Titanate Nanotube-Supported Au–Rh Bimetallic Catalysts: Characterization and Their Catalytic Performances in Hydroformylation of Vinyl Acetate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Catalysts
2.2. Hydroformylation of Vinyl Acetate
3. Materials and Methods
3.1. Preparation of the Catalysts
3.2. Hydroformylation of Vinyl Acetate
3.3.Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rodrigues, C.; Delolo, F.G.; Norinder, J.; Börner, A.; Bogado, A.L.; Batista, A.A. Hydroformylation-hydrogenation and hydroformylation-acetalization reactions catalyzed by ruthenium complexes. J. Mol. Catal. A Chem. 2017, 426, 586–592. [Google Scholar]
- Deng, Y.C.; Wang, H.; Sun, Y.H.; Wang, X. Principles and applications of enantioselective hydroformylation of terminal disubstituted alkenes. ACS Catal. 2015, 5, 6828–6837. [Google Scholar]
- Ganga, V.S.R.; Dabbawala, A.A.; Munusamy, K.; Abdi, S.H.R.; Kureshy, R.I.; Khan, N.U.H.; Bajaj, H.C. Rhodium complexes supported on nanoporous activated carbon for selective hydroformylation of olefins. Catal. Commun. 2016, 84, 21–24. [Google Scholar]
- Chikkali, S.H.; van der Vlugt, J.I.; Reek, J.N.H. Hybrid diphosphorus ligands in rhodium catalysed asymmetric hydroformylation. Coord. Chem. Rev. 2014, 262, 1–15. [Google Scholar]
- Franke, R.; Selent, D.; Borner, A. Applied Hydroformylation. Chem. Rev. 2012, 112, 5675–5732. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Raj, K.V.; Shinde, D.R.; Vanka, K.; Kashyap, V.; Kurungot, S.; Vinod, C.P.; Chikkali, S.H. Iron catalyzed hydroformylation of alkenes under mild conditions: Evidence of an Fe(II) catalyzed process. J. Am. Chem. Soc. 2018, 140, 4430–4439. [Google Scholar] [PubMed]
- Kamper, A.; Kucmierczyk, P.; Seidensticker, T.; Vorholt, A.J.; Andreas, J.; Franke, R.; Behr, A. Ruthenium-catalyzed hydroformylation: From laboratory to continuous miniplant scale. Catal. Sci. Technol. 2016, 6, 8072–8079. [Google Scholar] [CrossRef]
- Liu, D.P.; Chaudhari, R.V.; Subramaniam, B. Homogeneous catalytic hydroformylation of propylene in propane-expanded solvent media. Chem. Eng. Sci. 2018, 187, 148–156. [Google Scholar]
- Wang, Y.Q.; Yan, L.; Li, C.Y.; Jiang, M.; Wang, W.L.; Ding, Y.J. Highly efficient porous organic copolymer supported Rh catalysts for heterogeneous hydroformylation of butenes. Appl. Catal. A Gen. 2018, 551, 98–105. [Google Scholar]
- Zhao, Y.P.; Zhang, X.M.; Sanjeevi, J.; Yang, Q.H. Hydroformylation of 1-octene in pickering emulsion constructed by amphiphilic mesoporous silica nanoparticles. J. Catal. 2016, 334, 52–59. [Google Scholar]
- Mormul, J.; Breitenfeld, J.; Trapp, O.; Paciello, R.; Schaub, T.; Hofmann, P. Synthesis of adipic acid, 1,6-hexanediamine, and 1,6-hexanediol via double-n-selective hydroformylation of 1,3-butadiene. ACS Catal. 2016, 6, 2802–2810. [Google Scholar] [CrossRef]
- Li, C.Y.; Wang, W.L.; Yan, L.; Ding, Y.J. A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts. Front. Chem. Sci. Eng. 2018, 12, 113–123. [Google Scholar] [CrossRef]
- Weiss, A.; Munoz, M.; Haas, A.; Rietzler, F.; Steinruck, H.P.; Haumann, M.; Wasserscheid, P.; Etzold, B.J.M. Boosting the activity in supported ionic liquid-phase-catalyzed hydroformylation via surface functionalization of the carbon support. ACS Catal. 2016, 6, 2280–2286. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.Q.; Wang, P.; Lu, Y.; Zhao, X.L.; Liu, Y. Effect of positive-charges in diphosphino-imidazolium salts on the structures of Ir-complexes and catalysis for hydroformylation. J. Mol. Catal. A-Chem. 2015, 411, 337–343. [Google Scholar] [CrossRef]
