Novel Magnetically-Recyclable, Nitrogen-Doped Fe3O4@Pd NPs for Suzuki–Miyaura Coupling and Their Application in the Synthesis of Crizotinib
Abstract
1. Introduction
2. Results and Discussion
3. Experimental Materials
3.1. Characterization
3.2. Preparation of Fe3O4 Nanoparticles
3.3. Preparation of Fe3O4@C Nanoparticles
3.4. Preparation of Fe3O4@NC Nanoparticles
3.5. Preparation of the Fe3O4@C/Pd and Fe3O4@NC/Pd Catalyst
3.6. General Procedure for the Suzuki Coupling Reactions
3.7. General Procedure for Catalyst Recovery
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, R.; Zhang, P.; Huang, Y.; Zhang, P.; Zhong, H.; Chen, Q.W. Pd–Fe3O4@C hybrid nanoparticles: Preparation, characterization, and their high catalytic activity toward Suzuki coupling reactions. J. Mater. Chem. 2012, 22, 22750–22755. [Google Scholar] [CrossRef]
- Rao, X.; Liu, C.; Zhang, Y.; Gao, Z.; Jin, Z. Pd/C-catalyzed ligand-free and aerobic Suzuki reaction in water. Chin. J. Catal. 2014, 35, 357–361. [Google Scholar] [CrossRef]
- Byum, S.; Chung, J.; Kwon, J.; Kim, B. Mechanistic Studies of Magnetically Recyclable Pd Fe3O4 Heterodimeric Nanocrystal-Catalyzed Organic Reactions. Chem. Asian J. 2015, 10, 982–988. [Google Scholar]
- Shi, S.C.; Meng, G.; Szostak, M. Synthesis of Biaryls through Nickel-Catalyzed Suzuki-Miyaura Coupling of Amides by Carbon–Nitrogen Bond Cleavage. Angew. Chem. 2016, 55, 6959–6963. [Google Scholar] [CrossRef] [PubMed]
- Meconi, G.M.; Vummaletis, S.V.C.; Luqueurrutia, J.A.; Belanzoni, P.; Nolan, S.P.; Jacobsen, H.; Cavallo, L.; Sola, M.; Poater, A. Mechanism of the Suzuki–Miyaura Cross-Coupling Reaction Mediated by [Pd(NHC)(allyl)Cl] Precatalysts. Organometallics 2017, 36, 2088–2095. [Google Scholar] [CrossRef]
- Bonis, A.D.; D’Orsi, R.; Funicello, M.; Lupattelli, P.; Santagata, A.; Teghil, R.; Chiummiento, L. First application of homogeneous Pd nanoparticles prepared by pulsed laser ablation in liquid to a Suzuki-type reaction. Catal. Commun. 2017, 100, 164–168. [Google Scholar] [CrossRef]
- Kaboudin, B.; Salemi, H.; Mostafalu, R.; Kazemi, F.; Yokomatsu, T. Pd(II)-β-cyclodextrin complex: Synthesis, characterization and efficient nanocatalyst for the selective Suzuki-Miyaura coupling reaction in water. J. Organomet. Chem. 2016, 818, 195–199. [Google Scholar] [CrossRef]
- Tahmasebi, S.; Mokhtari, J.; Naimi-Jamal, M.R.; Khosravi, A.; Panahi, L. Application of Cu2(BDC)2DABCO Encapsulated Palladium Nanoparticle in Suzuki Coupling. J. Organomet. Chem. 2017, 853, 35–41. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, M.G.; Zhang, L.; Liu, Y.; Han, J. Poly(o-aminothiophenol)-stabilized Pd nanoparticles as efficient heterogenous catalysts for Suzuki cross-coupling reactions. Rsc. Adv. 2017, 7, 47104–47110. [Google Scholar] [CrossRef]
