Non-Stoichiometric Redox Active Perovskite Materials for Solar Thermochemical Fuel Production: A Review
Abstract
:1. Introduction
2. Thermodynamics of Thermochemical Cycles
3. Perovskite Formulations Investigated for Thermochemical Cycles
3.1. Lanthanum–Manganite Perovskites
3.1.1. A-Site Substituted Materials
3.1.2. B-Site Substituted Materials
3.2. Lanthanum–Cobalt Perovskites
3.3. Yttrium–Manganese Perovskites
3.4. Other Perovskites
4. Kinetic Studies
- Kinetic rate related to the oxidation reaction itself;
- Time necessary for the oxidant gas to be introduced in the reaction chamber;
- Gas detector delay;
- Influence of the dispersion of the gas product during the transportation between the reactor outlet and the detector.
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ashby, M.F. Chapter 12—Materials for low-carbon power. In Materials and the Environment (Second Edition); Ashby, M.F., Ed.; Butterworth-Heinemann: Boston, MA, USA, 2013; pp. 349–413. ISBN 978-0-12-385971-6. [Google Scholar]
- Marxer, D.; Furler, P.; Scheffe, J.; Geerlings, H.; Falter, C.; Batteiger, V.; Sizmann, A.; Steinfeld, A. Demonstration of the Entire Production Chain to Renewable Kerosene via Solar Thermochemical Splitting of H2O and CO2. Energy Fuels 2015, 29, 3241–3250. [Google Scholar] [CrossRef]
- Marxer, D.; Furler, P.; Takacs, M.; Steinfeld, A. Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency. Energy Environ. Sci. 2017, 10, 1142–1149. [Google Scholar] [CrossRef]
- Siegel, N.P.; Miller, J.E.; Ermanoski, I.; Diver, R.B.; Stechel, E.B. Factors Affecting the Efficiency of Solar Driven Metal Oxide Thermochemical Cycles. Ind. Eng. Chem. Res. 2013, 52, 3276–3286. [Google Scholar] [CrossRef]
- Muhich, C.L.; Ehrhart, B.D.; Al-Shankiti, I.; Ward, B.J.; Musgrave, C.B.; Weimer, A.W. A review and perspective of efficient hydrogen generation via solar thermal water splitting. Wiley Interdiscip. Rev. Energy Environ. 2016, 5, 261–287. [Google Scholar] [CrossRef]
- Carrillo, R.J.; Scheffe, J.R. Advances and trends in redox materials for solar thermochemical fuel production. Solar Energy 2017, 156, 3–20. [Google Scholar] [CrossRef]
- Bhosale, R.R.; Takalkar, G.; Sutar, P.; Kumar, A.; AlMomani, F.; Khraisheh, M. A decade of ceria based solar thermochemical H2O/CO2 splitting cycle. Int. J. Hydrogen Energy 2018. [Google Scholar] [CrossRef]
- Chueh, W.C.; Haile, S.M. A thermochemical study of ceria: Exploiting an old material for new modes of energy conversion and CO2 mitigation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 3269–3294. [Google Scholar] [CrossRef] [PubMed]
- Call, F.; Roeb, M.; Schmücker, M.; Sattler, C.; Pitz-Paal, R. Ceria Doped with Zirconium and Lanthanide Oxides to Enhance Solar Thermochemical Production of Fuels. J. Phys. Chem. C 2015, 119, 6929–6938. [Google Scholar] [CrossRef]
- Le Gal, A.; Abanades, S. Dopant Incorporation in Ceria for Enhanced Water-Splitting Activity during Solar Thermochemical Hydrogen Generation. J. Phys. Chem. C 2012, 116, 13516–13523. [Google Scholar] [CrossRef]