- Whiteker, G.T.; Cobley, C.J. Applications of Rhodium-catalyzed hydroformylation in the pharmaceutical, agrochemical, and fragrance industries. Topics Organomet. Chem. 2012, 42, 35–46. [Google Scholar]
- Yuki, Y.; Takahashi, K.; Tanaka, Y.; Nozaki, K. Tandem isomerization/hydroformylation/hydrogenation of internal alkenes to n-alcohols using Rh/Ru dual- or ternary-catalyst systems. J. Am. Chem. Soc. 2013, 135, 17393–17400. [Google Scholar] [CrossRef] [PubMed]
- Alsalahi, W.; Trzeciak, A.M. “On water” hydroformylation of 1-hexene using Rh/PAA (PAA = polyacrylic acid) as catalyst. RSC Adv. 2014, 4, 30384–30391. [Google Scholar] [CrossRef] [Green Version]
- Vunain, E.; Ncube, P.; Jalama, K.; Meijboom, R. Confinement effect of rhodium(I) complex species on mesoporous MCM-41 and SBA-15: Effect of pore size on the hydroformylation of 1-octene. J. Porous Mat. 2018, 25, 303–320. [Google Scholar] [CrossRef]
- Tan, M.H.; Wang, D.; Ai, P.P.; Liu, G.G.; Wu, M.B.; Zheng, J.T.; Yang, G.H.; Yoneyama, Y.; Tsubaki, N. Enhancing catalytic performance of activated carbon supported Rh catalyst on heterogeneous hydroformylation of 1-hexene via introducing surface oxygen-containing groups. Appl. Catal. A Gen. 2016, 527, 53–59. [Google Scholar] [CrossRef]
- Sun, Q.; Dai, Z.F.; Liu, X.L.; Sheng, N.; Deng, F.; Meng, X.J.; Xiao, F.S. Highly efficient heterogeneous hydroformylation over Rh-metalated porous organic polymers: Synergistic effect of high ligand concentration and flexible framework. J. Am. Chem. Soc. 2015, 137, 5204–5209. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.B.; Gao, Z.X.; Yuan, T.; Wang, T.F. Kinetics of dicyclopentadiene hydroformylation over Rh-SiO2 catalysts. Prog. React. Kinet. Mech. 2017, 42, 191–199. [Google Scholar] [CrossRef]
- Hou, C.; Zhao, G.F.; Ji, Y.J.; Niu, Z.Q.; Wang, D.S.; Li, Y.D. Hydroformylation of alkenes over rhodium supported on the metal-organic framework ZIF-8. Nano Res. 2014, 7, 1364–1369. [Google Scholar] [CrossRef]
- Hu, X.J.; Shi, Y.K.; Zhang, Y.J.; Zhu, B.L.; Zhang, S.M.; Huang, W.P. Nanotubular TiO2-supported amorphous Co-B catalysts and their catalytic performances for hydroformylation of cyclohexene. Catal. Commun. 2015, 59, 45–49. [Google Scholar] [CrossRef]
- Shi, Y.K.; Hu, X.J.; Chen, L.; Lu, Y.; Zhu, B.L.; Zhang, S.M.; Huang, W.P. Boron modified TiO2 nanotubes supported Rh-nanoparticle catalysts for highly efficient hydroformylation of styrene. New J. Chem. 2017, 41, 6120–6126. [Google Scholar] [CrossRef]
- Gual, A.; Godard, C.; Castillon, S.; Claver, C. Highly efficient Rhodium catalysts for the asymmetric hydroformylation of vinyl and allyl ethers using C1-symmetrical diphosphite ligands. Adv. Synth. Catal. 2010, 352, 463–477. [Google Scholar] [CrossRef]
- Khan, S.R.; Bhanage, B.M. Regioselectivehydroformylation of vinyl esters catalyzed by Rh(acac)(CO)2 with simple and efficient diphosphinite ligands. Catal. Commun. 2014, 46, 109–112. [Google Scholar] [CrossRef]
- Tada, M.; Motokura, K.; Iwasawa, Y. Conceptual integration of homogeneous and heterogeneous catalyses. Top. Catal. 2008, 48, 32–40. [Google Scholar] [CrossRef]
- Garlaschelli, L.; Marchionna, M.; Iapalucci, M.C.; Longoni, G. Hydroformylation and hydrocarbonylation of dicyclopentadiene with cobalt-rhodium catalytic systems promoted by triphenylphosphine: Synthesis of monoformyltricyclodecenes, diformyltricyclodecanes and di(tricyclodecenyl)ketones. J. Mol. Catal. 1991, 68, 7–21. [Google Scholar] [CrossRef]
