Gen. 2016, 523, 200–208. [Google Scholar] [CrossRef]
- Siddiqui, Z.N.; Khan, K.; Ahmed, N. Nano Fibrous Silica Sulphuric Acid as an Efficient Catalyst for the Synthesis of β-Enaminone. Catal. Lett. 2014, 144, 623–632. [Google Scholar] [CrossRef]
- Liotta, L. CoOx catalysts supported on alumina and alumina-baria: Influence of the support on the cobalt species and their activity in NO reduction by C3H6 in lean conditions. Appl. Catal. A Gen. 2003, 245, 167–177. [Google Scholar] [CrossRef]
- Ali, G.A.M.; Fouad, O.A.; Makhlouf, S.A. Structural, optical and electrical properties of sol–gel prepared mesoporous Co3O4/SiO2 nanocomposites. J. Alloy. Compd. 2013, 579, 606–611. [Google Scholar] [CrossRef]
- Zhang, T.; Oyama, T.; Aoshima, A.; Hidaka, H.; Zhao, J.; Serpone, N. Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation. J. Photochem. Photobiol. A Chem. 2001, 140, 163–172. [Google Scholar] [CrossRef]
- Ling, S.K.; Wang, S.; Peng, Y. Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate. J. Hazard. Mater. 2010, 178, 385–389. [Google Scholar] [CrossRef]
- Dong, J.; Song, L.; Yin, J.J.; He, W.; Wu, Y.; Gu, N.; Zhang, Y. Co(3)O(4) nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl. Mater. Interfaces 2014, 6, 1959–1970. [Google Scholar] [CrossRef]
- Chen, Y.; Pötschke, P.; Pionteck, J.; Voit, B.; Qi, H. Fe3O4 Nanoparticles Grown on Cellulose/GO Hydrogels as Advanced Catalytic Materials for the Heterogeneous Fenton-like Reaction. ACS Omega 2019, 4, 5117–5125. [Google Scholar] [CrossRef]
- Wang, N.; Zheng, T.; Zhang, G.; Wang, P. A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. Eng. 2016, 4, 762–787. [Google Scholar] [CrossRef] [Green Version]
Sample | a0/(nm) | SBET/ (m2∙g−1) | VP/ (cm3∙g−1) | DBJH/(nm) | Wd/(nm) |
---|---|---|---|---|---|
mSiO2 | 11.75 | 840 | 0.91 | 9.25 | 2.50 |
Co-SiO2(0.02) | 12.03 | 586 | 0.91 | 9.23 | 2.80 |
Co-SiO2(0.04) | 12.03 | 542 | 0.87 | 9.23 | 2.80 |
Co-SiO2(0.08) | 12.03 | 497 | 0.81 | 9.23 | 2.80 |
Co-SiO2(0.17) | 12.03 | 444 | 0.71 | 9.23 | 2.80 |
Sample | MB Adsorption Amount per SBET/(mg∙m−2) | MB Occupied Percentage/% |
---|---|---|
mSiO2 | 0.11 | 26.9 |
Co–SiO2(0.02) | 0.14 | 34.2 |
Co–SiO2(0.04) | 0.15 | 36.7 |
Co–SiO2(0.08) | 0.16 | 39.1 |
Co–SiO2(0.17) | 0.19 | 46.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zha, Z.; Zhu, W.; Chen, F.; Qian, J.; Liu, X.-Q.; Sun, L.-B.; Wu, Z.; Chen, Z. Facile Synthesis of Co3O4 Nanoparticle-Functionalized Mesoporous SiO2 for Catalytic Degradation of Methylene Blue from Aqueous Solutions. Catalysts 2019, 9, 809. https://doi.org/10.3390/catal9100809
Zha Z, Zhu W, Chen F, Qian J, Liu X-Q, Sun L-B, Wu Z, Chen Z. Facile Synthesis of Co3O4 Nanoparticle-Functionalized Mesoporous SiO2 for Catalytic Degradation of Methylene Blue from Aqueous Solutions. Catalysts. 2019; 9(10):809. https://doi.org/10.3390/catal9100809
Chicago/Turabian StyleZha, Zhenlong, Wenjun Zhu, Feng Chen, Junchao Qian, Xiao-Qin Liu, Lin-Bing Sun, Zhengying Wu, and Zhigang Chen. 2019. "Facile Synthesis of Co3O4 Nanoparticle-Functionalized Mesoporous SiO2 for Catalytic Degradation of Methylene Blue from Aqueous Solutions" Catalysts 9, no. 10: 809. https://doi.org/10.3390/catal9100809
APA StyleZha, Z., Zhu, W., Chen, F., Qian, J., Liu, X.-Q., Sun, L.-B., Wu, Z., & Chen, Z. (2019). Facile Synthesis of Co3O4 Nanoparticle-Functionalized Mesoporous SiO2 for Catalytic Degradation of Methylene Blue from Aqueous Solutions. Catalysts, 9(10), 809. https://doi.org/10.3390/catal9100809