One-Pot Combination of Metal- and Bio-Catalysis in Water for the Synthesis of Chiral Molecules
Abstract
:1. Introduction
2. Metal-Catalyzed Isomerization of Unsaturated Organic Substrates Coupled with Enzymatic Aminations, Reductions or Hydrolyses
2.1. Combination of Ru(IV)-Catalyzed Redox Isomerization of Allylic Alcohols and Bioamination or Bioreduction in Aqueous Media
2.2. Assembly of Metal-Catalyzed Cycloisomerization of Allenyl Acetates or Terminal Alkynes with Esterases, Lipases or Ketoreductases in Aqueous Media
3. Metal-Catalyzed Hydrogenations Combined with Bioreductions, Hydrogen-Generating Living Microorganisms and Biooxidations
3.1. Combination of Pd-Nanoparticles-Catalyzed Hydrogenation of Azides and Alcohol-Dehydrogenase-Catalyzed Reduction of Azido-Ketones in Water
3.2. Assembly of Pd-Catalyzed Hydrogenation of Olefins and Living-Microorganism-H2-Generation (Escherichia coli) in Aqueous Media
3.3. Combination of Rh-Catalyzed Hydrogenation of Phenol, Double Biooxidations (Alcohol Dehydrogenase/Monooxygenase) and Lipase-Catalyzed Polymerization for the Chemoenzymatic Synthesis of Poly-ε-caprolactone
3.4. Combination of Rh-Catalyzed Hydrogenation of Quinolines and Whole Cell-Mediated Asymmetric Hydroxylation for the Chemoenzymatic Synthesis of 2-Substituted Tetrahydroquinoline-4-ols
4. Combination of Metal-Catalyzed Alkene Metathesis in Water with Enzymatic Hydrolyses, Epoxidations, Decarboxylations and Oxidations/Aromatizations
4.1. Combination of Ru-Catalyzed Ring-Closing Metathesis of Diallyl Malonates or Anilines with Ester Hydrolysis or Whole Cell-Promoted Oxidation/Aromatization
4.2. Assembly of Ru-Catalyzed Cross-Metathesis (RCM) of Functionalized Olefins with Enzymatic Decarboxylation or P450 Promoted Epoxidation Reactions
5. Combination of Copper-Catalyzed Click Chemistry Cycloadditions (CuAAC) with Biocatalytic Ring-Opening Reactions or Bioreductions
5.1. Combination of Biocatalytic Epoxide Ring-Opening (Halohydrin Dehalogenase) with Cu(I)-Catalyzed Cycloaddition of 1,2-Azido Alcohols and Terminal Alkynes in Aqueous Media
5.2. Combination of Whole Cell-Promoted Bioreduction/Azidolysis or ADH Biocatalyzed Reactions with Cu(I)-Catalyzed Cycloaddition in Aqueous Media
6. Combination of Metal-Catalyzed C-C Coupling Reactions with Enzymatic Reductions, Aminations or Halogenations
6.1. Combination of Pd-Catalyzed Suzuki Coupling with Bioreductions (ADH), Bioamination (Phenylalanine Ammonia Lyases/d-Amino Acid Dehydrogenase) or Enzymatic Halogenation (Halogenase) in Aqueous Media
6.2. Combination of Pd-Catalyzed Heck Reaction of Aryl Iodides and Allylic Alcohols with a Subsequent Bioreduction (Lb-ADH from Lactobacillus brevis) in Aqueous Media
6.3. Combination of Indium-Mediated Barbier-Type Coupling and Zn-Catalyzed aldol Reaction with Enzymatic Oxidations (Galactose Oxidase) or Bioreductions (Oxidoreductases), Respectively
7. Combination of Metal-Catalyzed Oxidations with Enzymatic Reductions
8. Conclusions
Acknowledgments
Conflicts of Interest
References
- Dach, R.; Song, J.J.; Roschangar, F.; Samstag, W.; Senanayake, C.H. The Eight Criteria Defining a Good Chemical Manufacturing Process. Org. Process Res. Dev. 2012, 16, 1697–1706. [Google Scholar] [CrossRef]
- Lam, F.L.-Y.; Li, M.C.L.; Chau, R.S.L.; Arancon, R.A.D.; Hu, X.; Luque, R. Catalysis at room temperature: Perspectives for future green chemical processes. Wiley Interdiscip. Rev. Energy Environ. 2015, 4, 316–338. [Google Scholar] [CrossRef]
- Rothenberg, G. Catalysis: Concepts and Green Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008. [Google Scholar]
- Anastas, P.T. (Ed.) Hanbook of Green Chemistry, Vols. 4, 5 and 6, Green Solvents; Wiley-VCH: Weinheim, Germany, 2010. [Google Scholar]
