Methanol-Tolerant M–N–C Catalysts for Oxygen Reduction Reactions in Acidic Media and Their Application in Direct Methanol Fuel Cells
Abstract
:1. Introduction
2. Synthesis of Noble Metal Free Catalysts
3. Catalytic Activity of M–N–C Catalysts for the ORR in Rotating Disk Electrode (RDE) and DMFC
3.1. Oxygen Reduction Reaction with Methanol Tolerance in an Acid Environment for M–N–C Catalysts
3.2. Review of Direct Methanol Fuel Cell Performance with M–N–C Cathode Catalysts
4. Conclusions
Acknowledgments
Funding
Conflicts of Interest
References
- Kimiaie, N.; Wedlich, K.; Hehemann, M.; Lambertz, R.; Korte, C.; Stolten, D. Results of a 20,000 h lifetime test of a 7 kW direct methanol fuel cell (DMFC) hybrid system—Degradation of the DMFC stack and the energy storage. Energy Environ. Sci. 2014, 7, 3013–3025. [Google Scholar] [CrossRef]
- Tiwari, J.N.; Tiwari, R.N.; Singh, G.; Kim, K.S. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2013, 2, 553–578. [Google Scholar] [CrossRef]
- Han, J.; Liu, H. Real time measurements of methanol crossover in a DMFC. J. Power Sources 2007, 164, 166–173. [Google Scholar] [CrossRef]
- Du, C.Y.; Zhao, T.S.; Yang, W.W. Effect of methanol crossover on the cathode behavior of a DMFC: A half-cell investigation. Electrochim. Acta 2007, 52, 5266–5271. [Google Scholar] [CrossRef]
- Gurau, B.; Smotkin, E.S. Methanol crossover in direct methanol fuel cells: A link between power and energy density. J. Power Sources 2002, 112, 339–352. [Google Scholar] [CrossRef]
- Falcão, D.S.; Oliveira, V.B.; Rangel, C.M.; Pinto, A.M.F.R. Review on micro-direct methanol fuel cells. Renew. Sustain. Energy Rev. 2014, 34, 58–70. [Google Scholar] [CrossRef] [Green Version]
- Lamy, C.; Coutanceau, C.; Alonso-Vante, N. Methanol-Tolerant Cathode Catalysts for DMFC. In Electrocatalysis of Direct Methanol Fuel Cells: From Fundamentals to Applications; Liu, H., Zhang, J., Eds.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; pp. 257–314. [Google Scholar]
- Calderòn Gómez, J.C.; Moliner, R.; Lázaro, M.J. Palladium-Based Catalysts as Electrodes for Direct Methanol Fuel Cells: A Last Ten Years Review. Catalysts 2016, 6, 130. [Google Scholar] [CrossRef]
- Lo Vecchio, C.; Sebastián, D.; Alegre, C.; Aricò, A.S.; Baglio, V. Carbon-supported Pd and Pd-Co cathode catalysts for direct methanol fuel cells (DMFCs) operating with high methanol concentration. J. Electroanal. Chem. 2018, 808, 464–473. [Google Scholar] [CrossRef]
- Sebastián, D.; Baglio, V.; Sun, S.; Tavares, A.C.; Aricò, A.S. Graphene-Supported Substoichiometric Sodium Tantalate as a Methanol-Tolerant, Non-Noble-Metal Catalyst for the Electroreduction of Oxygen. ChemCatChem 2015, 2, 911–915. [Google Scholar] [CrossRef]
- Barton, S.C.; Patterson, T.; Wang, E.; Fuller, T.F.; West, A.C. Mixed-reactant, strip-cell direct methanol fuel cells. J. Power Sources 2001, 96, 329–336. [Google Scholar] [CrossRef]
- Priestnall, M.A.; Kotzeva, V.P.; Fish, D.J.; Nilsson, E.M. Compact mixed-reactant fuel cells. J. Power Sources 2002, 106, 21–30. [Google Scholar] [CrossRef]
- Scott, K.; Shukla, A.K.; Jackson, C.L.; Meuleman, W.R.A. A mixed-reactants solid-polymer-electrolyte direct methanol fuel cell. J. Power Sources 2004, 126, 67–75. [Google Scholar] [CrossRef]
