Steam Reforming of Methanol over Nanostructured Pt/TiO2 and Pt/CeO2 Catalysts for Fuel Cell Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Analysis (XRF)
2.2. Microscopic Analysis (SEM, TEM, STEM, EDX)
2.3. Surface Area, Pore Size and Particle Size (N2 Isotherms, XRD)
2.4. Raman Analysis
2.5. XPS Analysis
2.6. Catalytic Activity/Selectivity
3. Materials and Methods
3.1. Synthesis of Catalysts Supports
3.2. Synthesis of Catalysts
3.3. Catalysts Characterization
3.4. Catalysts Evaluation in Steam Reforming of Methanol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Avgouropoulos, G.; Ioannides, T.; Kallitsis, J.K.; Neophytides, S. Development of an internal reforming alcohol fuel cell: Concept, challenges and opportunities. Chem. Eng. J. 2011, 176–177, 95–101. [Google Scholar] [CrossRef]
- Avgouropoulos, G.; Schlicker, S.; Schelhaas, K.-P.; Papavasiliou, J.; Papadimitriou, K.D.; Theodorakopoulou, E.; Gourdoupi, N.; Machocki, A.; Ioannides, T.; Kallitsis, J.K.; et al. Performance evaluation of a proof-of-concept 70W internal reforming methanol fuel cell system. J. Power Sources 2016, 307, 875–882. [Google Scholar] [CrossRef]
- Avgouropoulos, G.; Papavasiliou, J.; Daletou, M.K.; Kallitsis, J.K.; Ioannides, T.; Neophytides, S. Reforming methanol to electricity in a high temperature PEM fuel cell. Appl. Catal. B 2009, 90, 628–632. [Google Scholar] [CrossRef]
- Avgouropoulos, G.; Papavasiliou, J.; Ioannides, T.; Neophytides, S. Insights on the effective incorporation of a foam-based methanol reformer in a high temperature polymer electrolyte membrane fuel cell. J. Power Sources 2015, 296, 335–343. [Google Scholar] [CrossRef]
- Papavasiliou, J.; Słowik, G.; Avgouropoulos, G. Redox behavior of a copper-based methanol reformer for fuel cell applications. Energy Technol. 2018, 6, 1332–1341. [Google Scholar] [CrossRef]
- Olah, G.A.; Goeppert, A.; Prakash, G.K.S. Beyond Oil and Gas: The Methanol Economy; Wiley VCH: Weinheim, Germany, 2006. [Google Scholar]
- Ghenciu, A.F. Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Curr. Opin. Solid State Mater. Sci. 2002, 6, 389–399. [Google Scholar] [CrossRef]
- Xu, X.; Shuai, K.; Xu, B. Review on copper and palladium based catalysts for methanol steam reforming to produce hydrogen. Catalysts 2017, 7, 183. [Google Scholar] [CrossRef]
- Sá, S.; Silva, H.; Brandão, L.; Sousa, J.M.; Mendes, A. Catalysts for methanol steam reforming—A review. Appl. Catal. B 2010, 99, 43–57. [Google Scholar] [CrossRef]
- Avgouropoulos, G.; Paxinou, A.; Neophytides, S. In situ hydrogen utilization in an internal reforming methanol fuel cell. Int. J. Hydrog. Energy 2014, 39, 18103–18108. [Google Scholar] [CrossRef]
- Papavasiliou, J.; Avgouropoulos, G.; Ioannides, T. CuMnOx catalysts for internal reforming methanol fuel cells: Application aspects. Int. J. Hydrog. Energy 2012, 37, 16739–16747. [Google Scholar] [CrossRef]
- Avgouropoulos, G.; Neophytides, S. Performance of internal reforming methanol fuel cell under various methanol/water concentrations. J. Appl. Electrochem. 2012, 42, 719–726. [Google Scholar] [CrossRef]