- Laird, T. Green chemistry is good process chemistry. Org. Process Res. Dev. 2012, 16, 1–2. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Pererira, P.C. Biocatalysis engineering: The big picture. Chem. Soc. Rev. 2017, 46, 2678–2691. [Google Scholar] [CrossRef] [PubMed]
- López-Gallego, F.; Schmidt-Dannert, C. Multi-enzymatic synthesis. Curr. Opin. Chem. Biol. 2010, 14, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Ricca, E.; Brucher, B.; Schrittwieser, J.H. Multienzymatic Cascade Reactions: Overview and Perspectives. Adv. Synth. Catal. 2011, 353, 2239–2262. [Google Scholar] [CrossRef]
- Xue, R.; Woodley, J.M. Process technology for multi-enzymatic reaction systems. Bioresour. Technol. 2012, 115, 183–195. [Google Scholar] [CrossRef] [PubMed]
- García-Junceda, E.; Lavandera, I.; Rother, D.; Schrittwieser, J.H. (Chemo)enzymatic cascades—Nature’s synthetic strategy transferred to the laboratory. J. Mol. Catal. B Enzym. 2015, 114, 1–6. [Google Scholar] [CrossRef]
- Hayashi, Y. Pot economy and one-pot synthesis. Chem. Sci. 2016, 7, 866–880. [Google Scholar] [CrossRef] [PubMed]
- Hönig, M.; Sondermann, P.; Turner, N.J.; Carreira, E.M. Enantioselective Chemo- and Biocatalysis: Partners in Retrosynthesis. Angew. Chem. Int. Ed. 2017, 56, 8942–8973. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.J.J. (Ed.) Metal Catalyzed Cascade Reactions; Springer: Berlin, Germany, 2006. [Google Scholar]
- Lohr, T.L.; Marks, T. Orthogonal Tandem Catalysis. Nat. Chem. 2015, 7, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Verho, O.; Bäckvall, J.-E. Chemoenzymatic Dynamic Kinetic Resolution: A Powerful Tool for the Preparation of Enantiomerically Pure Alcohols and Amines. J. Am. Chem. Soc. 2015, 137, 3996–4009. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zhu, C.; Qiu, Y.; Bäckvall, J.-E. Enzyme- and Ruthenium-Catalyzed Enantioselective Transformations of α-Allenic Alcohols into 2,3-Dihydrofurans. Angew. Chem. Int. Ed. 2016, 55, 5568–5572. [Google Scholar] [CrossRef] [PubMed]
- Palo-Nieto, C.; Afewerki, S.; Anderson, M.; Tai, C.-W.; Berglund, P.; Córdova, A. Integrated Heterogeneous Metal/Enzymatic Multiple Relay Catalysis for Eco-Friendly and Asymmetric Synthesis. ACS Catal. 2016, 6, 3932–3940. [Google Scholar] [CrossRef]
- El-Sepelgy, O.; Alandini, N.; Rueping, M. Merging Iron Catalysis and Biocatalysis-Iron Carbonyl Complexes as Efficient Hydrogen Autotransfer Catalysts in Dynamic Kinetic Resolutions. Angew. Chem. Int. Ed. 2016, 55, 13602–13605. [Google Scholar] [CrossRef] [PubMed]
- Görbe, T.; Gustafson, K.P.J.; Verho, O.; Kervefors, G.; Zheng, H.; Zou, X.; Johnston, E.V.; Bäckvall, J.-E. Design of a Pd(0)-CalB CLEA Biohybrid Catalyst and Its Application in a One-Pot Cascade Reaction. ACS Catal. 2017, 7, 1601–1605. [Google Scholar] [CrossRef]
- Dixnuef, P.H.; Cadierno, V. (Eds.) Metal-Catalyzed Reactions in Water; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Bornscheuer, U.T. Biocatalysis: Succesfull crossing boundaries. Angew. Chem. Int. Ed. 2015, 55, 4372–4373. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Castiglione, K.; Kourist, R. Overcoming the Incompatibility Challenge in Chemoenzymatic and Multi-Catalytic Cascade Reactions. Chem. Eur. J. 2018, 24, 1755–1768. [Google Scholar] [CrossRef] [PubMed]
- Harald, G.; Hummel, W. Combining the ‘two worlds’ of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media. Curr. Opin. Chem. Biol. 2014, 19, 171–179. [Google Scholar] [CrossRef]
- Trost, B.M. The atom economy—A search for synthetic efficiency. Science 1991, 254, 1471–1477. [Google Scholar] [CrossRef] [PubMed]
- Trost, B.M.; Frederiksen, M.U.; Rudd, M.T. Ruthenium-Catalyzed Reactions—A Treasure Trove of Atom-Economic Transformations. Angew. Chem. Int. Ed. 2005, 44, 6630–6666. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A. The E Factor: Fifteen years on. Green Chem. 2007, 9, 1273–1283. [Google Scholar] [CrossRef]