- Shao, M. Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. J. Power Sources 2011, 196, 2433–2444. [Google Scholar] [CrossRef]
- Lo Vecchio, C.; Alegre, C.; Sebastián, D.; Stassi, A.; Aricò, A.S.; Baglio, V. Investigation of supported Pd-based electrocatalysts for the oxygen reduction reaction: Performance, Durability and Methanol Tolerance. Materials 2015, 8, 7997–8008. [Google Scholar] [CrossRef] [PubMed]
- Rivera Gavidia, L.M.; Sebastián, D.; Pastor, E.; Aricò, A.S.; Baglio, V. Carbon-Supported Pd and PdFe Alloy Catalysts for Direct Methanol Fuel Cell Cathodes. Materials 2017, 10, 580. [Google Scholar] [CrossRef] [PubMed]
- Gago, A.S.; Gochi-ponce, Y.; Feng, Y.; Esquivel, J.P.; Sabaté, N.; Santander, J.; Alonso-Vante, N. Tolerant Chalcogenide Cathodes of Membraneless Micro Fuel Cells. ChemSusChem 2012, 1488–1494. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, S.; Manthiram, A. Co3O4 nanocrystals coupled with O- and N-doped carbon nanoweb as a synergistic catalyst for hybrid Li-air batteries. Nano Energy 2015, 12, 852–860. [Google Scholar] [CrossRef]
- Jahan, M.; Bao, Q.; Loh, K.P. Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 6707–6713. [Google Scholar] [CrossRef] [PubMed]
- Bull, R.A.; Fan, F.-R.; Bard, A.J. Polymer Films on Electrodes. J. Electrochem. Soc. 2012, 131, 687–690. [Google Scholar] [CrossRef]
- Okabayashi, K.; Ikeda, O.; Tamura, H. Electrochemical doping with meso-Tetrakis(4-sulphonatophenyl)-porphyrincobalt of a Polypyrrole Film Electrode. J. Chem. Soc. Chem. Commun. 1983, 684–685. [Google Scholar] [CrossRef]
- El Hourch, A.; Belcadi, S. Electrocatalytic reduction of oxygen at iron phthalocyanine modified polymer electrodes. J. Electroanal. Chem. 1992, 339, 1–12. [Google Scholar] [CrossRef]
- Wu, G.; Santandreu, A.; Kellogg, W.; Gupta, S.; Ogoke, O.; Zhang, H.; Wang, H.L.; Dai, L. Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition. Nano Energy 2016, 29, 83–110. [Google Scholar] [CrossRef]
- Chen, Z.; Higgins, D.; Yu, A.; Zhang, L.; Zhang, J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192. [Google Scholar] [CrossRef]
- Proietti, E.; Jaouen, F.; Lefèvre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J.-P. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2011, 2, 416. [Google Scholar] [CrossRef]
- Thompson, S.T.; Wilson, A.R.; Zelenay, P.; Myers, D.J.; More, K.L.; Neyerline, K.C.; Papageorgopoulos, D. ElectroCat: DOE’s approach to PGM-free catalyst and electrode R & D. Solid State Ion. 2018, 319, 68–76. [Google Scholar] [CrossRef]
- Martinez, U.; Babu, S.K.; Holby, E.F.; Zelenay, P. Durability challenges and perspective in the development of PGM-free electrocatalysts for the oxygen reduction reaction. Curr. Opin. Electrochem. 2018, 9, 224–232. [Google Scholar] [CrossRef]
- Serov, A.; Shum, A.D.; Xiao, X.; De Andrade, V.; Artyushkova, K. Nano-structured platinum group metal-free catalysts and their integration in fuel cell electrode architectures. Appl. Catal. B Environ. 2018, 237, 1139–1147. [Google Scholar] [CrossRef]
- Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J.-P. Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells. Science 2009, 324, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Jaouen, F.; Proietti, E.; Lefèvre, M.; Chenitz, R.; Dodelet, J.-P.; Wu, G.; Chung, H.T.; Johnston, C.M.; Zelenay, P. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 2011, 4, 114–130. [Google Scholar] [CrossRef]