- Ribeirinha, P.; Mateos-Pedrero, C.; Boaventura, M.; Sousa, J.; Mendes, A. CuO/ZnO/Ga2O3 catalyst for low temperature MSR reaction: Synthesis, characterization and kinetic model. Appl. Catal. B 2018, 221, 371–379. [Google Scholar] [CrossRef]
- Peppley, B.A.; Amphlett, J.C.; Kearns, L.M.; Mann, R.F. Methanol–steam reforming on Cu/ZnO/Al2O3. Part 1: The reaction network. Appl. Catal. A 1999, 179, 21–29. [Google Scholar] [CrossRef]
- Frank, B.; Jentoft, F.C.; Soerijanto, H.; Kröhnert, J.; Schlögl, R.; Schomäcker, R. Steam reforming of methanol over copper-containing catalysts: Influence of support material on microkinetics. J. Catal. 2007, 246, 177–192. [Google Scholar] [CrossRef] [Green Version]
- Purnama, H.; Ressler, T.; Jentoft, R.E.; Soerijanto, H.; Schlögl, R.; Schomäcker, R. CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst. Appl. Catal. A 2004, 259, 83–94. [Google Scholar] [CrossRef]
- Talkhoncheh, S.K.; Haghighi, M.; Minaei, S.; Ajamein, H.; Abdollahifar, M. Synthesis of CuO/ZnO/Al2O3/ZrO2/CeO2 nanocatalysts via homogeneous precipitation and combustion methods used in methanol steam reforming for fuel cell grade hydrogen production. RSC Adv. 2016, 6, 57199–57209. [Google Scholar] [CrossRef]
- Park, J.E.; Yim, S.-D.; Kim, C.S.; Park, E.D. Steam reforming of methanol over Cu/ZnO/ZrO2/Al2O3 catalyst. Int. J. Hydrog. Energy 2014, 39, 11517–11527. [Google Scholar] [CrossRef]
- Tong, W.; West, A.; Cheung, K.; Yu, K.-M.; Tsang, S.C.E. Dramatic effects of gallium promotion on methanol steam reforming Cu–ZnO Catalyst for hydrogen production: Formation of 5 Å copper clusters from Cu–ZnGaOx. ACS Catal. 2013, 3, 1231–1244. [Google Scholar] [CrossRef]
- Yu, K.M.K.; Tong, W.; West, A.; Cheung, K.; Li, T.; Smith, G.; Guo, Y.; Tsang, S.C.E. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature. Nat. Commun. 2012, 3, 1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrell, J.; Birgersson, H.; Boutonnet, M.; Melian-Cabrera, I.; Navarro, R.M.; Fierro, J.L.G. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3. J. Catal. 2003, 219, 389–403. [Google Scholar] [CrossRef]
- Lindstrom, B.; Pettersson, L.J.; Menon, P.G. Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles. Appl. Catal. A 2002, 234, 111–125. [Google Scholar] [CrossRef]
- Rameshan, C.; Stadlmayr, W.; Penner, S.; Lorenz, M.H.; Memmel, N.; Hävecker, M.; Blume, R.; Teschner, D.; Rocha, T.; Zemlyanov, D.; et al. Hydrogen production by methanol steam reforming on copper boosted by zinc-assisted water activation. Angew. Chem. Int. Ed. 2012, 51, 3002–3006. [Google Scholar] [CrossRef] [PubMed]
- Mrad, M.; Gennequin, C.; Aboukaïs, A.; Abi-Aad, E. Cu/Zn-based catalysts for H2 production via steam reforming of methanol. Catal. Today 2011, 176, 88–92. [Google Scholar] [CrossRef]
- Tsai, M.-C.; Wang, J.-H.; Shen, C.-C.; Yeh, C.-T. Promotion of a copper–zinc catalyst with rare earth for the steam reforming of methanol at low temperatures. J. Catal. 2011, 279, 241–245. [Google Scholar] [CrossRef]
- Yong, S.T.; Ooi, C.W.; Chai, S.P.; Wu, X.S. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes. Int. J. Hydrog. Energy 2013, 38, 9541–9552. [Google Scholar] [CrossRef]