- Ríos-Lombardía, N.; Vidal, C.; Cocina, M.; Morís, F.; García-Álvarez, J.; González-Sabín, J. Chemoenzymatic one-pot synthesis in an aqueous medium: Combination of metal-catalysed allylic alcohol isomerisation-asymmetric bioamination. Chem. Commun. 2015, 51, 10937–10940. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Lombardía, N.; Vidal, C.; Liardo, E.; Morís, F.; García-Álvarez, J.; González-Sabín, J. From a Sequential to a Concurrent Reaction in Aqueous Medium: Ruthenium-Catalyzed Allylic Alcohol Isomerization and Asymmetric Bioreduction. Angew. Chem. Int. Ed. 2016, 55, 8691–8695. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Álvarez, M.J.; Ríos-Lombardía, N.; Schumacher, S.; Pérez-Iglesias, D.; Morís, F.; Cadierno, V.; García-Álvarez, J.; González-Sabín, J. Combination of Metal-Catalyzed Cycloisomerizations and Biocatalysis in Aqueous Media: Asymmetric Construction of Chiral Alcohols, Lactones, and γ-Hydroxy-Carbonyl Compounds. ACS Catal. 2017, 7, 7753–7759. [Google Scholar] [CrossRef]
- Wang, Z.J.; Clary, K.N.; Bergman, R.G.; Raymond, K.N.; Toste, F.D. A supramolecular approach to combining enzymatic and transition metal catalysis. Nat. Chem. 2013, 5, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Luis, P.; Romerosa, A.; Serrano-Ruiz, M. Catalytic isomerization of allylic alcohols in water. ACS Catal. 2012, 2, 1079–1086. [Google Scholar] [CrossRef]
- Alhsten, N.; Bartoszewicz, A.; Martín-Matute, B. Allylic alcohols as synthetic enolate equivalents: Isomerisation and tandem reactions catalysed by transition metal complexes. Dalton Trans. 2012, 41, 1660–1670. [Google Scholar] [CrossRef] [PubMed]
- García-Álvarez, J.; García-Garrido, S.E.; Crochet, P.; Cadierno, V. Metal-catalyzed isomerization of allylic and propargylic alcohols in aqueous media. Curr. Top. Catal. 2012, 10, 35–56. [Google Scholar]
- Cahard, D.; Gaillard, S.; Renaud, J.-L. Asymmetric isomerization of allylic alcohols. Tetrahedron Lett. 2015, 56, 6159–6169. [Google Scholar] [CrossRef]
- Li, H.; Mazet, C. Iridium-Catalyzed Selective Isomerization of Primary Allylic Alcohols. Acc. Chem. Res. 2016, 49, 1232–1241. [Google Scholar] [CrossRef] [PubMed]
- Cadierno, V.; García-Garrido, S.E.; Gimeno, J.; Varela-Álvarez, A.; Sordo, J.A. Bis(allyl)−Ruthenium(IV) Complexes as Highly Efficient Catalysts for the Redox Isomerization of Allylic Alcohols into Carbonyl Compounds in Organic and Aqueous Media: Scope, Limitations, and Theoretical Analysis of the Mechanism. J. Am. Chem. Soc. 2006, 128, 1360–1370. [Google Scholar] [CrossRef] [PubMed]
- Díez, J.; Gimeno, J.; Lledós, A.; Suárez, F.J.; Vicent, C. Imidazole Based Ruthenium(IV) Complexes as Highly Efficient Bifunctional Catalysts for the Redox Isomerization of Allylic Alcohols in Aqueous Medium: Water as Cooperating Ligand. ACS Catal. 2012, 2, 2087–2099. [Google Scholar] [CrossRef]
- García-Álvarez, J.; Gimeno, J.; Suárez, F.J. Redox Isomerization of Allylic Alcohols into Carbonyl Compounds Catalyzed by the Ruthenium(IV) Complex [Ru(η3:η3-C10H16)Cl(k2-O,O-CH3CO2)] in Water and Ionic Liquids: Highly Efficient Transformations and Catalyst Recycling. Organometallics 2011, 30, 2893–2896. [Google Scholar] [CrossRef]
- Francos, J.; García-Garrido, S.E.; García-Álvarez, J.; Crochet, P.; Gimeno, J.; Cadierno, V. Water-tolerant bis(allyl)-ruthenium(IV) catalysts: An account of their applications. Inorg. Chim. Acta 2017, 455, 398–414. [Google Scholar] [CrossRef]
- Kaluzna, I.A.; Rozzell, J.D.; Kambourakis, S. Ketoreductases: Stereoselective catalysts for the facile synthesis of chiral alcohols. Tetrahedron Asymmetry 2005, 16, 3682–3689. [Google Scholar] [CrossRef]