- Scheffe, J.R.; Jacot, R.; Patzke, G.R.; Steinfeld, A. Synthesis, Characterization, and Thermochemical Redox Performance of Hf4+, Zr4+, and Sc3+ Doped Ceria for Splitting CO2. J. Phys. Chem. C 2013, 117, 24104–24114. [Google Scholar] [CrossRef]
- Yadav, D.; Banerjee, R. A review of solar thermochemical processes. Renew. Sustain. Energy Rev. 2016, 54, 497–532. [Google Scholar] [CrossRef]
- Romero, M.; Steinfeld, A. Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. 2012, 5, 9234. [Google Scholar] [CrossRef]
- Miller, J.E.; McDaniel, A.H.; Allendorf, M.D. Considerations in the Design of Materials for Solar-Driven Fuel Production Using Metal-Oxide Thermochemical Cycles. Adv. Energy Mater. 2014, 4, 1300469. [Google Scholar] [CrossRef]
- Scheffe, J.R.; Steinfeld, A. Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: A review. Mater. Today 2014, 17, 341–348. [Google Scholar] [CrossRef]
- Kubicek, M.; Bork, A.H.; Rupp, J.L.M. Perovskite oxides—A review on a versatile material class for solar-to-fuel conversion processes. J. Mater. Chem. A 2017, 5, 11983–12000. [Google Scholar] [CrossRef]
- Sunarso, J.; Hashim, S.S.; Zhu, N.; Zhou, W. Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: A review. Prog. Energy Combust. Sci. 2017, 61, 57–77. [Google Scholar] [CrossRef]
- Takacs, M.; Hoes, M.; Caduff, M.; Cooper, T.; Scheffe, J.R.; Steinfeld, A. Oxygen nonstoichiometry, defect equilibria, and thermodynamic characterization of LaMnO3 perovskites with Ca/Sr A-site and Al B-site doping. Acta Mater. 2016, 103, 700–710. [Google Scholar] [CrossRef]
- Meredig, B.; Wolverton, C. First-principles thermodynamic framework for the evaluation of thermochemical H2O—Or CO2—Splitting materials. Phys. Rev. B 2009, 80. [Google Scholar] [CrossRef]
- Takacs, M.; Scheffe, J.R.; Steinfeld, A. Oxygen nonstoichiometry and thermodynamic characterization of Zr doped ceria in the 1573–1773 K temperature range. Phys. Chem. Chem. Phys. 2015, 17, 7813–7822. [Google Scholar] [CrossRef] [Green Version]
- Al-Shankiti, I.; Ehrhart, B.D.; Weimer, A.W. Isothermal redox for H2O and CO2 splitting—A review and perspective. Solar Energy 2017, 156, 21–29. [Google Scholar] [CrossRef]
- Bulfin, B.; Vieten, J.; Agrafiotis, C.; Roeb, M.; Sattler, C. Applications and limitations of two step metal oxide thermochemical redox cycles; a review. J. Mater. Chem. A 2017, 5, 18951–18966. [Google Scholar] [CrossRef]
- Scheffe, J.R.; Weibel, D.; Steinfeld, A. Lanthanum–Strontium–Manganese perovskites as redox materials for solar thermochemical splitting of H2O and CO2. Energy Fuels 2013, 27, 4250–4257. [Google Scholar] [CrossRef]
- Davenport, T.C.; Kemei, M.; Ignatowich, M.J.; Haile, S.M. Interplay of material thermodynamics and surface reaction rate on the kinetics of thermochemical hydrogen production. Int. J. Hydrogen Energy 2017, 42, 16932–16945. [Google Scholar] [CrossRef] [Green Version]
- Evdou, A.; Zaspalis, V.; Nalbandian, L. La(1−x)SrxMnO3−δ perovskites as redox materials for the production of high purity hydrogen. Int. J. Hydrogen Energy 2008, 33, 5554–5562. [Google Scholar] [CrossRef]