- Martin, B.; Warner, D.K.; Norton, J. Mechanism of the reaction of a solvated Rhenium acyl complex with neutral transition-metal hydrides. Relative nucleophilicity of such hydrides. J. Am. Chem. Soc. 1986, 108, 33–39. [Google Scholar] [CrossRef]
- Renaut, P.; Tainturier, G.; Gautheron, B. Formation of a zirconium-molybdenum bond via methane elimination. J. Organomet. Chem. 1978, 150, C9–C10. [Google Scholar] [CrossRef]
- Ma, Y.B.; Fu, J.; Gao, Z.X.; Zhang, L.B.; Li, C.Y.; Wang, T.F. Dicyclopentadiene Hydroformylation to Value-Added Fine Chemicals over Magnetically Separable Fe3O4-Supported Co-Rh Bimetallic Catalysts: Effects of Cobalt Loading. Catalysts 2017, 7, 103. [Google Scholar] [CrossRef]
- Buchwalter, P.; Rose, J.; Braunstein, P. Multimetallic catalysis based on heterometallic complexes and clusters. Chem. Rev. 2015, 115, 28–126. [Google Scholar] [CrossRef] [PubMed]
- Hetterscheid, D.G.H.; Chikkali, S.H.; de Bruin, B.; Reek, J.N.H. Binuclear cooperative catalysts for the hydrogenation and hydroformylation of olefins. ChemcatChem 2013, 5, 2785–2793. [Google Scholar] [CrossRef]
- Li, C.Z.; Chen, L.; Widjaja, E.; Garland, M. The catalytic binuclear elimination reaction: Confirmation from in situ FTIR studies of homogeneous rhodium catalyzed hydroformylation. Catal. Today 2010, 155, 261–265. [Google Scholar] [CrossRef]
- Li, C.Z.; Gao, F.; Cheng, S.Y.; Tjahjono, M.; van Meurs, M.; Tay, B.Y.; Jacob, C.; Guo, L.F.; Garland, M. From stoichiometric to catalytic binuclear elimination in Rh-W hydroformylations. Identification of two new heterobimetallic intermediates. Organometallics 2011, 30, 4292–4296. [Google Scholar] [CrossRef]
- Klahn, M.; Garland, M.V. On the mechanism of the catalytic binuclear elimination reaction in hydroformylation systems. ACS Catal. 2015, 5, 2301–2316. [Google Scholar] [CrossRef]
- Sudarsanam, P.; Mallesham, B.; Reddy, P.S.; Grossmann, D.; Grunert, W.; Reddy, B.M. Nano-Au/CeO2 catalysts for CO oxidation: Influence of dopants (Fe, La and Zr) on the physicochemical properties and catalytic activity. Appl. Catal. B-Environ. 2014, 144, 900–908. [Google Scholar] [CrossRef]
- Bulushev, D.A.; Zacharska, M.; Guo, Y.N.; Beloshapkin, S.; Simakov, A. CO-free hydrogen production from decomposition of formic acid over Au/Al2O3 catalysts doped with potassium ions. Catal. Commun. 2017, 92, 86–89. [Google Scholar] [CrossRef]
- Cao, R.B.; Xia, T.T.; Zhu, R.Z.; Liu, Z.H.; Guo, J.M.; Chang, G.; Zhang, Z.L.; Liu, X.; He, Y.B. Novel synthesis of core-shell Au-Pt dendritic nanoparticles supported on carbon black for enhanced methanol electro-oxidation. Appl. Surf. Sci. 2018, 433, 840–846. [Google Scholar] [CrossRef]
- Ma, Y.B.; Qing, S.J.; Gao, Z.X.; Mamat, X.; Zhang, J.; Li, H.Y.; Eli, W.M.J. Tandem hydroformylation and hydrogenation of dicyclopentadiene by Co3O4 supported gold nanoparticles. Catal. Sci. Technol. 2015, 5, 3649–3657. [Google Scholar] [CrossRef]
- Chuai, H.Y.; Liu, X.T.; Chen, Y.; Zhu, B.L.; Zhang, S.M.; Huang, W.P. Hydroformylation of vinyl acetate and cyclohexene over TiO2 nanotube supported Rh and Ru nanoparticle catalysts. RSC Adv. 2018, 8, 12053–12059. [Google Scholar] [CrossRef]
- Shi, Y.K.; Hu, X.J.; Zhu, B.L.; Wang, S.R.; Zhang, S.M.; Huang, W.P. Synthesis and characterization of TiO2 nanotube supported Rh-nanoparticle catalysts for regioselectiovehydroformylation of vinyl acetate. RSC Adv. 2014, 4, 62215–62222. [Google Scholar] [CrossRef]