- Serov, A.; Artyushkova, K.; Atanassov, P. Fe-N-C Oxygen Reduction Fuel Cell Catalyst Derived from Carbendazim: Synthesis, Structure, and Reactivity. Adv. Energy Mater. 2014, 4, 1301735. [Google Scholar] [CrossRef]
- Chisaka, M.; Ishihara, A.; Ota, K.; Muramoto, H. Synthesis of carbon-supported titanium oxynitride nanoparticles as cathode catalyst for polymer electrolyte fuel cells. Electrochim. Acta 2013, 113, 735–740. [Google Scholar] [CrossRef]
- Ohgi, Y.; Ishihara, A.; Shibata, Y.; Mitsushima, S.; Ota, K. Catalytic Activity of Partially Oxidized Transition-metal Carbide-Nitride for Oxygen Reduction Reaction in Sulfuric Acid. Chem. Lett. 2008, 37, 608–609. [Google Scholar] [CrossRef]
- Chisaka, M.; Suzuki, Y.; Iijima, T.; Sakurai, Y. Effect of synthesis route on oxygen reduction reaction activity of carbon-supported hafnium oxynitride in acid media. J. Phys. Chem. C 2011, 115, 20610. [Google Scholar] [CrossRef]
- Seifitokaldani, A.; Savadogo, O.; Perrier, M. Stability and catalytic activity of titanium oxy-nitride catalyst prepared by in-situ urea-based sol-gel method for the oxygen reduction reaction (ORR) in acid medium. Int. J. Hydrogen Energy 2015, 40, 10427–10438. [Google Scholar] [CrossRef]
- Seifitokaldani, A.; Oishi, K.; Perrier, M.; Savadogo, O. Electrochemical and physicochemical properties of titanium Oxy-nitride electrocatalyst prepared by sol-gel methods for the oxygen reduction reaction purposes. J. Solid State Electrochem. 2015, 19, 3097–3109. [Google Scholar] [CrossRef]
- Baranton, S.; Coutanceau, C.; Léger, J.-M.; Roux, C.; Capron, P. Alternative cathodes based on iron phthalocyanine catalysts for mini- or micro-DMFC working at room temperature. Electrochim. Acta 2005, 51, 517–525. [Google Scholar] [CrossRef]
- Monteverde Videla, A.H.A.; Sebastián, D.; Vasile, N.S.; Osmieri, L.; Aricò, A.S.; Baglio, V.; Specchia, S. Performance analysis of Fe-N-C catalyst for DMFC cathodes: Effect of water saturation in the cathodic catalyst layer. Int. J. Hydrogen Energy 2016, 41, 22605–22618. [Google Scholar] [CrossRef]
- Osmieri, L.; Escudero-Cid, R.; Monteverde Videla, A.H.A.; Ocón, P.; Specchia, S. Performance of a Fe-N-C catalyst for the oxygen reduction reaction in direct methanol fuel cell: Cathode formulation optimization and short-term durability. Appl. Catal. B Environ. 2017, 201, 253–265. [Google Scholar] [CrossRef]
- Osmieri, L.; Escudero-Cid, R.; Armandi, M.; Ocón, P.; Monteverde Videla, A.H.A.; Specchia, S. Effects of using two transition metals in the synthesis of non-noble electrocatalysts for oxygen reduction reaction in direct methanol fuel cell. Electrochim. Acta 2018, 266, 220–232. [Google Scholar] [CrossRef]
- Sebastián, D.; Serov, A.; Artyushkova, K.; Atanassov, P.; Aricò, A.S.; Baglio, V. Performance, methanol tolerance and stability of Fe-aminobenzimidazole derived catalyst for direct methanol fuel cells. J. Power Sources 2016, 319, 235–246. [Google Scholar] [CrossRef]
- Sebastián, D.; Baglio, V.; Aricò, A.S.; Serov, A.; Atanassov, P. Performance analysis of a non-platinum group metal catalyst based on iron-aminoantipyrine for direct methanol fuel cells. Appl. Catal. B Environ. 2016, 182, 297–305. [Google Scholar] [CrossRef]