- Mondal, P.; Bhanja, P.; Khatun, R.; Bhaumik, A.; Das, D.; Islam, S.M. Palladium nanoparticles embedded on mesoporous TiO2 material (Pd@MTiO2) as an efficient heterogeneous catalyst for Suzuki-Coupling reactions in water medium. J. Colloid Interface Sci. 2017, 508, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.B.; Ma, Y.; Bian, F.L. Palladium Supported on Metformin-Functionalized Magnetic Polymer Nanocomposites: A Highly Efficient and Reusable Catalyst for the Suzuki–Miyaura Coupling Reaction. ChemCatChem 2016, 8, 1–24. [Google Scholar] [CrossRef]
- Zhang, G.W.; Liu, R.; Chou, Y.J.; Wang, Y.; Cheng, T.Y.; Liu, G.H. Multistep Organic Transformations over Base-Rhodium/Diamine-Bifunctionalized Mesostructured Silica Nanoparticles. ChemCatChem 2017, 9, 1–8. [Google Scholar]
- Hajipour, A.R.; Sadeghi, A.R.; Khorsandi, Z. Pd nanoparticles immobilized on magnetic chitosan as a novel reusable catalyst for green Heck and Suzuki cross-coupling reaction: In water at room temperature. Appl. Organomet. Chem. 2017, 11, 4112–4122. [Google Scholar]
- Chen, J.; Zhang, J.; Zhu, D.J.; Li, T. Porphyrin-based polymer-supported palladium as an excellent and recyclable catalyst for Suzuki–Miyaura coupling reaction in water. Appl. Organomet. Chem. 2017, 8, 3996–4002. [Google Scholar] [CrossRef]
- Fei, S.X.; Han, B.; Li, L.L.; Mei, P.; Zhu, T.; Yang, M.; Chen, H.S. A study on the catalytic hydrogenation of N-ethylcarbazole on the mesoporous Pd/MoO3 catalyst. Int. J. Hydrogen Energy 2017, 42, 25942–25950. [Google Scholar] [CrossRef]
- Dai, C.Y.; Li, Y.G.; Ning, C.L.; Zhang, W.X.; Wang, X.G. The influence of alumina phases on the performance of Pd/Al2O3 catalyst in selective hydrogenation of benzonitrile to benzylamine. Appl. Catal. A Gen. 2017, 545, 97–103. [Google Scholar] [CrossRef]
- Shi, W.; Yu, J.B.; Jiang, Z.J.; Shao, Q.L.; Su, W.K. Encaging palladium(0) in layered double hydroxide: A sustainable catalyst for solvent-free and ligand-free Heck reaction in a ball mill. Beilstein J. Org. Chem. 2017, 13, 1661–1668. [Google Scholar] [CrossRef] [PubMed]
- Celebi, M.; Yurderi, M.; Bulut, A.; Kaya, M.; Zahmakiran, M. Palladium nanoparticles supported on amine-functionalized SiO2 for the catalytic hexavalent chromium reduction. Appl. Catal. B Environ. 2016, 180, 53–64. [Google Scholar] [CrossRef]
- Hattori, T.; Tsubone, A.; Sawama, Y.; Monguchi, Y.; Sajiki, H. Palladium on Carbon-Catalyzed Suzuki-Miyaura Coupling Reaction Using an Efficient and Continuous Flow System. Catalysts 2015, 5, 18–25. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Li, Y.-R.; Jeon, H.-J.; Ahn, W.-S.; Chung, Y.M. Pd nanoparticles on a microporous covalent triazine polymer for H2 production via formic acid decomposition. Mater. Lett. 2018, 215, 211–213. [Google Scholar] [CrossRef]
- Yang, L.; Jin, Y.Z.; Fang, X.C.; Cheng, Z.M.; Zhou, Z.M. Magnetically Recyclable Core–Shell Structured Pd-Based Catalysts for Semihydrogenation of Phenylacetylene. Ind. Eng. Chem. Res. 2017, 56, 14182–14191. [Google Scholar] [CrossRef]
- Mohammadinezhad, A.; Akhlaghinia, B. Fe3O4@ Boehmite-NH2-CoII NPs: An inexpensive and highly efficient heterogeneous magnetic nanocatalyst for the Suzuki-Miyaura and Heck-Mizoroki cross-coupling reactions. Green Chem. 2017, 19, 5625–5641. [Google Scholar] [CrossRef]
