Synthesis, Characterization of g-C3N4/SrTiO3 Heterojunctions and Photocatalytic Activity for Organic Pollutants Degradation
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of the Prepared Photocatalysts
2.1.1. XRD Analysis
2.1.2. Morphology—Surface Analysis of the Photocatalysts
2.1.3. FT-IR Spectroscopy
2.1.4. UV-Vis Spectra
2.1.5. Determination of •OH by Fluorescence Measurements
2.2. Photocatalytic Activity
2.3. Mechanism Analysis
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Preparation of g-C3N4 and g-C3N4/SrTiO3 Heterojunctions
3.3. Texture Characterization of the Heterojunctions
3.4. Fourier Transform. Infrared Spectroscopy (FT-IR)
3.5. UV-Vis.-Diffuse Reflectance Measurements
3.6. Photocatalytic Experiments and Analytical Methods
3.7. Determination of •OH Radicals by Fluorescence Measurements
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Serpone, N.; Emeline, A.V. Semiconductor photocatalysis —Past, present, and future outlook. J. Phys. Chem. Lett. 2012, 3, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Mohammad, N.; Arami, M. Degradation and toxicity reduction of textile wastewater using immobilized titania nanophotocatalysis. J. Photochem. Photobiol. B Biol. 2009, 94, 20–24. [Google Scholar]
- Molinari, R.; Borgese, M.; Drioli, E.; Palmisano, L.; Schiavello, M. Hybrid processes coupling photocatalysis and membranes for degradation of organic pollutants in water. Catal. Today 2002, 75, 77–85. [Google Scholar]
- Kato, H.; Sasaki, Y.; Shirakura, N.; Kudo, A. Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting. J. Mater. Chem. A 2013, 1, 12327–12333. [Google Scholar] [CrossRef]
- Jia, Y.; Shen, S.; Wang, D.; Wang, X.; Shi, J.; Zhang, F.; Han, H.; Li, C. Composite Sr2TiO4/SrTiO3 (La, Cr) heterojunction based photocatalyst for hydrogen production under visible light irradiation. J. Mater. Chem. A 2013, 1, 7905–7912. [Google Scholar] [CrossRef]
- Maeda, K. Rhodium-Doped Barium Titanate Perovskite as a Stable p-Type Semiconductor Photocatalyst for Hydrogen Evolution under Visible Light. ACS Appl. Mater. Interfaces 2014, 6, 2167–2173. [Google Scholar] [CrossRef] [PubMed]
- Alammar, T.; Hamm, I.; Wark, M.; Mudring, A.-V. Low-temperature route to metal titanate perovskite nanoparticles for photocatalytic applications. Appl. Catal. B Environ. 2015, 178, 20–28. [Google Scholar] [CrossRef]
- Sulaeman, U.; Yin, S.; Sato, T. Solvothermal synthesis and photocatalytic properties of chromium-doped SrTiO3 nanoparticles. Appl. Catal. B Environ. 2011, 105, 206–210. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J.; Yan, S.; Yu, T.; Zou, Z. Elements doping to expand the light response of SrTiO3. J. Photochem. Photobiol. A: Chem. 2014, 275, 65–71. [Google Scholar] [CrossRef]
- Wang, J.; Yin, S.; Komatsu, M.; Sato, T. Lanthanum and Nitrogen Co-Doped SrTiO3 Powders as Visible Light Sensitive Photocatalyst. J. Eur. Ceram. Soc. 2005, 25, 3207–3212. [Google Scholar] [CrossRef]
- Cao, T.; Li, Y.; Wang, C.; Shao, C.; Liu, Y. A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir 2011, 27, 2946–2952. [Google Scholar] [CrossRef] [PubMed]
- Van Benthem, K.; Elsässer, C.; French, R. Bulk electronic structure of SrTiO3: Experiment and theory. J. Appl. Phys. 2001, 90, 6156–6164. [Google Scholar] [CrossRef]
- Sayama, K.; Mukasa, K.; Abe, R.; Abe, Y.; Arakawa, H. A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. J. Photochem. Photobiol. A Chem. 2002, 148, 71–77. [Google Scholar] [CrossRef]