- Sebastián, D.; Serov, A.; Artyushkova, K.; Gordon, J.; Atanassov, P.; Aricò, A.S.; Baglio, V. High Performance and Cost-Effective Direct Methanol Fuel Cells: Fe-N-C Methanol-Tolerant Oxygen Reduction Reaction Catalysts. ChemSusChem 2016, 9, 1986–1995. [Google Scholar] [CrossRef] [PubMed]
- Sebastián, D.; Serov, A.; Matanovic, I.; Artyushkova, K.; Atanassov, P.; Aricò, A.S.; Baglio, V. Insights on the extraordinary tolerance to alcohols of Fe-N-C cathode catalysts in highly performing direct alcohol fuel cells. Nano Energy 2017, 34, 195–204. [Google Scholar] [CrossRef]
- Serov, A.A.; Min, M.; Chai, G.; Han, S.; Seo, S.J.; Park, Y.; Kim, H.; Kwak, C. Electroreduction of oxygen over iron macrocyclic catalysts for DMFC applications. J. Appl. Electrochem. 2009, 39, 1509–1516. [Google Scholar] [CrossRef]
- Kong, W.; Yao, K.; Duan, X.; Liu, Z.; Hu, J. Holey Co, N-codoped graphene aerogel with in-plane pores and multiple active sites for efficient oxygen reduction. Electrochim. Acta 2018, 269, 544–552. [Google Scholar] [CrossRef]
- Kwak, D.-H.; Han, S.-B.; Kim, D.-H.; Won, J.-E.; Park, K.-W. Amino acid-derived non-precious catalysts with excellent electrocatalytic performance and methanol tolerance in oxygen reduction reaction. Appl. Catal. B Environ. 2018, 238, 93–103. [Google Scholar] [CrossRef]
- Olson, T.S.; Blizanac, B.; Piela, B.; Davey, J.R.; Zelenay, P.; Atanassov, P. Electrochemical Evaluation of Porous Non-Platinum Oxygen Reduction Catalysts for Polymer Electrolyte Fuel Cells. Fuel Cells 2009, 9, 547–553. [Google Scholar] [CrossRef]
- Piela, B.; Olson, T.S.; Atanassov, P.; Zelenay, P. Highly methanol-tolerant non-precious metal cathode catalysts for direct methanol fuel cell. Electrochim. Acta 2010, 55, 7615–7621. [Google Scholar] [CrossRef]
- Zhu, J.; Xiao, M.; Liu, C.; Ge, J.; St-Pierre, J.; Xing, W. Growth mechanism and active site probing of Fe3C@N-doped carbon nanotubes/C catalysts: Guidance for building highly efficient oxygen reduction electrocatalysts. J. Mater. Chem. A 2015, 3, 21451–21459. [Google Scholar] [CrossRef]
- Xiao, M.; Zhu, J.; Feng, L.; Liu, C.; Xing, W. Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 2015, 27, 2521–2527. [Google Scholar] [CrossRef]
- Yang, X.; Hu, X.; Wang, X.; Fu, W.; He, X.; Asefa, T. Metal-organic framework-derived Fe3C@NC nanohybrids as highly-e ffi cient oxygen reduction electrocatalysts in both acidic and basic media. J. Electroanal. Chem. 2018, 823, 755–764. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Xu, X.-Y.; Sun, P.-C.; Chen, T.-H. N-doped porous carbon nanosheets with embedded iron carbide nanoparticles for oxygen reduction reaction in acidic media. Int. J. Hydrogen Energy 2015, 40, 4531–4539. [Google Scholar] [CrossRef]
- Wei, Y.; Shengzhou, C.; Weiming, L. Oxygen reduction on non-noble metal electrocatalysts supported on N-doped carbon aerogel composites. Int. J. Hydrogen Energy 2012, 37, 942–945. [Google Scholar] [CrossRef]
- Li, Q.; Wang, T.; Havas, D.; Zhang, H.; Xu, P.; Han, J.; Cho, J.; Wu, G. High-Performance Direct Methanol Fuel Cells with Precious-Metal-Free Cathode. Adv. Sci. 2016, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Liu, X.; Yue, X.; Jia, J.; Guo, S. Bamboo-like Carbon Nanotube/Fe3C Nanoparticle Hybrids and Their Highly Efficient Catalysis for Oxygen Reduction. J. Am. Chem. Soc. 2015, 137, 1436–1439. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhu, J.; Lv, Q.; Liu, C.; Li, Q.; Xing, W. Promotional effect of phosphorus doping on the activity of the Fe-N/C catalyst for the oxygen reduction reaction. Electrochim. Acta 2015, 155, 335–340. [Google Scholar] [CrossRef]