- Papavasiliou, J.; Avgouropoulos, G.; Ioannides, T. Combined steam reforming of methanol over Cu–Mn spinel oxide catalysts. J. Catal. 2007, 251, 7–20. [Google Scholar] [CrossRef]
- Huang, G.; Liaw, B.-J.; Jhang, C.-J.; Chen, Y.-Z. Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts. Appl. Catal. A 2009, 358, 7–12. [Google Scholar] [CrossRef]
- Jones, S.D.; Neal, L.M.; Hagelin-Weaver, H.E. Steam reforming of methanol using Cu-ZnO catalysts supported on nanoparticle alumina. Appl. Catal. B 2008, 84, 631–642. [Google Scholar] [CrossRef]
- Papavasiliou, J.; Avgouropoulos, G.; Ioannides, T. Production of hydrogen via combined steam reforming of methanol over CuO–CeO2 catalysts. Catal. Commun. 2004, 5, 231–235. [Google Scholar] [CrossRef]
- Chang, C.-C.; Hsu, C.-C.; Chang, C.-T.; Chen, Y.-P.; Liaw, B.-J.; Chen, Y.Z. Effect of noble metal on oxidative steam reforming of methanol over CuO/ZnO/Al2O3 catalyst. Int. J. Hydrog. Energy 2012, 37, 11176–11184. [Google Scholar] [CrossRef]
- Rameshan, C.; Lorenz, H.; Armbrüster, M.; Kasatkin, I.; Klötzer, B.; Götsch, T.; Ploner, K.; Penner, S. Impregnated and co-precipitated Pd–Ga2O3, Pd–In2O3 and Pd–Ga2O3–In2O3 catalysts: Influence of the microstructure on the CO2 selectivity in methanol steam reforming. Catal. Lett. 2018, 148, 3062–3071. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, M.; Jacobs, G.; Graham, U.M.; Davis, B.H. Methanol steam reforming: Na doping of Pt/YSZ provides fine tuning of selectivity. Catalysts 2017, 7, 148. [Google Scholar] [CrossRef]
- Avgouropoulos, G.; Papavasiliou, J.; Ioannides, T. Hydrogen production from methanol over combustion-synthesized noble metal/ceria catalysts. Chem. Eng. J. 2009, 154, 274–280. [Google Scholar] [CrossRef]
- Barrios, C.E.; Bosco, M.V.; Baltanás, M.A.; Bonivardi, A.L. Hydrogen production by methanol steam reforming: Catalytic performance of supported-Pd on zinc–cerium oxides’ nanocomposites. Appl. Catal. B 2015, 179, 262–275. [Google Scholar] [CrossRef]
- Matsumura, Y. Enhancement in activity of Pd–Zn catalyst for methanol steam reforming by coprecipitation on zirconia support. Appl. Catal. A 2013, 468, 350–358. [Google Scholar] [CrossRef]
- Avgouropoulos, G. Isotopic transient study of methanol decomposition over noble metal/ceria catalysts. Catal. Commun. 2009, 10, 682–686. [Google Scholar] [CrossRef]
- Barrios, C.E.; Baltanás, M.A.; Bosco, M.V.; Bonivardi, A.L. On the surface nature of bimetallic PdZn particles supported on a ZnO–CeO2 nanocomposite for the methanol steam reforming reaction. Catal. Lett. 2018, 148, 2233–2246. [Google Scholar] [CrossRef]
- Zhang, Q.; Farrauto, R.J. A PdZn catalyst supported on stabilized ceria for stoichiometric methanol steam reforming and hydrogen production. Appl. Catal. A 2011, 395, 64–70. [Google Scholar] [CrossRef]
- Armbrüster, M.; Behrens, M.; Föttinger, K.; Friendrich, M.; Gaudry, E.; Matam, S.K.; Sharam, H.R. The intermetallic compound ZnPd and its role in methanol steam reforming. Catal. Rev. Sci. Eng. 2013, 55, 289–367. [Google Scholar] [CrossRef]