- Jiang, Z.; Xiao, T.; Kuznetsov, V.L.; Edwards, P.P. Turning carbon dioxide into fuel. Philos. Trans. R. Soc. Lond. A 2010, 368, 3343–3364. [Google Scholar] [CrossRef] [PubMed]
- Konta, R.; Ishii, T.; Kato, H.; Kudo, A. Photocatalytic Activities of Noble Metal Ion Doped SrTiO3 under Visible Light Irradiation. J. Phys. Chem. B 2004, 108, 8992–8995. [Google Scholar] [CrossRef]
- Puangpetch, T.; Chavadej, S.; Sreethawong, T. Hydrogen production over Au-loaded mesoporous-assembled SrTiO3 nanocrystal photocatalyst: Effects of molecular structure and chemical properties of hole scavengers. Energy Convers. Manag. 2011, 52, 2256–2261. [Google Scholar] [CrossRef]
- Kappadan, S.; Gebreab, T.W.; Thomas, S.; Kalarikkal, N. Tetragonal BaTiO3 nanoparticles: An efficient photocatalyst for the degradation of organic pollutants. Mat. Sci. Semicond. Proc. 2016, 51, 42–47. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Liu, J.; Wang, T.; Qu, W.; Li, Z. DFT study on electronic structures and optical absorption properties of C, S cation- doped SrTiO3. Cent. Eur. J. Phys. 2009, 7, 762–767. [Google Scholar] [CrossRef]
- Zhang, J.; Bang, J.H.; Tang, C.; Kamat Pr., V. Tailored TiO2-SrTiO3 Heterostructure Nanotube Arrays for Improved Photoelectrochemical Performance. ACS Nano 2010, 4, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Boumaza, S.; Boudjemaa, A.; Bouguelia, A.; Bouarab, R.; Trari, M. Visible light induced hydrogen evolution on new hetero-system ZnFe2O4/SrTiO3. Appl. Energy 2010, 87, 2230–2236. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Y.; Dong, F. Graphitic carbon nitride based nanocomposites: A review. Nanoscale 2014, 7, 15–37. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic carbon nitride(g-C3N4)-Based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability. Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Xiao, P.; Li, H.; Carabineiro, S.A.C. Graphitic carbon nitride: Synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces 2014, 6, 16449–16465. [Google Scholar] [CrossRef] [PubMed]
- Ou, H.; Lin, L.; Zheng, Y.; Yang, P.; Fang, Y.; Wang, X. Tri-s-triazine-based crystalline carbon nitride nanosheets for an improved hydrogen evolution. Adv. Mater. 2017, 29, 1700008. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Ou, H.; Fang, Y.; Wang, X. A facile steam reforming strategy to delaminate layered carbon nitride semiconductors for photoredox catalysis. Angew. Chem. Int. Ed. 2017, 56, 3992–3996. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yuan, X.; Wu, Y.; Huang, H.; Peng, X.; Zeng, G.; Zhong, H.; Liang, J.; Ren, M.M. Graphene-based materials: Fabrication, characterization and application for the decontamination of wastewater and waste gas and hydrogen storage/generation. Adv. Colloid Interface Sci. 2013, 195–196, 19–40. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Hu, J.; Zeng, H. Two-dimensional semiconductors: Recent progress and future perspectives. J. Mater. Chem. C 2013, 1, 2952–2969. [Google Scholar] [CrossRef]
- Wang, X.; Sun, G.; Li, N.; Chen, P. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem. Soc. Rev. 2016, 45, 2239–2262. [Google Scholar] [CrossRef] [PubMed]
- Mamba, G.; Mishra, A.K. Graphitic carbon nitride (g-C3N4) nano composites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 2016, 198, 347–377. [Google Scholar] [CrossRef]