- Cadierno, V.; Crochet, P.; Francos, J.; García-Garrido, S.E.; Gimeno, J.; Nebra, N. Ruthenium-catalyzed redox isomerization/transfer hydrogenation in organic and aqueous media: A one-pot tandem process for the reduction of allylic alcohols. Green Chem. 2009, 11, 1992–2000. [Google Scholar] [CrossRef]
- Brown, C.J.; Miller, G.M.; Johnson, M.W.; Bergman, R.G.; Raymond, K.N. High-turnover supramolecular catalysis by a protected ruthenium(II) complex in aqueous solution. J. Am. Chem. Soc. 2011, 133, 11964–11966. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Rodríguez, A.; Lavandera, I.; Kanbak-Aksu, S.; Sheldon, R.A.; Gotor, V.; Gotor-Fernández, V. From Diols to Lactones under Aerobic Conditions using a Laccase/TEMPO Catalytic System in Aqueous Medium. Adv. Synth. Catal. 2012, 354, 3405–3408. [Google Scholar] [CrossRef]
- Nakamura, I.; Yamamoto, Y. Transition-Metal-Catalyzed Reactions in Heterocyclic Synthesis. Chem. Rev. 2004, 104, 2127–2198. [Google Scholar] [CrossRef] [PubMed]
- Alonso, F.; Belestkaya, I.P.; Yus, M. Transition-Metal-Catalyzed Addition of Heteroatom–Hydrogen Bonds to Alkynes. Chem. Rev. 2004, 104, 3079–3160. [Google Scholar] [CrossRef] [PubMed]
- Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends. Angew. Chem. Int. Ed. 2004, 43, 3368–3398. [Google Scholar] [CrossRef] [PubMed]
- Patil, N.T.; Kavthe, R.D.; Shinde, V.S. Transition metal-catalyzed addition of C-, N- and O-nucleophiles to unactivated C-C multiple bonds. Tetrahedron 2012, 68, 8079–8146. [Google Scholar] [CrossRef]
- Olson, A.R.; Hyde, J.L. The mechanism of lactone hydrolysis. J. Am. Chem. Soc. 1941, 63, 2459–2461. [Google Scholar] [CrossRef]
- Fukuda, Y.; Utimoto, K. Effective transformation of unactivated alkynes into ketones or acetals with a gold(III) catalyst. J. Org. Chem. 1991, 56, 3729–3731. [Google Scholar] [CrossRef]
- Wang, W.; Xu, B.; Hammond, G.B. Efficient Synthesis of γ-Keto Esters through Neighboring Carbonyl Group-Assisted Regioselective Hydration of 3-Alkynoates. J. Org. Chem. 2009, 74, 1640–1643. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Ray, D.; Oh, C.H. Cationic Gold-Catalyzed Regioselective Hydration of 1-Arylalkynes through Carbonyl Group Participation. Synlett 2012, 23, 897–902. [Google Scholar] [CrossRef]
- Huang, L.; Arndt, M.; Gooßen, K.; Heydt, H.; Gooßen, L.J. Late Transition Metal-Catalyzed Hydroamination and Hydroamidation. Chem. Rev. 2015, 115, 2596–2697. [Google Scholar] [CrossRef] [PubMed]
- Cox, R.A. Lactams in sulfuric acid. The mechanism of amide hydrolysis in weak to moderately strong aqueous mineral acid media. Can. J. Chem. 1998, 76, 649–656. [Google Scholar] [CrossRef]
- De Vries, J.G.; Elsevier, S.J. (Eds.) Handbook of Homogeneous Hydrogenation; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006. [Google Scholar]
- Ertl, G.; Knözinger, H.; Schüth, F.; Weitkamp, J. (Eds.) Handbook of Heterogeneous Hydrogenation; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008. [Google Scholar]
- Wu, X.; Xiao, J. Hydrogenation and transfer hydrogenation in water. In Metal-Catalyzed Reactions in Water; Dixnuef, P.H., Cadierno, V., Eds.; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Polshettiwar, V.; Asefa, T. (Eds.) Nanocatalysis: Synthesis and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Schrittwieser, J.H.; Coccia, F.; Kara, S.; Grischek, B.; Kroutil, W.; d’Alessandro, N.; Hollmann, F. One-pot combination of enzyme and Pd nanoparticle catalysis for the synthesis of enantiomerically pure 1,2-amino alcohols. Green Chem. 2013, 15, 3318–3331. [Google Scholar] [CrossRef]
- Sirasani, G.; Tong, L.; Balskus, E.P. A Biocompatible Alkene Hydrogenation Merges Organic Synthesis with Microbial Metabolism. Angew. Chem. Int. Ed. 2014, 53, 7785–7788. [Google Scholar] [CrossRef] [PubMed]