- Lin, L.; Zhou, W.; Gao, R.; Yao, S.; Zhang, X.; Xu, W.; Zheng, S.; Jiang, Z.; Yu, Q.; Li, Y.-W.; et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Suwa, Y.; Ito, S.; Kameoka, S.; Tomishige, K.; Kunimori, K. Comparative study between Zn–Pd/C and Pd/ZnO catalysts for steam reforming of methano. Appl. Catal. A 2004, 267, 9–16. [Google Scholar] [CrossRef]
- Gomez-Sainero, L.M.; Baker, R.T.; Metcalfe, I.S.; Sahibzada, M.; Concepcion, P.; Lopez-Nieto, J.M. Investigation of Sm2O3–CeO2-supported palladium catalysts for the reforming of methanol: The role of the support. Appl. Catal. A 2005, 294, 177–187. [Google Scholar] [CrossRef]
- Liu, X.; Men, Y.; Wang, J.; He, R.; Wang, Y. Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming. J. Power Sources 2017, 364, 341–350. [Google Scholar] [CrossRef]
- Iwasa, N.; Mayanagi, T.; Nomura, W.; Arai, M.; Takezawa, N. Effect of Zn addition to supported Pd catalysts in the steam reforming of methanol. Appl. Catal. A 2003, 248, 153–160. [Google Scholar] [CrossRef]
- Chin, Y.H.; Dagle, R.; Hu, J.L.; Dohnalkova, A.C.; Wang, Y. Steam reforming of methanol over highly active Pd/ZnO catalyst. Catal. Today 2002, 77, 79–88. [Google Scholar] [CrossRef]
- Tahay, P.; Khani, Y.; Jabari, M.; Bahadoran, F.; Safari, N. Highly porous monolith/TiO2 supported Cu, Cu-Ni, Ru, and Pt catalysts in methanol steam reforming process for H2 generation. Appl. Catal. A 2018, 554, 44–53. [Google Scholar] [CrossRef]
- Flytzani-Stephanopoulos, M. Gold atoms stabilized on various supports catalyze the water-gas shift reaction. Acc. Chem. Res. 2014, 47, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Jin, R. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758. [Google Scholar] [CrossRef] [PubMed]
- Pyykkö, P. Magic nanoclusters of gold. Nat. Nanotechnol. 2007, 2, 273–274. [Google Scholar] [CrossRef] [PubMed]
- Lykaki, M.; Pachatouridou, E.; Carabineiro, S.A.C.; Iliopoulou, E.; Andriopoulou, C.; Kallithrakas-Kontos, D.; Boghosian, S.; Konsolakis, M. Ceria nanoparticles shape effects on the structural defects and surface chemistry: Implications in CO oxidation by Cu/CeO2 catalysts. Appl. Catal. B 2018, 230, 18–28. [Google Scholar] [CrossRef]
- Tinoco, M.; Fernandez-Garcia, S.; Lopez-Haro, M.; Hungria, A.B.; Chen, X.; Blanco, G.; Perez-Omil, J.A.; Collins, S.E.; Okuno, H.; Calvino, J.J. Critical influence of nanofaceting on the preparation and performance of supported gold catalysts. ACS Catal. 2015, 5, 3504–3513. [Google Scholar] [CrossRef]
- Chen, S.; Li, L.; Hu, W.; Huang, X.; Li, Q.; Xu, Y.; Zuo, Y.; Li, G. Anchoring high-concentration oxygen vacancies at interfaces of CeO2−x/Cu toward enhanced activity for preferential CO oxidation. ACS Appl. Mater. Interfaces 2015, 7, 22999–23007. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.; Cai, J.; Iocozzia, J.; Cao, C.; Huang, J.; Zhang, X.; Shen, J.; Wang, S.; Zhang, S.; Zhang, K.-Q.; et al. A review of TiO2 nanostructured catalysts for sustainable H2 generation. Int. J. Hydrog. Energy 2017, 42, 8418–8449. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Z.; Huang, J.; Lim, L.Y.; Li, W.; Deng, J.; Gong, D.; Tang, Y.; Lai, Y.; Chen, Z. Titanate and titania nanostructured materials for environmental and energy applications: A review. RSC Adv. 2015, 5, 79479–79510. [Google Scholar] [CrossRef]