- Wu, Z.; Zhong, H.; Yuan, X.; Wang, H. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater. Water Res. 2014, 67, 330–344. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Yuan, X.; Zhong, H.; Wang, H.; Zeng, G.; Chen, X.; Wang, H.; Zhang, L.; Shao, J. Enhanced adsorptive removal of p-nitrophenol from water by aluminum metal-organic framework/reduced graphene oxide composite. Sci. Rep. 2016, 6, 25638. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.; Gong, P.; Sun, J.; Wang, J.; Yang, S. Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J. Mater. Chem. A: Chem. 2015, 3, 13874–13883. [Google Scholar] [CrossRef]
- Dyjak, S.; Kicinski, W.; Huczko, A. Thermite-driven melamine condensation to CxNyHz graphitic ternary polymers: Towards an instant, large-scale synthesis of g-C3N4. J. Mater. Chem. A. 2015, 3, 9621–9631. [Google Scholar] [CrossRef]
- Zhang, X.-S.; Tian, K.; Hu, J.-Y.; Jiang, H. Significant enhancement of photoreactivity of graphitic carbon nitride catalysts under acidic conditions and the underlying H+-mediated mechanism. Chemosphere 2015, 141, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Guan, W.; Sun, Y.; Dong, F.; Zhou, Y.; Ho, W.-K. Water-assisted production of honeycomb-like g-C3N4 with ultralong carrier lifetime and outstanding photocatalytic activity. Nanoscale 2015, 7, 2471–2479. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, K.; Hong, W.; Zong, R.; Yao, W.; Zhu, Y. Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite. Appl. Catal. B Environ. 2015, 166–167, 366–373. [Google Scholar] [CrossRef]
- Liu, G.; Niu, P.; Sun, C.; Smith, S.C.; Chen, Z.; Lu, G.Q.; Cheng, H.M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 2010, 132, 11642–11648. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.-C.; Li, Z.-S.; Zou, Z.-G. Photodegradation of Rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 2010, 26, 3894–3901. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-J.; Mori, T.; Ye, J.-H.; Antonietti, M. Phosphorus-doped carbon nitride solid: Enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 2010, 132, 6294–6295. [Google Scholar] [CrossRef] [PubMed]
- Yue, B.; Li, Q.-Y.; Iwai, H.; Kako, T.; Ye, J.-H. Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light. Sci. Technol. Adv. Mater. 2011, 12, 034401. [Google Scholar] [CrossRef] [PubMed]
- Mitoraj, D.; Kisch, H. The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. Angew. Chem. Int. Ed. Engl. 2008, 47, 9975–9978. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Y.; Yue, B.; Iwai, H.; Kako, T.; Ye, J.H. Carbon nitride polymers sensitized with N-doped tantalic acid for visible light- Induced photocatalytic hydrogen evolution. J. Phys. Chem. C 2010, 114, 4100–4105. [Google Scholar] [CrossRef]
- Rakibuddin, Md.; Kim, H.; Khan, M.E. Graphite-like carbon nitride (C3N4) modified N-doped LaTiO3 nanocomposite for higher visible light photocatalytic and photo-electrochemical performance. Appl. Surf. Sci. 2018, 452, 400–412. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, H.; Tu, W.; Liu, Y.; Tan, Y.Z.; Yuan, X.; Chew, J.W. Quasi-polymeric construction of stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p-n heterojunction interfacial effect. J. Hazard. Mater. 2018, 347, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Schuerings, C.; Kumar, S.; Kumar, A.; Krishnan, V. Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation. Beilstein J. Nanotechnol. 2018, 9, 671–685. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Tonda, S.; Baruah, A.; Kumar, B.; Shanker, V. Synthesis of novel and stable g-C3N4/N-doped SrTiO3 hybrid nanocomposites with improved photocurrent and photocatalytic activity under visible light irradiation. Dalton Trans. 2014, 43, 16105–16114. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhou, X.; Ning, X.; Zhan, L.; Chen, J.; Li, Z. Constructing a direct Z-scheme La2NiO4/g-C3N4 hybrid photocatalyst with boosted visible light photocatalytic activity. Sep. Purif. Technol. 2018, 201, 327–335. [Google Scholar] [CrossRef]