- Kumar, B.S.; Amali, A.J.; Pitchumani, K. Cubical Palladium Nanoparticles on C@Fe3O4 for Nitro reduction, Suzuki-Miyaura Coupling and Sequential Reactions. J. Mol. Catal. Chem. 2016, 423, 511–519. [Google Scholar] [CrossRef]
- Sun, C.G.; Sun, K.; Tang, S.K. Extended Stöber method to synthesize core-shell magnetic composite cataly. Mater. Chem. Phys. 2018, 207, 181–185. [Google Scholar] [CrossRef]
- Fang, Q.; Cheng, Q.; Xu, H. Monodisperse magnetic core/shell microspheres with Pd nanoparticles-incorporated-carbon shells. Dalton Trans. 2014, 43, 2588–2595. [Google Scholar] [CrossRef] [PubMed]
- Bolzan, G.R.; Abarca, G.; Goncalves, W.D.G.; Matos, C.F. Imprinted naked Pt nanoparticles on N-doped carbon supports: A synergistic effect between catalyst and support. M.J.L. Santos J. Dupont Chem. Eur. J. 2017, 23, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ying, J.; Li, J.; Jiang, G.P.; Cano, Z.P.; Ma, Z.; Zhong, C.; Su, D.; Chen, Z.W. Metal-organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction. Appl. Catal. B Environ. 2018, 225, 496–503. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Li, X.F.; Wei, Z.Z.; Mao, S.J.; Deng, J.; Cao, Y.L.; Wang, Y. Efficient synthesis of ultrafine Pd nanoparticles on an activated N-doping carbon for the decomposition of formic acid. Catal. Commun. 2018, 108, 55–58. [Google Scholar] [CrossRef]
- Wei, Z.Z.; Li, X.F.; Deng, J.; Wang, J.; Li, H.R.; Wang, Y. Improved catalytic activity and stability for hydrogenation of levulinic acid by Ru/N-doped hierarchically porous carbon. Mol. Catal. 2018, 448, 100–107. [Google Scholar] [CrossRef]
- Cao, Y.L.; Mao, S.J.; Li, M.M.; Chen, Y.Q.; Wang, Y. Metal/porous carbon composites for heterogeneous catalysis: Old catalysts with improved performance promoted by N-doping. ACS Catal. 2017, 7, 8090–8112. [Google Scholar] [CrossRef]
- Zhang, P.; Gong, Y.; Li, H.; Chen, Z.; Wang, Y. Selective oxidation of benzene to phenol by FeCl3/mpg-C3N4 hybrids. RSC Adv. 2013, 3, 5121–5126. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhu, L.P.; Bing, N.C.; Wang, L.J. Facile green synthesis of Pd/N-doped carbon nanotubes catalysts and their application in Heck reaction and oxidation of benzyl alcohol. J. Phys. Chem. Solids 2017, 107, 125–130. [Google Scholar] [CrossRef]
- Movahed, S.K.; Dabiri, M.; Bazgir, A. Palladium nanoparticle decorated high nitrogen-doped graphene with high catalytic activity for Suzuki–Miyaura and Ullmann-type coupling reactions in aqueous media. Appl. Catal. A Gen. 2014, 488, 265–274. [Google Scholar] [CrossRef]
- Shen, C.; Xu, J.; Yu, W.; Zhang, P. ChemInform Abstract: A Highly Active and Easily Recoverable Chitosan@Copper Catalyst for the C–S Coupling and Its Application in the Synthesis of Zolimidine. Green Chem. 2014, 16, 3007–3012. [Google Scholar] [CrossRef]