- Avgouropoulos, G.; Ioannides, T. Effect of synthesis parameters on catalytic properties of CuO-CeO2. Appl. Catal. B 2006, 67, 1–11. [Google Scholar] [CrossRef]
- Papavasiliou, J.; Rawski, M.; Vakros, J.; Avgouropoulos, G. A novel post-synthesis modification of CuO-CeO2 catalysts: Effect on their activity for selective CO oxidation. ChemCatChem 2018, 10, 2096–2106. [Google Scholar] [CrossRef]
- Zhuang, Z.K.; Yang, Z.M.; Zhou, S.Y.; Wang, H.Q.; Sun, C.L.; Wu, Z.B. Synergistic photocatalytic oxidation and adsorption of elemental mercury by carbon modified titanium dioxide nanotubes under visible light LED irradiation. Chem. Eng. J. 2014, 253, 16–23. [Google Scholar] [CrossRef]
- Vijayan, B.K.; Dimitrijevic, N.M.; Wu, J.; Gray, K.A. The effects of Pt doping on the structure and visible light photoactivity of titania nanotubes. J. Phys. Chem. C 2010, 114, 21262–21269. [Google Scholar] [CrossRef]
- Baiju, K.V.; Shukla, S.; Biju, S.; Reddy, M.L.P.; Warrier, K.G.K. Morphology-dependent dye-removal mechanism as observed for Anatase—Titania photocatalyst. Catal. Lett. 2009, 131, 663–671. [Google Scholar] [CrossRef]
- Agarwal, S.; Lefferts, L.; Mojet, B.L.; Ligthart, D.A.J.M.; Hensen, E.J.M.; Mitchell, D.R.G.; Erasmus, W.J.; Anderson, B.G.; Olivier, E.J.; Neethling, J.H.; et al. Exposed surfaces on the shape-controlled ceria nanoparticles revealed through AC-TEM and water-gas shift reactivity. Chem. Sustain. Chem. 2013, 6, 1898–1906. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.; Li, S.; Ren, Q.; Chen, L.; Fu, M.; Wu, J.; Ye, D. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts. Appl. Catal. B 2018, 220, 462–470. [Google Scholar] [CrossRef]
- Peng, R.; Sun, X.; Li, S.; Chen, L.; Fu, M.; Wu, J.; Ye, D. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene. Chem. Eng. J. 2016, 306, 1234–1243. [Google Scholar] [CrossRef]
- Si, R.; Flytzani-Stephanopoulos, M. Shape and Crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew. Chem. Int. Ed. 2008, 47, 2884–2887. [Google Scholar] [CrossRef] [PubMed]
- Florea, I.; Feral-Martin, C.; Majimel, J.; Ihiawakrim, D.; Hirlimann, C.; Ersen, O. Three-Dimensional tomographic Analyses of CeO2 nanoparticles. Cryst. Growth Des. 2013, 13, 1110–1121. [Google Scholar] [CrossRef]
- Tao, L.; Shi, Y.; Huang, Y.-C.; Chen, R.; Zhang, Y.; Huo, J.; Zou, Y.; Yu, G.; Dong, C.-L.; Wang, S. Interface engineering of Pt and CeO2 nanorods with unique interaction for methanol oxidation. Nano Energy 2018, 53, 604–612. [Google Scholar] [CrossRef]
- Stelmachowski, P.; Ciura, K.; Indyka, P.; Kotarba, A. Facile synthesis of ordered CeO2 nanorod assemblies: Morphology and reactivity. Mater. Chem. Phys. 2017, 201, 139–146. [Google Scholar] [CrossRef]
- He, H.; Yang, P.; Li, J.; Shi, R.; Chen, L.; Zhang, A.; Zhu, Y. Controllable synthesis, characterization, and CO oxidation activity of CeO2 nanostructures with various morphologies. Ceram. Int. 2016, 42, 7810–7818. [Google Scholar] [CrossRef]
- Mai, H.-X.; Sun, L.-D.; Zhang, Y.-W.; Si, R.; Feng, W.; Zhang, H.-P.; Liu, H.-C.; Yan, C.-H. Shape selective synthesis and oxygen storage behavior of Ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B 2005, 109, 24380–24385. [Google Scholar] [CrossRef] [PubMed]
