Next Article in Journal
Fast Pyrolysis of Sunflower Oil in the Presence of Microporous and Mesoporous Materials for Production of Bio-Oil
Next Article in Special Issue
N,S Co-Doped Carbon Nanofibers Derived from Bacterial Cellulose/Poly(Methylene blue) Hybrids: Efficient Electrocatalyst for Oxygen Reduction Reaction
Previous Article in Journal
Effect of Preparation Conditions on Structure and Activity of Sodium-Impregnated Oyster Shell Catalysts for Transesterification
Previous Article in Special Issue
Host-Guest Engineering of Layered Double Hydroxides towards Efficient Oxygen Evolution Reaction: Recent Advances and Perspectives
Open AccessFeature PaperArticle

Influence of the Structure-Forming Agent on the Performance of Fe-N-C Catalysts

TU Darmstadt, Department of Chemistry, Catalysts and Electrocatalysts Group (EKAT), 64287 Darmstadt, Germany
TU Darmstadt, Department of Materials and Earth Sciences, EKAT Group, 64287 Darmstadt, Germany
TU Darmstadt, Graduate School of Excellence Energy Science and Engineering, 64287 Darmstadt; Germany
TU Darmstadt, Department of Materials and Earth Sciences, Physics of Surfaces Group, 64287 Darmstadt, Germany
Author to whom correspondence should be addressed.
Catalysts 2018, 8(7), 260;
Received: 6 June 2018 / Revised: 21 June 2018 / Accepted: 25 June 2018 / Published: 28 June 2018
In this work, the influence of the structure-forming agent on the composition, morphology and oxygen reduction reaction (ORR) activity of Fe-N-C catalysts was investigated. As structure-forming agents (SFAs), dicyandiamide (DCDA) (nitrogen source) or oxalic acid (oxygen source) or mixtures thereof were used. For characterization, cyclic voltammetry and rotating disc electrode (RDE) experiments were performed in 0.1 M H2SO4. In addition to this, N2 sorption measurements and Raman spectroscopy were performed for the structural, and elemental analysis for chemical characterization. The role of metal, nitrogen and carbon sources within the synthesis of Fe-N-C catalysts has been pointed out before. Here, we show that the optimum in terms of ORR activity is achieved if both N- and O-containing SFAs are used in almost similar fractions. All catalysts display a redox couple, where its position depends on the fractions of SFAs. The SFA has also a strong impact on the morphology: Catalysts that were prepared with a larger fraction of N-containing SFA revealed a higher order in graphitization, indicated by bands in the 2nd order range of the Raman spectra. Nevertheless, the optimum in terms of ORR activity is obtained for the catalyst with highest D/G band ratio. Therefore, the results indicate that the presence of an additional oxygen-containing SFA is beneficial within the preparation. View Full-Text
Keywords: Fe-N-C catalyst; oxygen reduction reaction Fe-N-C catalyst; oxygen reduction reaction
Show Figures

Figure 1

MDPI and ACS Style

Schardt, S.; Weidler, N.; Wallace, W.D.Z.; Martinaiou, I.; Stark, R.W.; Kramm, U.I. Influence of the Structure-Forming Agent on the Performance of Fe-N-C Catalysts. Catalysts 2018, 8, 260.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Search more from Scilit
Back to TopTop