- Qiu, Q.; Yang, W.; Zhan, Y.; Wang, H. Facile synthesis of high performance non-noble-metal electrocatalyst Fe–N–S/C for oxygen reduction reaction in acidic solutions. J. Mater. Sci. Mater. Electron. 2017, 28, 949–957. [Google Scholar] [CrossRef]
- Lo Vecchio, C.; Aricò, A.S.; Monforte, G.; Baglio, V. EDTA-derived Co-N-C and Fe-N-C electro-catalysts for the oxygen reduction reaction in acid environment. Renew. Energy 2018, 120, 342–349. [Google Scholar] [CrossRef]
- Negro, E.; Videla, A.H.A.M.; Baglio, V.; Aricò, A.S.; Specchia, S.; Koper, G.J.M. Fe-N supported on graphitic carbon nano-networks grown from cobalt as oxygen reduction catalysts for low-temperature fuel cells. Appl. Catal. B Environ. 2015, 166–167, 75–83. [Google Scholar] [CrossRef]
- Lo Vecchio, C.; Aricò, A.; Baglio, V.; Lo Vecchio, C.; Aricò, A.S.; Baglio, V. Application of Low-Cost Me-N-C (Me = Fe or Co) Electrocatalysts Derived from EDTA in Direct Methanol Fuel Cells (DMFCs). Materials 2018, 11, 1193. [Google Scholar] [CrossRef]
- Park, J.C.; Choi, C.H. Graphene-derived Fe/Co-N-C catalyst in direct methanol fuel cells: Effects of the methanol concentration and ionomer content on cell performance. J. Power Sources 2017, 358, 76–84. [Google Scholar] [CrossRef]
- Mei, R.; Xi, J.; Ma, L.; An, L.; Wang, F.; Sun, H.; Luo, Z.; Wu, Q. Multi-Scaled Porous Fe-N/C Nanofibrous Catalysts for the Cathode Electrodes of Direct Methanol Fuel Cells. J. Electrochem. Soc. 2017, 164, F1556–F1565. [Google Scholar] [CrossRef]
- He, C.; Zhang, J.J.; Shen, P.K. Nitrogen-self-doped graphene-based non-precious metal catalyst with superior performance to Pt/C catalyst toward oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 3231–3236. [Google Scholar] [CrossRef]
- Bukola, S.; Merzougui, B.; Akinpelu, A.; Laoui, T.; Hedhili, M.N.; Swain, G.M.; Shao, M. Fe-N-C Electrocatalysts for Oxygen Reduction Reaction Synthesized by Using Aniline Salt and Fe3+/H2O2 Catalytic System. Electrochim. Acta 2014, 146, 809–818. [Google Scholar] [CrossRef]
- Zuo, Q.; Zhao, P.; Luo, W.; Cheng, G. Hierarchically porous Fe-N-C derived from covalent-organic materials as a highly efficient electrocatalyst for oxygen reduction. Nanoscale 2016, 8, 14271–14277. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Lin, X.; Zhang, X. Cobalt nitride nanoparticle-modified nitrogen-doped graphene aerogel used as an efficient catalyst for oxygen reduction reaction in acidic medium. J. Mater. Sci. 2018, 53, 7691–7702. [Google Scholar] [CrossRef]
- Wei, J.; Hu, Y.; Wu, Z.; Liang, Y.; Leong, S.; Kong, B.; Zhang, X.; Zhao, D.; Simon, G.P.; Wang, H. A graphene-directed assembly route to hierarchically porous Co-Nx/C catalysts for high-performance oxygen reduction. J. Mater. Chem. 2015, 3, 16867–16873. [Google Scholar] [CrossRef]
- Lv, L.-B.; Ye, T.-N.; Gong, L.-H.; Wang, K.-X.; Su, J.; Li, X.-H.; Chen, J.-S. Anchoring Cobalt Nanocrystals through the Plane of Graphene: Highly Integrated Electrocatalyst for Oxygen Reduction Reaction. Chem. Mater. 2015, 27, 544–549. [Google Scholar] [CrossRef]