- Peña, M.A.; Fierro, J.L.G. Chemical structures and performance of perovskite oxides. Chem. Rev. 2001, 101, 1981–2018. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, K.J.; Jackson, G.S.; Braun, R.J. Thermodynamically consistent modeling of redox-stable perovskite oxides for thermochemical energy conversion and storage. Appl. Energy 2016, 165, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, T. (Ed.) Perovskite Oxide for Solid Oxide Fuel Cells; Fuel Cells and Hydrogen Energy; Springer US: Boston, MA, USA, 2009; ISBN 978-0-387-77707-8. [Google Scholar]
- Emery, A.A.; Saal, J.E.; Kirklin, S.; Hegde, V.I.; Wolverton, C. High-throughput computational screening of perovskites for thermochemical water splitting applications. Chem. Mater. 2016, 28, 5621–5634. [Google Scholar] [CrossRef]
- Yang, C.-K.; Yamazaki, Y.; Aydin, A.; Haile, S.M. Thermodynamic and kinetic assessments of strontium-doped lanthanum manganite perovskites for two-step thermochemical water splitting. J. Mater. Chem. A 2014, 2, 13612–13623. [Google Scholar] [CrossRef] [Green Version]
- Agrafiotis, C.; Roeb, M.; Sattler, C. A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew. Sustain. Energy Rev. 2015, 42, 254–285. [Google Scholar] [CrossRef]
- Demont, A.; Abanades, S.; Beche, E. Investigation of Perovskite Structures as Oxygen-Exchange Redox Materials for Hydrogen Production from Thermochemical Two-Step Water-Splitting Cycles. J. Phys. Chem. C 2014, 118, 12682–12692. [Google Scholar] [CrossRef]
- Bork, A.H.; Povoden-Karadeniz, E.; Rupp, J.L.M. Modeling Thermochemical Solar-to-Fuel Conversion: CALPHAD for Thermodynamic Assessment Studies of Perovskites, Exemplified for (La,Sr)MnO3. Adv. Energy Mater. 2017, 7, 1601086. [Google Scholar] [CrossRef]
- Kuo, J.H.; Anderson, H.U.; Sparlin, D.M. Oxidation-reduction behavior of undoped and Sr-doped LaMnO3 nonstoichiometry and defect structure. J. Solid State Chem. 1989, 83, 52–60. [Google Scholar] [CrossRef]
- Mizusaki, J. Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1−xSrxMnO3+d. Solid State Ionics 2000, 129, 163–177. [Google Scholar] [CrossRef]
- Dey, S.; Rao, C.N.R. Splitting of CO2 by Manganite Perovskites to Generate CO by Solar Isothermal Redox Cycling. ACS Energy Lett. 2016, 1, 237–243. [Google Scholar] [CrossRef]
- Demont, A.; Abanades, S. High redox activity of Sr-substituted lanthanum manganite perovskites for two-step thermochemical dissociation of CO2. RSC Adv. 2014, 4, 54885–54891. [Google Scholar] [CrossRef]
- Nair, M.M.; Abanades, S. Experimental screening of perovskite oxides as efficient redox materials for solar thermochemical CO2 conversion. Sustain. Energy Fuels 2018. [Google Scholar] [CrossRef]
- Gálvez, M.E.; Jacot, R.; Scheffe, J.; Cooper, T.; Patzke, G.; Steinfeld, A. Physico-chemical changes in Ca, Sr and Al-doped La–Mn–O perovskites upon thermochemical splitting of CO2 via redox cycling. Phys. Chem. Chem. Phys. 2015, 17, 6629–6634. [Google Scholar] [CrossRef]
- Shannon Radii. Available online: http://abulafia.mt.ic.ac.uk/shannon/ptable.php (accessed on 4 January 2018).