- Tong, T.; Liu, X.; Guo, Y.; Banis, M.N.; Hu, Y.; Wang, Y. The critical role of CeO2 crystal-plane in controlling Pt chemical states on the hydrogenolysis of furfuryl alcohol to 1,2-Pentanediol. J. Catal. 2018, 365, 420–428. [Google Scholar] [CrossRef]
- Abida, B.; Chirchi, L.; Baranton, S.; Napporn, T.W.; Kochkar, H.; Léger, J.-M.; Ghorbel, A. Preparation and characterization of Pt/TiO2 nanotubes catalyst for methanol electro-oxidation. Appl. Catal. B 2011, 106, 609–615. [Google Scholar] [CrossRef]
- Yi, N.; Si, R.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Steam reforming of methanol over ceria and gold-ceria nanoshapes. Appl. Catal. B 2010, 95, 87–92. [Google Scholar] [CrossRef]
- Baiju, K.V.; Shukla, S.; Biju, S.; Reddy, M.L.P.; Warrier, K.G.K. Hydrothermal processing of dye-adsorbing one-dimensional hydrogen titanate. Mater. Lett. 2009, 63, 923–926. [Google Scholar] [CrossRef]
- Toledo-Antonio, J.A.; Ángeles-Chávez, C.; Cortés-Jácome, M.A.; Cuauhtémoc-López, I.; López-Salinas, E.; Pérez-Luna, M.; Ferrat-Torres, G. Highly dispersed Pt-Ir nanoparticles on titania nanotubes. Appl. Catal. A 2012, 437, 155–165. [Google Scholar] [CrossRef]
- Kim, S.-J.; Yun, Y.-U.; Oh, H.-J.; Hong, S.H.; Roberts, C.A.; Routray, K.; Wachs, I.E. Characterization of hydrothermally prepared titanate nanotube powders by ambient and in situ Raman spectroscopy. J. Phys. Chem. Lett. 2010, 1, 130–135. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, W.; Chang, S.; Huang, W. Morphology effect of CeO2 support in the preparation, metal-support interaction, and catalytic performance of Pt/CeO2 catalysts. ChemCatChem 2013, 5, 3610–3620. [Google Scholar] [CrossRef]
- Pushkarev, V.V.; Kovalchuk, V.I.; d’Itri, J.L. Probing defect sites on the CeO2 surface with dioxygen. J. Phys. Chem. B 2004, 108, 5341–5348. [Google Scholar] [CrossRef]
- Daniel, M.; Loridant, S. Probing reoxidation sites by in situ Raman spectroscopy: Differences between reduced CeO2 and Pt/CeO2. J. Raman Spectrosc. 2012, 43, 1312–1319. [Google Scholar] [CrossRef]
- Rui, Z.; Chen, L.; Chen, H.; Ji, H. Strong metal-support interaction in Pt/TiO2 induced by mild HCHO and NaBH4 solution reduction and its effect on catalytic toluene combustion. Ind. Eng. Chem. Res. 2014, 53, 15879–15888. [Google Scholar] [CrossRef]
- Chen, H.; Tang, M.; Rui, Z.; Wang, X.; Ji, H. ZnO modified TiO2 nanotube array supported Pt catalyst for HCHO removal under mild conditions. Catal. Today 2016, 264, 23–30. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, X.; Liu, X.; Dong, W.; Dong, C.; Lou, M.; Li, J.; Lin, T.; Huang, F. Monodisperse Pt nanoparticles anchored on N-doped black TiO2 as high performance bifunctional electrocatalyst. J. Alloys Compd. 2017, 701, 669–675. [Google Scholar] [CrossRef]
- Su, Y.; Deng, Y. Effect of structure on the photocatalytic activity of Pt-doped TiO2 nanotubes. Appl. Surf. Sci. 2011, 257, 9791–9795. [Google Scholar] [CrossRef]