- Lin, L.; Zhu, Q.; Xu, A.-W. Noble-Metal-Free Fe−N/C Catalyst for Highly Efficient Oxygen Reduction Reaction under Both Alkaline and Acidic Conditions. J. Am. Chem. Soc. 2014, 136, 11027–11033. [Google Scholar] [CrossRef]
- Vij, V.; Tiwari, J.N.; Lee, W.-G.; Yoon, T.; Kim, K.S. Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2—Based catalyst for highly efficient oxygen reduction reaction. Sci. Rep. 2016, 6, 20132. [Google Scholar] [CrossRef]
- Sgroi, M.F.; Zedde, F.; Barbera, O.; Stassi, A.; Sebastián, D.; Lufrano, F.; Baglio, V.; Aricò, A.S.; Bonde, J.L.; Schuster, M. Cost Analysis of Direct Methanol Fuel Cell Stacks for Mass Production. Energies 2016, 9, 1008. [Google Scholar] [CrossRef]
Cathode | Maximum Power Density 1/mW cm−2 | Methanol Concentration/mol L−1 | Temperature/°C | Reference |
---|---|---|---|---|
PANI–Fe–TsPc | 6 | 5 | 20 | Baranton et al. [37] |
CoTMPP | 27 | 4.7 | 70 | Olson et al. [48] |
FeTPP | 28 | 1 | 80 | Serov et al. [45] |
CoTMPP | 45 | 1.1 | 70 | Piela et al. [49] |
Fe/N/C | 58 | 2 | 60 | Wei et al. [54] |
Co/N/C | 53 | 2 | 60 | Wei et al. [54] |
Fe3C@N-CNT | 31 | 2 | 60 | Zhu et al. [50] |
Fe/N/C | 21 | 2 | 50 | Hu et al. [57] |
Fe/N/C | 20 | 2 | 60 | Xiao et al. [51] |
Fe/N/C | 15 | 2 | 90 | Negro et al. [60] |
Fe/N/C | 22 | 10 | 90 | Sebastián et al. [41] |
Fe/N/C | 30 | 10 | 90 | Sebastián et al. [42] |
Fe/N/C | 48 | 10 | 90 | Sebastián et al. [43] |
Fe/N/C | 9.8 | 10 | 110 | Monteverde et al. [38] |
Fe/N/C | 60 | 10 | 90 | Sebastián et al. [44] |
Fe/Co–N–graphene | 32 | 10 | 80 | Park et al. [62] |
Fe/N/C | 20 | 2 | 90 | Osmieri et al. [39] |
Fe/N/C | 15 | 1 | 70 | Mei et al. [63] |
Co/Zn/N/C | 15 | 2 | 90 | Osmieri et al. [40] |
Co/Cu/N/C | 13 | 2 | 90 | Osmieri et al. [40] |
Fe/Co/N/C | 11 | 2 | 90 | Osmieri et al. [40] |
Fe/Cu/N/C | 9 | 2 | 90 | Osmieri et al. [40] |
Fe/Zn/N/C | 7.5 | 2 | 90 | Osmieri et al. [40] |
Fe/N/C | 10.5 | 2 | 90 | Lo Vecchio et al. [61] |
Fe/N/rGO | 52.5 | 1 | 75 | Li et al. [55] |
Fe/N/rGO | 42.5 | 8 | 75 | Li et al. [55] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo Vecchio, C.; Sebastián, D.; Lázaro, M.J.; Aricò, A.S.; Baglio, V. Methanol-Tolerant M–N–C Catalysts for Oxygen Reduction Reactions in Acidic Media and Their Application in Direct Methanol Fuel Cells. Catalysts 2018, 8, 650. https://doi.org/10.3390/catal8120650
Lo Vecchio C, Sebastián D, Lázaro MJ, Aricò AS, Baglio V. Methanol-Tolerant M–N–C Catalysts for Oxygen Reduction Reactions in Acidic Media and Their Application in Direct Methanol Fuel Cells. Catalysts. 2018; 8(12):650. https://doi.org/10.3390/catal8120650
Chicago/Turabian StyleLo Vecchio, Carmelo, David Sebastián, María Jesús Lázaro, Antonino Salvatore Aricò, and Vincenzo Baglio. 2018. "Methanol-Tolerant M–N–C Catalysts for Oxygen Reduction Reactions in Acidic Media and Their Application in Direct Methanol Fuel Cells" Catalysts 8, no. 12: 650. https://doi.org/10.3390/catal8120650
APA StyleLo Vecchio, C., Sebastián, D., Lázaro, M. J., Aricò, A. S., & Baglio, V. (2018). Methanol-Tolerant M–N–C Catalysts for Oxygen Reduction Reactions in Acidic Media and Their Application in Direct Methanol Fuel Cells. Catalysts, 8(12), 650. https://doi.org/10.3390/catal8120650