- Demont, A.; Abanades, S. Solar thermochemical conversion of CO2 into fuel via two-step redox cycling of non-stoichiometric Mn-containing perovskite oxides. J. Mater. Chem. A 2015, 3, 3536–3546. [Google Scholar] [CrossRef]
- Maiti, D.; Hare, B.J.; Daza, Y.A.; Ramos, A.E.; Kuhn, J.N.; Bhethanabotla, V.R. Earth abundant perovskite oxides for low temperature CO2 conversion. Energy Environ. Sci. 2018, 11, 648–659. [Google Scholar] [CrossRef]
- Wang, L.; Al-Mamun, M.; Liu, P.; Zhong, Y.L.; Wang, Y.; Yang, H.G.; Zhao, H. Enhanced Thermochemical H2 Production on Ca-Doped Lanthanum Manganite Perovskites Through Optimizing the Dopant Level and Re-oxidation Temperature. Acta Metall. Sin. 2018, 31, 431–439. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Dey, S. Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides. J. Solid State Chem. 2016, 242, 107–115. [Google Scholar] [CrossRef]
- Ezbiri, M. Design of Perovskite Redox Materials for the Thermochemical Splitting of H2O and CO2 and for O2 Separation. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2017. [Google Scholar]
- Dey, S.; Naidu, B.S.; Rao, C.N.R. Ln0.5A0.5MnO3 (Ln = Lanthanide, A = Ca, Sr) Perovskites Exhibiting Remarkable Performance in the Thermochemical Generation of CO and H2 from CO2 and H2 O. Chem. A Eur. J. 2015, 21, 7077–7081. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Naidu, B.S.; Govindaraj, A.; Rao, C.N.R. Noteworthy performance of La1−xCaxMnO3 perovskites in generating H2 and CO by the thermochemical splitting of H2O and CO2. Phys. Chem. Chem. Phys. 2015, 17, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.N.R.; Dey, S. Solar thermochemical splitting of water to generate hydrogen. Proc. Natl. Acad. Sci. USA 2017, 114, 13385–13393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, M.M.; Abanades, S. Insights into the Redox Performance of Non-stoichiometric Lanthanum Manganite Perovskites for Solar Thermochemical CO2 Splitting. ChemistrySelect 2016, 1, 4449–4457. [Google Scholar] [CrossRef]
- Cooper, T.; Scheffe, J.R.; Galvez, M.E.; Jacot, R.; Patzke, G.; Steinfeld, A. Lanthanum Manganite Perovskites with Ca/Sr A-site and Al B-site Doping as Effective Oxygen Exchange Materials for Solar Thermochemical Fuel Production. Energy Technol. 2015, 3, 1130–1142. [Google Scholar] [CrossRef]
- McDaniel, A.H.; Miller, E.C.; Arifin, D.; Ambrosini, A.; Coker, E.N.; O’Hayre, R.; Chueh, W.C.; Tong, J. Sr- and Mn-doped LaAlO3−δ for solar thermochemical H2 and CO production. Energy Environ. Sci. 2013, 6, 2424–2428. [Google Scholar] [CrossRef]
- Miller, J.E.; Ambrosini, A.; Coker, E.N.; Allendorf, M.D.; McDaniel, A.H. Advancing Oxide Materials for Thermochemical Production of Solar Fuels. Energy Procedia 2014, 49, 2019–2026. [Google Scholar] [CrossRef]
- Sastre, D.; Carrillo, A.J.; Serrano, D.P.; Pizarro, P.; Coronado, J.M. Exploring the Redox Behavior of La0.6Sr0.4Mn1−xAlxO3 Perovskites for CO2-Splitting in Thermochemical Cycles. Top. Catal. 2017, 60, 1108–1118. [Google Scholar] [CrossRef]
- Cimino, S.; Lisi, L.; De Rossi, S.; Faticanti, M.; Porta, P. Methane combustion and CO oxidation on LaAl1−xMnxO3 perovskite-type oxide solid solutions. Appl. Catal. B Environ. 2003, 43, 397–406. [Google Scholar] [CrossRef]