- Chen, X.; Tan, P.; Zhou, B.; Dong, H.; Pan, J.; Xiong, X. A green and facile strategy for preparation of novel and stable Cr-doped SrTiO3/g-C3N4 hybrid nanocomposites with enhanced visible light photocatalytic activity. J. Alloys Compd. 2015, 647, 456–462. [Google Scholar] [CrossRef]
- Xu, X.; Liu, G.; Randorn, C.; Irvine, J.T.S. g-C3N4 coated SrTiO3 as an efficient photocatalyst for H2 production in aqueous solution under visible light irradiation. Int. J. Hydrog. Energy 2011, 36, 13501–13507. [Google Scholar] [CrossRef]
- Kang, H.W.; Lim, S.N.; Song, D.; Park, S.B. Organic-inorganic composite of g-C3N4-SrTiO3: Rh photocatalyst for improved H2 evolution under visible light irradiation. Int. J. Hydrog. Energy 2012, 37, 11602–11610. [Google Scholar] [CrossRef]
- Rietveld, H.M. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst. 1967, 22, 151–152. [Google Scholar] [CrossRef]
- Mittemeijer, E.J.; Welzel, U. The “state of the art” of the diffraction analysis of crystallite size and lattice strain. Z. Kristallogr. 2008, 223, 552–560. [Google Scholar] [CrossRef]
- Hall, W.H. X-ray line broadening in metals. Proc. Philos. Soc. Lond. 1949, 62, 741–743. [Google Scholar] [CrossRef]
- Williamson, G.K.; Hall, W.H. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- Acharya, S.; Mansingh, S.; Parida, K.M. The enhanced photocatalytic activity of g-C3N4-LaFeO3 for water reduction reaction through mediator free Z-scheme mechanism. Inorg. Chem. Fron. 2017, 4, 1022–1032. [Google Scholar] [CrossRef]
- Xian, T.; Yang, H.; Di, L.J.; Dai, J.F. Enhanced photocatalytic activity of BaTiO3@g-C3N4 for the degradation of methyl orange under simulated sunlight irradiation. J. Alloys Compd. 2015, 622, 1098–1104. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Jia, A.; Liang, X.; Su, Z.; Zhu, T.; Liu, S. Synthesis and the effect of calcination temperature on the physical–chemical properties and photocatalytic activities of Ni, La codoped SrTiO3. J. Hazard. Mater. 2010, 178, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, Y.; Wang, X.; Zou, Z. Ag@SrTiO3 nanocomposite for super photocatalytic degradation of organic dye and catalytic reduction of 4-nitrophenol. New J. Chem. 2017, 41, 5678–5687. [Google Scholar] [CrossRef]
- Yang, M.; Jin, X.-Q. Improvement of visible light-induced photocatalytic performance by Cr-doped SrTiO3−carbon nitride intercalation compound (CNIC) composite. J. Cent. South Univ. 2016, 23, 310–316. [Google Scholar] [CrossRef]
- Sun, L.; Qi, Y.; Jia, C.J.; Jin, Z.; Fan, W. Enhanced visible-light photocatalytic activity of g-C3N4/Zn2GeO4 heterojunctions with effective interfaces based on band match. Nanoscale 2014, 6, 2649–2659. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, J.; Yang, Y.; Zhang, Y.; He, D.; An, Q.; Cao, G. Seed-induced growing various TiO2 nanostructures on g-C3N4 nanosheets with much enhanced photocatalytic activity under visible light. J. Hazard. Mater. 2015, 292, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, H.; Wu, Y.; Wu, H.; Wu, L.; Tan, P.; Pan, J.; Xiong, X. Facile fabrication of novel porous graphitic carbon nitride/copper sulfide nanocomposites with enhanced visible light driven photocatalytic performance. J. Colloid Interface Sci. 2016, 476, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Bourikas, K.; Vakros, J.; Kordulis, C.; Lycourghiotis, A. Potentiometric Mass Titrations: Experimental and Theoretical Establishment of a New Technique for Determining the Point of Zero Charge (PZC) of Metal (Hydr)Oxides. J. Phys. Chem. B 2003, 107, 9441–9451. [Google Scholar] [CrossRef]