- Shen, C.; Shen, H.; Yang, M.; Xia, C.; Zhang, P. Novel D-glucosamine-derived pyridyl-triazole@palladium catalyst for solvent-free Mizoroki-Heck reactions and its application in the synthesis of Axitinib. Green Chem. 2014, 17, 225–230. [Google Scholar] [CrossRef]
- Shen, H.; Shen, C.; Chen, C.; Wang, A.; Zhang, P. Novel glycosyl pyridyl-triazole@palladium nanoparticles: Efficient and recoverable catalysts for C–C cross-coupling reactions. Catal. Sci. Technol. 2015, 5, 2065–2071. [Google Scholar] [CrossRef]
- Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Andy Hor, T.A.; Liu, X. Recent advances in C–S bond formation via C–H bond functionalization and decarboxylation. Chem. Soc. Rev. 2015, 46, 291–314. [Google Scholar] [CrossRef] [PubMed]
- Ying, B.; Xu, J.; Zhu, X.; Shen, C.; Zhang, P. Inside Cover: Catalyst-Controlled Selectivity in the Synthesis of C2- and C3-Sulfonate Esters from Quinoline N-Oxides and Aryl Sulfonyl Chlorides. ChemCatChem 2016, 8, 2604–2608. [Google Scholar] [CrossRef]
- Hameed, R.M.A. A core–shell structured Ni–Co@Pt/C nanocomposite-modified sensor for the voltammetric determination of pseudoephedrine HCl. New. J. Chem. 2018, 42, 2658–2668. [Google Scholar] [CrossRef]
- Zhu, M.; Diao, G. Magnetically Recyclable Pd Nanoparticles Immobilized on Magnetic Fe3O4@C Nanocomposites: Preparation, Characterization, and Their Catalytic Activity toward Suzuki and Heck Coupling Reactions. J. Phys. Chem. C. 2011, 115, 24743–24749. [Google Scholar] [CrossRef]
- Sun, L.; Wang, L.; Tian, C.; Tan, T.; Xie, Y.; Shi, K.; Li, M.; Fu, H. Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC. Adv. 2012, 2, 4498–4506. [Google Scholar] [CrossRef]
- Magano, J.; Dunetz, J.R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem. Rev. 2011, 111, 2177–2250. [Google Scholar] [CrossRef] [PubMed]
- De Koning, P.D.; McAndrew, D.; Moore, R.; Moses, I.B.; Boyles, D.C.; Kissick, K.; Stanchina, C.L.; Cuthbertson, T.; Kamatani, A.; Rahman, L.; et al. Fit-for-Purpose Development of the Enabling Route to Crizotinib (PF-02341066). Org. Process Res. Dev. 2011, 15, 1018–1026. [Google Scholar] [CrossRef]
- Liu, B.; Ren, Y.; Zhang, Z. Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions. Green Chem. 2015, 17, 1610–1617. [Google Scholar] [CrossRef]
- Kumar, B.S.; Amali, A.J.; Pitchumani, K. Mesoporous Microcapsules through d-Glucose Promoted Hydrothermal Self-Assembly of Colloidal Silica: Reusable Catalytic Containers for Palladium Catalyzed Hydrogenation Reactions. Appl. Mater. Interfaces 2015, 7, 22907–22917. [Google Scholar]
- Liu, Z.Y.; Zhang, C.L.; Luo, L.; Chang, Z.J.; Sun, X.M. One-pot synthesis and catalyst support application of mesoporous N-doped carbonaceous materials. J. Mater. Chem. 2012, 22, 12149–12154. [Google Scholar] [CrossRef]
Entry | Catalyst (mg) | Base | Temp (°C) | Time (h) | Yield b (%) |
---|---|---|---|---|---|
1 | Fe3O4 | K2CO3 | 90 | 1 | - |
2 | Fe3O4@C | K2CO3 | 90 | 1 | - |
3 | Fe3O4@NC | K2CO3 | 90 | 1 | - |
4 | Fe3O4@C/Pd | K2CO3 | 90 | 1 | 84 |
5 | Fe3O4@NC/Pd | K2CO3 | 90 | 1 | 93 |