- Royer, G.P.; Chow, W.-S.; Hatton, K.S. Palladium/polyethylenimine catalysts. J. Mol. Catal. 1985, 31, 1–13. [Google Scholar] [CrossRef]
- Coleman, D.R.; Royer, G.P. New hydrogenation catalyst: Palladium-poly(ethylenimine) “ghosts”. Applications in peptide synthesis. J. Org. Chem. 1980, 45, 2268–2269. [Google Scholar] [CrossRef]
- Agapakis, C.M.; Ducat, D.C.; Boyle, P.M.; Wintermute, E.H.; Way, J.C.; Silver, P.A. Insulation of a synthetic hydrogen metabolism circuit in bacteria. J. Biol. Eng. 2010, 4, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.Y.; Jo, B.; Cha, H. Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase in Escherichia coli. Microb. Cell Fact. 2010, 9, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Maegawa, T.; Akashi, A.; Sajiki, H. A Mild and Facile Method for Complete Hydrogenation of Aromatic Nuclei in Water. Synlett 2006, 1440–1442. [Google Scholar] [CrossRef]
- Wedde, S.; Rommelmann, P.; Scherkus, C.; Schmidt, S.; Liese, A.; Gröger, H. An alternative approach towards poly-ε-caprolactone through a chemoenzymatic synthesis: Combined hydrogenation, biooxidations and polymerization without the isolation of intermediates. Green Chem. 2017, 19, 1286–1290. [Google Scholar] [CrossRef]
- Bhorali, N.; Ganguli, J.N. Hydrogenation of Alkenes with Rhodium Nanoparticles Supported on SBA-15. Catal. Lett. 2013, 143, 276–281. [Google Scholar] [CrossRef]
- Staudt, S.; Bornscheuer, U.T.; Menyes, U.; Hummel, W.; Gröger, E. Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ε-caprolactone. Enzym. Microb. Technol. 2013, 53, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Mallin, H.; Wulf, H.; Bornscheuer, U.T. A self-sufficient Baeyer-Villiger biocatalysis system for the synthesis of ε-caprolactone from cyclohexanol. Enzym. Microb. Technol. 2013, 53, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, K.; Zhou, X.; Han, W.; Wan, N.; Cui, B.; Wang, H.; Yuan, W.; Chen, Y. Asymmetric combinational “metal-biocatalytic system”: One approach to chiral 2-substituted-tetrahydroquinoline-4-ols towards two-step one-pot processes in aqueous media. Tetrahedron Lett. 2017, 58, 2252–2254. [Google Scholar] [CrossRef]
- Grubbs, R.H. (Ed.) Handbook of Metathesis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003. [Google Scholar]
- Hoveyda, A.H.; Zhugralin, A.R. The remarkable metal-catalysed olefin metathesis reaction. Nature 2007, 450, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Grela, K. (Ed.) Olefin Metathesis: Theory and Practice; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Lipshutz, B.H.; Ghorai, S. Transition-metal-catalyzed cross-couplings going green: In water at room temperature. Aldrichim. Acta 2008, 41, 59–72. [Google Scholar]
- Burtscher, D.; Grela, K. Aqueous Olefin Metathesis. Angew. Chem. Int. Ed. 2009, 48, 442–454. [Google Scholar] [CrossRef] [PubMed]
- Tomasek, J.; Schatz, J. Olefin metathesis in aqueous media. Green Chem. 2013, 15, 2317–2338. [Google Scholar] [CrossRef]
- Tenbrink, K.; Seßler, M.; Schatz, J.; Gröger, H. Combination of Olefin Metathesis and Enzymatic Ester Hydrolysis in Aqueous Media in a One-Pot Synthesis. Adv. Synth. Catal. 2011, 353, 2363–2367. [Google Scholar] [CrossRef]
- Scalacci, N.; Black, G.W.; Mattedi, G.; Brown, N.L.; Turner, N.J.; Castagnolo, D. Unveiling the Biocatalytic Aromatizing Activity of Monoamine Oxidases MAO-N and 6-HDNO: Development of Chemoenzymatic Cascades for the Synthesis of Pyrroles. ACS Catal. 2017, 7, 1295–1300. [Google Scholar] [CrossRef]
- Denard, C.A.; Huang, H.; Bartlett, M.J.; Lu, L.; Tan, Y.; Zhao, H.; Hartwig, J.F. Cooperative Tandem Catalysis by an Organometallic Complex and a Metalloenzyme. Angew. Chem. Int. Ed. 2014, 53, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Gómez Baraibar, A.; Reichert, D.; Mügge, C.; Seger, S.; Gröger, H.; Kourist, R. A One-Pot Cascade Reaction Combining an Encapsulated Decarboxylase with a Metathesis Catalyst for the Synthesis of Bio-Based Antioxidants. Angew. Chem. Int. Ed. 2016, 55, 14823–14827. [Google Scholar] [CrossRef] [PubMed]