- Ezbiri, M.; Takacs, M.; Theiler, D.; Michalsky, R.; Steinfeld, A. Tunable thermodynamic activity of LaxSr1−xMnyAl1−yO3−δ (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) perovskites for solar thermochemical fuel synthesis. J. Mater. Chem. A 2017, 5, 4172–4182. [Google Scholar] [CrossRef] [PubMed]
- Deml, A.M.; Stevanović, V.; Holder, A.M.; Sanders, M.; O’Hayre, R.; Musgrave, C.B. Tunable Oxygen Vacancy Formation Energetics in the Complex Perovskite Oxide SrxLa1–xMnyAl1–yO3. Chem. Mater. 2014, 26, 6595–6602. [Google Scholar] [CrossRef]
- Sugiyama, Y.; Gokon, N.I.; Cho, H.-S.; Bellan, S.; Hatamachi, T.; Kodama, T. Thermochemical two-step water-splitting using perovskite oxide for solar hydrogen production. In Asian Conference on Thermal Sciences 2017; ICC Jeju: Jeju Island, Korea, 2017. [Google Scholar]
- Wang, L.; Al-Mamun, M.; Liu, P.; Wang, Y.; Yang, H.G.; Zhao, H. La1−xCaxMn1−yAlyO3 perovskites as efficient catalysts for two-step thermochemical water splitting in conjunction with exceptional hydrogen yields. Chin. J. Catal. 2017, 38, 1079–1086. [Google Scholar] [CrossRef]
- Wang, L.; Al-Mamun, M.; Zhong, Y.L.; Jiang, L.; Liu, P.; Wang, Y.; Yang, H.G.; Zhao, H. Ca2+ and Ga3+ doped LaMnO3 perovskite as a highly efficient and stable catalyst for two-step thermochemical water splitting. Sustain. Energy Fuels 2017, 1, 1013–1017. [Google Scholar] [CrossRef]
- Dey, S.; Naidu, B.S.; Rao, C.N.R. Beneficial effects of substituting trivalent ions in the B-site of La0.5Sr0.5Mn1−xAxO3 (A = Al, Ga, Sc) on the thermochemical generation of CO and H2 from CO2 and H2O. Dalton Trans. 2016, 45, 2430–2435. [Google Scholar] [CrossRef] [PubMed]
- Luciani, G.; Landi, G.; Aronne, A.; Di Benedetto, A. Partial substitution of B cation in La0.6Sr0.4MnO3 perovskites: A promising strategy to improve the redox properties useful for solar thermochemical water and carbon dioxide splitting. Sol. Energy 2018, 171, 1–7. [Google Scholar] [CrossRef]
- Wang, L.; Al-Mamun, M.; Liu, P.; Wang, Y.; Yang, H.G.; Zhao, H. Notable hydrogen production on LaxCa1−xCoO3 perovskites via two-step thermochemical water splitting. J. Mater. Sci. 2018, 53, 6796–6806. [Google Scholar] [CrossRef]
- Orfila, M.; Linares, M.; Molina, R.; Botas, J.Á.; Sanz, R.; Marugán, J. Perovskite materials for hydrogen production by thermochemical water splitting. Int. J. Hydrogen Energy 2016, 41, 19329–19338. [Google Scholar] [CrossRef]
- Wang, L.; Al-Mamun, M.; Zhong, Y.L.; Liu, P.; Wang, Y.; Yang, H.G.; Zhao, H. Enhanced Thermochemical Water Splitting through Formation of Oxygen Vacancy in La0.6Sr0.4BO3− δ (B=Cr, Mn, Fe, Co, and Ni) Perovskites. ChemPlusChem 2018. [Google Scholar] [CrossRef]
- Bork, A.H.; Kubicek, M.; Struzik, M.; Rupp, J.L.M. Perovskite La0.6Sr0.4Cr1−xCoxO3−δ solid solutions for solar-thermochemical fuel production: Strategies to lower the operation temperature. J. Mater. Chem. A 2015, 3, 15546–15557. [Google Scholar] [CrossRef]
- Rodenbough, P.P.; Chan, S.-W. Thermal oxygen exchange cycles in mixed manganese perovskites. Ceram. Int. 2018, 44, 1343–1347. [Google Scholar] [CrossRef]