- Geormezi, M.; Paloukis, F.; Orfanidi, A.; Shroti, N.; Daletou, M.; Neophytides, S.G. The structure and stability of the anodic electrochemical interface in a high temperature polymer electrolyte membrane fuel cell under reformate feed. J. Power Sources 2015, 285, 499–509. [Google Scholar] [CrossRef]
- Orfanidi, A.; Daletou, M.; Neophytides, S.G. Mitigation strategy towards stabilizing the electrochemical interface under high CO and H2O containing reformate gas feed. Electrochim. Acta 2017, 233, 218–228. [Google Scholar] [CrossRef]
- Araya, S.S.; Grigoras, I.F.; Zhou, F.; Andreasen, S.J.; Kaer, S.K. Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate. Int. J. Hydrog. Energy 2014, 39, 18343–18350. [Google Scholar] [CrossRef] [Green Version]
Sample | Pt Loading a (wt.%) | Pt Loading b (wt.%) | SBET (m2/g) | VP (cm3g−1) | dPt (111) (nm) c | dTNTs (020) (nm) d |
---|---|---|---|---|---|---|
TNTs | - | - | 199.3 | 0.49 | - | 12.7 |
Pt/TNTs (I) | 3.0 | 2.97 | 170.1 | 0.42 | 6.9 | 15.3 |
Pt/TNTs (DP) | 3.0 | 2.35 | 193.3 | 0.48 | n.o. | 11.3 |
Sample | Pt Loading a (wt.%) | Pt Loading b (wt.%) | SBET (m2/g) | VP (cm3g−1) | dPt (111) (nm) c | dCeO2 (111) (nm) d |
---|---|---|---|---|---|---|
CeO2 | - | - | 88.2 | 0.19 | - | 10.08 |
Pt/CNRs (I) | 3.0 | 3.02 | 100.8 | 0.36 | n.o. | 10.17 |
Pt/CNRs (DP)-low e | 0.35 | 0.30 | 107.5 | 0.41 | n.o. | 9.68 |
Pt/CNRs (DP) | 3.0 | 2.45 | 114.2 | 0.43 | n.o. | 8.9 |
Catalyst | Nominal | XPS | Pt0 |
---|---|---|---|
3% Pt/CNRs (I) | 0.027 | 0.010 | 55.3% |
0.35% Pt/CNRs (DP) | 0.002 | 0.080 | 67.0% |
3% Pt/CNRs (DP) | 0.020 | 0.049 | 60.7% |
3% Pt/TNTs (I) | 0.012 | 0.010 | 55.6% |
3% Pt/TNTs (DP) | 0.007 | 0.010 | 56.0% |
Catalyst | Pt Content | MeOH | CO | H2 | H2 Production Rate | |
---|---|---|---|---|---|---|
wt.% 2 | Conversion, % | Selectivity, % | Selectivity, % | cm3/min/gcat | cm3/min/gPt | |
Pt/CNRs (I) | 3.02 | 37.3 | 58.9 | 79.7 | 10.0 | 331.1 |
Pt/CNRs (DP) | 2.45 | 65.0 | 21.7 | 92.6 | 20.5 | 836.7 |
Pt/CNRs (DP) | 0.3 | 53.4 | 26.2 | 91.0 | 16.5 | 5500.0 |
Pt/TNTs (I) | 2.97 | 40.2 | 70.3 | 76.0 | 10.2 | 343.4 |
Pt/TNTs (DP) | 2.35 | 32.6 | 37.3 | 87.0 | 7.0 | 297.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papavasiliou, J.; Paxinou, A.; Słowik, G.; Neophytides, S.; Avgouropoulos, G. Steam Reforming of Methanol over Nanostructured Pt/TiO2 and Pt/CeO2 Catalysts for Fuel Cell Applications. Catalysts 2018, 8, 544. https://doi.org/10.3390/catal8110544
Papavasiliou J, Paxinou A, Słowik G, Neophytides S, Avgouropoulos G. Steam Reforming of Methanol over Nanostructured Pt/TiO2 and Pt/CeO2 Catalysts for Fuel Cell Applications. Catalysts. 2018; 8(11):544. https://doi.org/10.3390/catal8110544
Chicago/Turabian StylePapavasiliou, Joan, Alexandra Paxinou, Grzegorz Słowik, Stylianos Neophytides, and George Avgouropoulos. 2018. "Steam Reforming of Methanol over Nanostructured Pt/TiO2 and Pt/CeO2 Catalysts for Fuel Cell Applications" Catalysts 8, no. 11: 544. https://doi.org/10.3390/catal8110544
APA StylePapavasiliou, J., Paxinou, A., Słowik, G., Neophytides, S., & Avgouropoulos, G. (2018). Steam Reforming of Methanol over Nanostructured Pt/TiO2 and Pt/CeO2 Catalysts for Fuel Cell Applications. Catalysts, 8(11), 544. https://doi.org/10.3390/catal8110544