- Bojarra, S.; Reichert, D.; Grote, M.; Gómez Baraibar, A.; Dennig, A.; Nidetzky, B.; Mügge, C.; Kourist, R. Bio-based α,ω-functionalized hydrocarbons from multi-step reaction sequences with bio- and metallo-catalysts based on the fatty acid decarboxylase OleTJE. ChemCatChem 2018. [Google Scholar] [CrossRef]
- Polshettiwar, V.; Varma, R.S. Olefin Ring Closing Metathesis and Hydrosilylation Reaction in Aqueous Medium by Grubbs Second Generation Ruthenium Catalyst. J. Org. Chem. 2008, 73, 7417–7419. [Google Scholar] [CrossRef] [PubMed]
- Ghislieri, D.; Green, A.P.; Pontini, M.; Willies, S.C.; Rowles, I.; Frank, A.; Grogan, G.; Turner, N.J. Engineering an Enantioselective Amine Oxidase for the Synthesis of Pharmaceutical Building Blocks and Alkaloid Natural Products. J. Am. Chem. Soc. 2013, 135, 10863–10869. [Google Scholar] [CrossRef] [PubMed]
- Ghislieri, D.; Houghton, D.; Green, A.P.; Willies, S.C.; Turner, N.J. Monoamine Oxidase (MAO-N) Catalyzed Deracemization of Tetrahydro-β-carbolines: Substrate Dependent Switch in Enantioselectivity. ACS Catal. 2013, 3, 2869–2872. [Google Scholar] [CrossRef]
- Köhler, V.; Wilson, Y.M.; Durrenberger, M.; Ghislieri, D.; Churakova, E.; Quinto, T.; Knorr, L.; Haussinger, D.; Hollman, F.; Turner, N.J.; et al. Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes. Nat. Chem. 2012, 5, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.S.; Pontini, M.; Bechi, B.; Turner, N.J. Development of an R-Selective Amine Oxidase with Broad Substrate Specificity and High Enantioselectivity. ChemCatChem 2014, 6, 996–1002. [Google Scholar] [CrossRef]
- Wakamatsu, H.; Blechert, S. A Highly Active and Air-Stable Ruthenium Complex for Olefin Metathesis. Angew. Chem. Int. Ed. 2002, 41, 794–796. [Google Scholar] [CrossRef]
- Van Veldhuizen, J.J.; Garber, S.B.; Kingsbury, J.S.; Hoveyda, A.H. A Recyclable Chiral Ru Catalyst for Enantioselective Olefin Metathesis. Efficient Catalytic Asymmetric Ring-Opening/Cross Metathesis in Air. J. Am. Chem. Soc. 2002, 124, 4954–4955. [Google Scholar] [CrossRef] [PubMed]
- Hischer, T.; Steinsiek, S.; Ansorge-Schumacher, M.B. Use of polyvinyl alcohol cryogels for the compartmentation of biocatalyzed reactions in non-aqueous media. Biocatal. Biotransform. 2009, 24, 437–442. [Google Scholar] [CrossRef]
- Meldal, M.; Christensen, C.; Tornøe, C.W. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67, 3057–3064. [Google Scholar] [CrossRef]
- Sharpless, K.B.; Fokin, V.V.; Green, L.G.; Rostovtset, V.V. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2708–2711. [Google Scholar] [CrossRef]
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. [Google Scholar] [CrossRef]
- Campbell-Verduyn, L.S.; Szymánski, W.; Postema, C.P.; Dierckx, R.A.; Elsinga, P.H.; Janssen, D.B.; Feringa, B.L. One pot “click” reactions: Tandem enantioselective biocatalytic epoxide ring opening and [3+2] azide alkyne cycloaddition. Chem. Commun. 2010, 46, 898–900. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Szymánski, W.; Postema, C.P.; Tarabiono, C.; Berthiol, F.; Campbell-Verduyn, L.; de Wildeman, S.; de Vries, J.G.; Feringa, B.L.; Janssen, D.B. Combining Designer Cells and Click Chemistry for a One-Pot Four-Step Preparation of Enantiopure β-Hydroxytriazoles. Adv. Synth. Catal. 2010, 352, 2111–2115. [Google Scholar] [CrossRef]