- Barcellos, D.R.; Sanders, M.D.; Tong, J.; McDaniel, A.H.; O’Hayre, R.P. BaCe0.25Mn0.75O3−δ—A promising perovskite-type oxide for solar thermochemical hydrogen production. Energy Environ. Sci. 2018. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Khawam, A.; Flanagan, D.R. Solid-State Kinetic Models: Basics and Mathematical Fundamentals. The J. Phys. Chem. B 2006, 110, 17315–17328. [Google Scholar] [CrossRef]
- Jiang, Q.; Tong, J.; Zhou, G.; Jiang, Z.; Li, Z.; Li, C. Thermochemical CO2 splitting reaction with supported LaxA1−xFeyB1−yO3 (A=Sr, Ce, B=Co, Mn; 0 ⩽ x, y ⩽ 1) perovskite oxides. Sol. Energy 2014, 103, 425–437. [Google Scholar] [CrossRef]
- Gotor, F.J.; Criado, J.M.; Malek, J.; Koga, N. Kinetic Analysis of Solid-State Reactions: The Universality of Master Plots for Analyzing Isothermal and Nonisothermal Experiments. J. Phys. Chem. A 2000, 104, 10777–10782. [Google Scholar] [CrossRef]
- Criado, J.M.; Pérez-Maqueda, L.A.; Gotor, F.J.; Málek, J.; Koga, N. A unified theory for the kinetic analysis of solid state reactions under any thermal pathway. J. Therm. Anal. Calorim. 2003, 72, 901–906. [Google Scholar] [CrossRef]
- McDaniel, A.H.; Ambrosini, A.; Coker, E.N.; Miller, J.E.; Chueh, W.C.; O’Hayre, R.; Tong, J. Nonstoichiometric Perovskite Oxides for Solar Thermochemical H2 and CO Production. Energy Procedia 2014, 49, 2009–2018. [Google Scholar] [CrossRef]
- Scheffe, J.R.; McDaniel, A.H.; Allendorf, M.D.; Weimer, A.W. Kinetics and mechanism of solar-thermochemical H2 production by oxidation of a cobalt ferrite–zirconia composite. Energy Environ. Sci. 2013, 6, 963. [Google Scholar] [CrossRef]
- Arifin, D.; Weimer, A.W. Kinetics and mechanism of solar-thermochemical H2 and CO production by oxidation of reduced CeO2. Solar Energy 2018, 160, 178–185. [Google Scholar] [CrossRef]
- Kim, Y.; Jeong, S.J.; Koo, B.; Lee, S.; Kwak, N.W.; Jung, W. Study of the surface reaction kinetics of (La,Sr)MnO3−δ oxygen carriers for solar thermochemical fuel production. J. Mater. Chem. A 2018, 6, 13082–13089. [Google Scholar] [CrossRef]
- Davenport, T.C.; Yang, C.-K.; Kucharczyk, C.J.; Ignatowich, M.J.; Haile, S.M. Maximizing fuel production rates in isothermal solar thermochemical fuel production. Appl. Energy 2016, 183, 1098–1111. [Google Scholar] [CrossRef] [Green Version]
- Davenport, T.C.; Yang, C.-K.; Kucharczyk, C.J.; Ignatowich, M.J.; Haile, S.M. Implications of Exceptional Material Kinetics on Thermochemical Fuel Production Rates. Energy Technol. 2016, 4, 764–770. [Google Scholar] [CrossRef] [Green Version]
Material | Synthesis Method | Experimental Conditions | Production (µmol/g) | Ref. | |
---|---|---|---|---|---|
O2 | H2/CO | ||||
La0.7Sr0.3Mn0.7Cr0.3O3 | Modified Pechini | Reduction: 1350 °C under N2 Oxidation: H2O between 50 and 84%; 1000 °C during 60 min | ~98 | ~107 | [57] |
LaFe0.75Co0.25O3 | Solid-state | Reduction: 1300 °C under Ar Oxidation: 50% CO2 in Ar at 1000 °C | 59 | 117 | [38] |
LaCoO3 | Solid-state | Reduction: 1300 °C under Ar Oxidation: 50% CO2 in Ar at 1000 °C | 369 | 123 | [38] |
Ba0.5Sr0.5FeO3 | Solid-state | Reduction: 1000 °C under Ar Oxidation: 50% CO2 in Ar at 1000 °C | 582 | 136 | [38] |
La0.6Sr0.4Co0.2Cr0.8O3 | Pechini | Reduction: 1200 °C under Ar Oxidation: 50% CO2 in Ar at 800 °C | - | 157 | [65] |