6 | Fe3O4@NC/Pd | NaOH | 90 | 1 | 94 |
7 | Fe3O4@NC/Pd | Na2CO3 | 90 | 1 | 92 |
8 | Fe3O4@NC/Pd | KOH | 90 | 1 | 96 |
9 | Fe3O4@NC/Pd | Et3N | 90 | 1 | 71 |
10 | Fe3O4@NC/Pd | Cs2CO3 | 90 | 1 | 83 |
11 | Fe3O4@NC/Pd | KOH | rt | 1 | 66 |
12 | Fe3O4@NC/Pd | KOH | 50 | 1 | 75 |
13 | Fe3O4@NC/Pd | KOH | 70 | 1 | 90 |
14 | Fe3O4@NC/Pd | KOH | 100 | 1 | 95 |
15 | Fe3O4@NC/Pd | K2CO3 | 50 | 1 | 70 |
16 | - | KOH | 90 | 1 | - |
17 | Fe3O4@NC/Pd | KOH | 90 | 1 | 95 c |
18 | Fe3O4@NC/Pd | KOH | 90 | 1 | 77 d |
19 | Fe3O4@NC/Pd | KOH | 90 | 0.5 | 96 |
20 | Fe3O4@NC/Pd | KOH | 90 | 0.2 | 90 |
Entry | Ar | X | R | Yield b (%) |
---|---|---|---|---|
1 | 4-CH3O-C6H4 | I | H | 96 (3a) |
2 | 4-NH2-C6H4 | I | H | 96 (3b) |
3 | 4-OH-C6H4 | I | H | 97 (3c) |
4 | 4-CH3-C6H4 | I | H | 96 (3d) |
5 | 4-NO2-C6H4 | I | H | 99 (3e) |
6 | 4-CHO-C6H4 | I | H | 99 (3f) |
7 | 4-COCH3-C6H4 | I | H | 98 (3g) |
8 | 4-Cl-C6H4 | I | H | 97 (3h) |
9 | Ph | I | H | 97 (3i) |
10 | 3-NO2-C6H4 | I | H | 95 (3j) |
11 | 3-COCH3-C6H4 | I | H | 94 (3k) |
12 | 2-NH2-C6H4 | I | H | 88 (3l) |
13 | 2-CH3-C6H4 | I | H | 86 (3m) |
14 | 4-CH3-C6H4 | Br | H | 79 (3d) |
15 | 4-CHO-C6H4 | Br | H | 94 (3f) |
16 | Ph | Br | H | 94 (3i) |
17 | 4-NH2-C6H4 | Cl | H | 53 c (3b) |
18 | 4-CHO-C6H4 | Cl | H | 55 c (3f) |
19 | 4-COCH3-C6H4 | Cl | H | 57 c (3g) |
20 | Ph | Cl | H | 56 (3i) |
21 | 4-CH3O-C6H4 | I | 4-CHO | 98 (3n) |
22 | 4-CH3O-C6H4 | I | 4-OH | 97 (3o) |
23 | 4-CH3O-C6H4 | I | 4-CH3 | 97 (3p) |
24 | 4-CH3O-C6H4 | I | 4-F | 95 (3q) |
25 | 4-CH3O-C6H4 | I | 4-Cl | 95 (3r) |
26 | 4-CH3O-C6H4 | I | 3-NO2 | 89 (3s) |
27 | 2-Py | Br | 4-F | 85 (3t) |
28 | 2-Py | Br | H | 88 (3u) |
29 | 2-Py | Br | 3-NO2 | 81 (3v) |
30 | 2-quinoline | Br | 4-F | 82 (3w) |
31 | 2-quinoline | Br | H | 86 (3x) |
32 | 2-quinoline | Br | 3-NO2 | 80 (3y) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, K.; Shen, C.; Qiao, J.; Tong, J.; Jin, J.; Zhang, P. Novel Magnetically-Recyclable, Nitrogen-Doped Fe3O4@Pd NPs for Suzuki–Miyaura Coupling and Their Application in the Synthesis of Crizotinib. Catalysts 2018, 8, 443. https://doi.org/10.3390/catal8100443
Zheng K, Shen C, Qiao J, Tong J, Jin J, Zhang P. Novel Magnetically-Recyclable, Nitrogen-Doped Fe3O4@Pd NPs for Suzuki–Miyaura Coupling and Their Application in the Synthesis of Crizotinib. Catalysts. 2018; 8(10):443. https://doi.org/10.3390/catal8100443
Chicago/Turabian StyleZheng, Kai, Chao Shen, Jun Qiao, Jianying Tong, Jianzhong Jin, and Pengfei Zhang. 2018. "Novel Magnetically-Recyclable, Nitrogen-Doped Fe3O4@Pd NPs for Suzuki–Miyaura Coupling and Their Application in the Synthesis of Crizotinib" Catalysts 8, no. 10: 443. https://doi.org/10.3390/catal8100443
APA StyleZheng, K., Shen, C., Qiao, J., Tong, J., Jin, J., & Zhang, P. (2018). Novel Magnetically-Recyclable, Nitrogen-Doped Fe3O4@Pd NPs for Suzuki–Miyaura Coupling and Their Application in the Synthesis of Crizotinib. Catalysts, 8(10), 443. https://doi.org/10.3390/catal8100443