- Cuetos, A.; Bisogno, F.R.; Lavandera, I.; Gotor, V. Coupling biocatalysis and click chemistry: One-pot two-step convergent synthesis of enantioenriched 1,2,3-triazole-derived diols. Chem. Commun. 2013, 49, 2625–2627. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; van Hylckama Vlieg, J.E.; Lutje Spelberg, J.H.; Fraaije, M.W.; Janssen, D.B. Improved stability of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by replacement of cysteine residues. Enzym. Microb. Technol. 2002, 30, 251–258. [Google Scholar] [CrossRef]
- Miyaura, N. (Ed.) Cross-Coupling Reactions: A Practical Guide; Springer: Berlin, Germany, 2002. [Google Scholar]
- De Meijere, A.; Diederich, F. (Eds.) Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2004. [Google Scholar]
- Nishihara, Y. (Ed.) Applied Cross-Coupling Reactions; Springer: Berlin, Germany, 2013. [Google Scholar]
- Shaughnessy, K.H. Cross-coupling reactions in aqueous media. In Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future Developments; Molnár, Á., Ed.; Wiley-VCH Verlag GmbH & Co. KGa: Weinheim, Germany, 2013. [Google Scholar]
- Burda, E.; Hummel, W.; Gröger, H. Modular Chemoenzymatic One-Pot Syntheses in Aqueous Media: Combination of a Palladium-Catalyzed Cross-Coupling with an Asymmetric Biotransformation. Angew. Chem. Int. Ed. 2008, 47, 9551–9554. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.T.; Parmeggiani, F.; Weise, N.J.; Flitsch, S.L.; Turner, N.J. Chemoenzymatic Synthesis of Optically Pure l- and d-Biarylalanines through Biocatalytic Asymmetric Amination and Palladium Catalyzed Arylation. ACS Catal. 2015, 5, 5410–5413. [Google Scholar] [CrossRef]
- Frese, M.; Schnepel, C.; Minges, H.; Voß, H.; Feiner, R.; Sewald, N. Modular Combination of Enzymatic Halogenation of Tryptophan with Suzuki-Miyaura Cross-Coupling Reactions. ChemCatChem 2016, 8, 1799–1803. [Google Scholar] [CrossRef]
- Latham, J.; Henry, J.-M.; Sharif, H.H.; Menon, B.R.K.; Shepherd, S.A.; Greaney, M.F.; Micklefield, J. Integrated catalysis opens new arylation pathways via regiodivergent enzymatic C–H activation. Nat. Commun. 2016, 7, 11873. [Google Scholar] [CrossRef] [PubMed]
- Boffi, A.; Cacchi, S.; Ceci, P.; Cirilli, R.; Fabrizi, G.; Prastaro, A.; Niembro, S.; Shafir, A.; Vallribera, V. The Heck Reaction of Allylic Alcohols Catalyzed by Palladium Nanoparticles in Water: Chemoenzymatic Synthesis of (R)-(−)-Rhododendrol. ChemCatChem 2011, 3, 347–353. [Google Scholar] [CrossRef]
- Fuchs, M.; Schober, M.; Pfeffer, J.; Kroutil, W.; Birner-Gruenberger, R.; Faber, K. Homoallylic Alcohols via a Chemo-Enzymatic One-Pot Oxidation-Allylation Cascade. Adv. Synth. Catal. 2011, 353, 2354–2358. [Google Scholar] [CrossRef]
- Sonoike, S.; Itakura, T.; Kitamura, M.; Aoki, S. One-pot Chemoenzymatic Synthesis of Chiral 1,3-Diols Using an Enantioselective Aldol Reaction with Chiral Zn2+ Complex Catalysts and Enzymatic Reduction Using Oxidoreductases with Cofactor Regeneration. Chem. Asian J. 2012, 7, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A. Synthetic studies via the cross-coupling reaction of organoboron derivatives with organic halides. Pure Appl. Chem. 1991, 63, 419–422. [Google Scholar] [CrossRef]
- Negishi, E.-I. (Ed.) Handbook of Organopalladium Chemistry for Organic Synthesis; Wiley-Interscience: Hoboken, NJ, USA, 2002; Volume 1. [Google Scholar]
- Hall, G. (Ed.) Boronic Acids. Preparation and Application in Organic Synthesis and Medicine; Wiley-VCH Verlag GmbH & Co. KGa: Weinheim, Germany, 2006. [Google Scholar]
- Turner, N.J. Ammonia lyases and aminomutases as biocatalysts for the synthesis of α-amino and β-amino acids. Curr. Opin. Chem. Biol. 2011, 15, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Vedha-Peters, K.; Gunawardana, M.; Rozzell, J.D.; Novick, S.J. Creation of a Broad-Range and Highly Stereoselective d-Amino Acid Dehydrogenase for the One-Step Synthesis of d-Amino Acids. J. Am. Chem. Soc. 2006, 128, 10923–10929. [Google Scholar] [CrossRef] [PubMed]