La0.4Ca0.6Mn0.6Al0.4O3 | Modified Pechini | Reduction: 1400 °C under Ar Oxidation: 40% H2O in Ar at 1000 °C | 231 | 429 | [58] |
BaCe0.25Mn0.75O3 | Modified Pechini | Reduction: 1350 °C under Ar Oxidation: 40% H2O in Ar at 1000 °C | - | 135 | [67] |
La0.5Sr0.5MnO3 | Solid-state | Reduction: 1400 °C under Ar Oxidation: H2O at 1000 °C | 298 | 195 | [32] |
La0.35Sr0.75MnO3 | Commercial powder | Reduction: 1400 °C under Ar Oxidation: H2O at 1050 °C | 166 | 124 | [32] |
La0.5Ca0.5MnO3 | Solid-state | Reduction: 1400 °C under Ar Oxidation: 50% CO2 at 1050 °C | 311 | 210 | [41] |
La0.5Ba0.5MnO3 | Solid-state | Reduction: 1400 °C under Ar Oxidation: 50% CO2 at 1050 °C | 203 | 185 | [41] |
La0.5Sr0.5Mn0.4Al0.6O3 | Pechini | Reduction: 1400 °C under Ar Oxidation: 50% CO2 at 1050 °C | 246 | 279 | [41] |
La0.5Sr0.5Mn0.83Mg0.17O3 | Solid-state | Reduction: 1400 °C under Ar Oxidation: 50% CO2 at 1050 °C | 214 | 209 | [41] |
La0.5Sr0.5MnO3 | Pechini | Reduction: 1400 °C under Ar Oxidation: 50% CO2 at 1050 °C | 256 | 256 | [49] |
Y0.5Sr0.5MnO3 | Pechini | Reduction: 1400 °C under Ar Oxidation: 50% CO2 at 1050 °C | 539 | 101 | [49] |
La0.6Sr0.4Mn0.6Al0.4O3 | Modified Pechini | Reduction: 1400 °C under Ar Oxidation: 40% CO2 at 1000 °C | - | 307 | [51] |
La0.6Ca0.4Mn0.6Al0.4O3 | Modified Pechini | Reduction: 1240 °C under Ar Oxidation: 50% CO2 at 850 °C | 165 | 230 | [50] |
La0.6Sr0.4Mn0.6Al0.4O3 | Modified Pechini | Reduction: 1240 °C under Ar Oxidation: 50% CO2 at 850 °C | 190 | 245 | [50] |
La0.6Ca0.4Mn0.8Ga0.2O3 | Modified Pechini | Reduction: 1300 °C Oxidation: H2O at 900 °C | 212 | 401 | [59] |
La0.5Sr0.5Mn0.95Sc0.05O3 | - | Reduction: 1400 °C under Ar Oxidation: 40% CO2 at 1100 °C | 417 | 545 | [60] |
La0.6Sr0.4Mn0.8Fe0.2O3 | Modified Pechini | Reduction: 1350 °C under N2 Oxidation: CO2 at 1000 °C | 286 | 329 | [61] |
La0.6Sr0.4CoO3 | Modified Pechini | Reduction: 1300 °C Oxidation: 40% H2O at 900 °C | 718 | 514 | [64] |
La0.6Ca0.4CoO3 | Modified Pechini | Reduction: 1300 °C Oxidation: 40% H2O at 900 °C | 715 | 587 | [62] |
Y0.5Ca0.5MnO3 | Solid state | Reduction: 1400 °C Oxidation: CO2 at 1100 °C | 573 | 671 | [46] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haeussler, A.; Abanades, S.; Jouannaux, J.; Julbe, A. Non-Stoichiometric Redox Active Perovskite Materials for Solar Thermochemical Fuel Production: A Review. Catalysts 2018, 8, 611. https://doi.org/10.3390/catal8120611
Haeussler A, Abanades S, Jouannaux J, Julbe A. Non-Stoichiometric Redox Active Perovskite Materials for Solar Thermochemical Fuel Production: A Review. Catalysts. 2018; 8(12):611. https://doi.org/10.3390/catal8120611
Chicago/Turabian StyleHaeussler, Anita, Stéphane Abanades, Julien Jouannaux, and Anne Julbe. 2018. "Non-Stoichiometric Redox Active Perovskite Materials for Solar Thermochemical Fuel Production: A Review" Catalysts 8, no. 12: 611. https://doi.org/10.3390/catal8120611
APA StyleHaeussler, A., Abanades, S., Jouannaux, J., & Julbe, A. (2018). Non-Stoichiometric Redox Active Perovskite Materials for Solar Thermochemical Fuel Production: A Review. Catalysts, 8(12), 611. https://doi.org/10.3390/catal8120611