Code Name | Crystal Phase | Space Group | % Phase | a | b | c | Unit Cell Volume (A3) | E % | R % | Crystal Size (nm) | % Strain | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
10CNSTO | SrTiO3 | cubic | 100 | 3.9114 | 3.9114 | 3.9114 | 59.84 | 19.16 | 26.87 | 17.1 | −0.074 | −0.359 |
20CNSTO | SrTiO3 | cubic | 100 | 3.9104 | 3.9105 | 3.9105 | 59.80 | 16.16 | 23.53 | 25.5 | −0.037 | −0.320 |
30CNSTO | SrTiO3 | cubic | 100 | 3.9093 | 3.9093 | 3.9093 | 59.74 | 13.77 | 21.22 | 29.0 | 0.000 | 0.060 |
40CNSTO | SrTiO3 | cubic | 100 | 3.9099 | 3.9099 | 3.9099 | 59.77 | 16.00 | 24.99 | 24.9 | −0.005 | −0.106 |
50CNSTO | SrTiO3 | cubic | 100 | 3.9103 | 3.9103 | 3.9103 | 59.79 | 16.04 | 25.29 | 24.2 | −0.040 | −0.332 |
STO | SrTiO3 | cubic | 100 | 3.9087 | 3.9087 | 3.9087 | 59.7 | 14.79 | 20.62 | 27.5 | 0.016 | 0.930 |
PZC | Eg (eV) | ||
---|---|---|---|
Catalysts | g-C3N4 | SrTiO3 | |
10CNSTO | 8.02 | 2.80 | 3.40 |
20CNSTO | 7.90 | 2.80 | 3.28 |
30CNSTO | 7.87 | 2.82 | 3.28 |
40CNSTO | 7.79 | 2.84 | 3.20 |
50CNSTO | 7.65 | 2.84 | 3.21 |
CN | 4.63 | 2.82 | |
STO | 9.33 | 3.15 |
UV-Vis | Visible | |||||
---|---|---|---|---|---|---|
Catalysts | K (min−1) | t1/2 (min) | R2 | K (min−1) | t1/2 (min) | R2 |
10CNSTO | 0.0150 | 46.2 | 0.9804 | 0.0050 | 138.6 | 0.9690 |
20CNSTO | 0.0220 | 31.5 | 0.9886 | 0.0071 | 97.6 | 0.9780 |
30CNSTO | 0.0181 | 38.3 | 0.9885 | 0.0058 | 119.5 | 0.9893 |
40CNSTO | 0.0170 | 40.8 | 0.9932 | 0.0055 | 126.0 | 0.9766 |
50CNSTO | 0.0160 | 43.3 | 0.9797 | 0.0049 | 141.4 | 0.9942 |
STO | 0.0140 | 49.5 | 0.9932 | - | - | - |
CN | 0.0146 | 47.5 | 0.9996 | 0.0055 | 126.0 | 0.9986 |
20CNSTO | ||||
---|---|---|---|---|
Scavengers | Radicals Scavenge | k (min−1) | % Δk | R2 |
No scavenger | - | 0.0220 | 0 | 0.9886 |
IPA | OH• | 0.0148 | 32.7 | 0.9996 |
FA | h+ | 0.0086 | 60.9 | 0.9803 |
N2 | O2•− | 0.0156 | 29.1 | 0.9773 |
Acetonitrile/N2 | OH•/ O2•− | 0.0050 | 77.3 | 0.9052 |
SODred | O2•− | 0.0309 | 40.4 | 0.9936 |
NaN3 | OH• + 1O2 | 0.0130 | 40.9 | 0.9814 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konstas, P.-S.; Konstantinou, I.; Petrakis, D.; Albanis, T. Synthesis, Characterization of g-C3N4/SrTiO3 Heterojunctions and Photocatalytic Activity for Organic Pollutants Degradation. Catalysts 2018, 8, 554. https://doi.org/10.3390/catal8110554
Konstas P-S, Konstantinou I, Petrakis D, Albanis T. Synthesis, Characterization of g-C3N4/SrTiO3 Heterojunctions and Photocatalytic Activity for Organic Pollutants Degradation. Catalysts. 2018; 8(11):554. https://doi.org/10.3390/catal8110554
Chicago/Turabian StyleKonstas, Panagiotis-Spyridon, Ioannis Konstantinou, Dimitrios Petrakis, and Triantafyllos Albanis. 2018. "Synthesis, Characterization of g-C3N4/SrTiO3 Heterojunctions and Photocatalytic Activity for Organic Pollutants Degradation" Catalysts 8, no. 11: 554. https://doi.org/10.3390/catal8110554
APA StyleKonstas, P.-S., Konstantinou, I., Petrakis, D., & Albanis, T. (2018). Synthesis, Characterization of g-C3N4/SrTiO3 Heterojunctions and Photocatalytic Activity for Organic Pollutants Degradation. Catalysts, 8(11), 554. https://doi.org/10.3390/catal8110554