- Frese, M.; Sewald, N. Enzymatic Halogenation of Tryptophan on a Gram Scale. Angew. Chem. Int. Ed. 2015, 54, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Mizoroki, T.; Mori, K.; Ozaki, A. Arylation of olefins with aryl iodine catalyzed by palladium. Bull. Chem. Soc. Jpn. 1971, 44, 581. [Google Scholar] [CrossRef]
- Heck, R.F.; Nolley, J.P. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem. 1972, 37, 2320–2322. [Google Scholar] [CrossRef]
- Beller, M.; Fischer, H.; Kühlein, K.; Reisinger, C.P.; Hermann, W.A. First palladium-catalyzed Heck reaction with efficient colloidal catalyst systems. J. Organomet. Chem. 1996, 520, 257–259. [Google Scholar] [CrossRef]
- Oestreich, M. (Ed.) The Mizoroki-Hech reaction; John Wiley & Sons: Chichester, UK, 2009. [Google Scholar]
- Baig, R.B.N.; Varma, R.S. Nanocatalysis in water. In Metal-Catalyzed Reactions in Water; Dixnuef, P.H., Cadierno, V., Eds.; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Shaughnessy, K.H. Metal-catalyzed cross-coupling of aryl halides to form C-C bonds in aqueous media. In Metal-Catalyzed Reactions in Water; Dixnuef, P.H., Cadierno, V., Eds.; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Barbier, P. Synthèse du diméthylhepténol. C. R. Acad. Sci. 1899, 128, 110–111. [Google Scholar]
- Wakefield, B.J. Comprehensive Organometallic Chemistry; Chapter 44; Pergamon: Oxford, UK, 1982; Volume 7. [Google Scholar]
- García-Álvarez, J.; Hevia, E.; Capriati, V. Reactivity of Polar Organometallic Compounds in Unconventional Reaction Media: Challenges and Opportunities. Eur. J. Org. Chem. 2015, 31, 6779–6799. [Google Scholar] [CrossRef][Green Version]
- Li, C.-J.; Chan, T.H. Organometallic Reactions in Aqueous Media. 2. Convenient Synthesis of Methylenetetrahydrofurans. Organometallics 1991, 10, 2548–2549. [Google Scholar] [CrossRef]
- Hudlucky, M. Oxidations in Organic Chemistry; ACS Monograph Series; American Chemical Society: Washington, DC, USA, 1990. [Google Scholar]
- Mutti, F.G.; Orthaber, A.; Schrittwieser, J.H.; de Vries, J.G.; Pietschnig, R.; Kroutil, W. Simultaneous iridium catalysed oxidation and enzymatic reduction employing orthogonal reagents. Chem. Commun. 2010, 46, 8046–8048. [Google Scholar] [CrossRef] [PubMed]
- Haak, R.M.; Berthiol, F.; Jerphagnon, T.; Gayet, A.J.A.; Tarabiono, C.; Postema, C.P.; Ritleng, V.; Pfeffer, M.; Janssen, D.B.; Minnaard, A.J.; et al. Dynamic Kinetic Resolution of Racemic β-Haloalcohols: Direct Access to Enantioenriched Epoxides. J. Am. Chem. Soc. 2008, 130, 13508–13509. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Hummel, W.; Gröger, H. Cooperative Catalysis of Noncompatible Catalysts through Compartmentalization: Wacker Oxidation and Enzymatic Reduction in a One-Pot Process in Aqueous Media. Angew. Chem. Int. Ed. 2015, 54, 4488–4492. [Google Scholar] [CrossRef] [PubMed]
- Runge, M.B.; Mwangi, M.T.; Miller, A.L., II; Perring, M.; Bowden, N.B. Cascade Reactions Using LiAlH4 and Grignard Reagents in the Presence of Water. Angew. Chem. Int. Ed. 2008, 47, 935–939. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ríos-Lombardía, N.; García-Álvarez, J.; González-Sabín, J. One-Pot Combination of Metal- and Bio-Catalysis in Water for the Synthesis of Chiral Molecules. Catalysts 2018, 8, 75. https://doi.org/10.3390/catal8020075
Ríos-Lombardía N, García-Álvarez J, González-Sabín J. One-Pot Combination of Metal- and Bio-Catalysis in Water for the Synthesis of Chiral Molecules. Catalysts. 2018; 8(2):75. https://doi.org/10.3390/catal8020075
Chicago/Turabian StyleRíos-Lombardía, Nicolás, Joaquín García-Álvarez, and Javier González-Sabín. 2018. "One-Pot Combination of Metal- and Bio-Catalysis in Water for the Synthesis of Chiral Molecules" Catalysts 8, no. 2: 75. https://doi.org/10.3390/catal8020075