- Liu, J.X.; Qiao, B.T.; Song, Y.; Tang, H.L.; Huang, Y.D.; Liu, J.Y. Highly active and sintering-resistant heteroepitaxy of Au nanoparticles on ZnO nanowires for CO oxidation. J. Energy Chem. 2016, 25, 361–370. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, P.; Wang, Y.D.; Huang, W.P.; Zhang, S.M. Au/TiO2 nanotube catalysts prepared by combining sol-gel method with hydrothermal treatment and their catalytic properties for CO oxidation. J. Sol.-Gel. Sci. Technol. 2014, 71, 406–412. [Google Scholar] [CrossRef]
- Wang, S.H.; Xin, Z.L.; Huang, X.; Yu, W.Z.; Niu, S.; Shao, L.D. Nanosized Pd-Au bimetallic phases on carbon nanotubes for selective phenylacetylene hydrogenation. Phys. Chem. Chem. Phys. 2017, 19, 6164–6168. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.L.; Yang, G.M.; Feng, S.P.; Shi, L.; Huang, A.L.; Pan, H.B.; Liu, W. Au@AuPt nanoparticles embedded in B-doped graphene: A superior electrocatalyst for determination of rutin. Appl. Surf. Sci. 2017, 402, 232–244. [Google Scholar] [CrossRef]
- Zhang, P.; Yu, H.H.; Li, J.J.; Zhao, H.; Zhu, B.L.; Huang, W.P.; Zhang, S.M. Au/BiPO4 nanorod catalysts: Synthesis, characterization and their catalytic performance for CO oxidation. RSC Adv. 2016, 6, 15304–15312. [Google Scholar] [CrossRef]
- Sareen, S.; Mutreja, V.; Pal, B.; Singh, S. Synthesis of bimetallic Au-Ag alloyed mesocomposites and their catalytic activity for the reduction of nitroaromatics. Appl. Surf. Sci. 2018, 435, 552–562. [Google Scholar] [CrossRef]
- Berko, A.; Ulrych, I.; Prince, K.C. Encapsulation of Rh nanoparticles supported on TiO2 (110)-(1×1) surface: XPS and STM studies. J. Phys. Chem. B 1998, 102, 3379–3386. [Google Scholar] [CrossRef]
- Chang, B.K.; Jang, B.W.; Dai, S.; Overbury, S.H. Transient studies of the mechanisms of CO oxidation over Au/TiO2 using time-resolved FTIR spectroscopy and product analysis. J. Catal. 2005, 236, 392–400. [Google Scholar] [CrossRef]
- Calzada, L.A.; Collins, S.E.; Han, C.W.; Ortalan, V.; Zanella, R. Synergetic effect of bimetallic Au-Ru/TiO2 catalysts for complete oxidation of methanol. Appl. Catal. B-Environ. 2017, 207, 79–92. [Google Scholar] [CrossRef]
- Zhang, S.H.; Han, X.X. Study on preparation and morphology of Aluminum-coated titanium dioxide. Semicond. Optoelectron. 2018, 39, 65–76. [Google Scholar]
Entry | Catalysts | Contents of Rh, Au/wt.% | SSA/m2/g | Max. Particle Size/nm (Au–Rh) | Average Particle Size/nm (Au–Rh) |
---|---|---|---|---|---|
1 | Rh0.33/TNTs-1 | 0.33, 0 | 233.5 | 2 | 2 |
2 | Au0.49/TNTs-2 | 0, 0.49 | 268.6 | 3 | 2 |
3 | Au0.28/Rh0.34/TNTs-12 | 0.34, 0.28 | 254.3 | 3 | 2 |
4 | Au0.52/Rh0.32/TNTs-12 | 0.32, 0.52 | 226.2 | 6 | 5 |
5 | Au0.78/Rh0.31/TNTs-12 | 0.31, 0.78 | 208.3 | 14 | 8 |
6 | Au0.98/Rh0.33/TNTs-12 | 0.33, 0.98 | 164.5 | 16 | 12 |
7 | Au0.49/Rh0.33/TNTs-22 | 0.33, 0.49 | 218.8 | 10 | 5 |
8 | Au0.50/Rh0.32/TNTs-11 | 0.32, 0.50 | 207.6 | 18 | 5 |
9 | Rh0.31/Au0.51/TNTs-21 | 0.31, 0.51 | 220.1 | 10 | 5 |
10 | Au0.52/Rh0.32/TNTs-12* | 0.32, 0.52 | 212.3 | 26 | 13 |
Entry | Catalysts | Conv. of Vinyl Acetate/% | Selectivity for Ald./% | b:l | TOF/h−1 |
---|---|---|---|---|---|
1 | Rh0.33/TNTs-1 | 86.82 | 60.29 | 100 | 2210 |
2 | Rh0.33/TNTs-2 | 60.11 | 64.69 | 100 | 1640 |
3 | Au0.49/TNTs-1 | 0 | 0 | 0 | 0 |
4 | Au0.49/TNTs-2 | 0 | 0 | 0 | 0 |
5 | Au0.28/Rh0.34/TNTs-12 | 78.85 | 76.51 | 100 | 2460 |
6 | Au0.52/Rh0.32/TNTs-12-U1 | 88.11 | 88.67 | 100 | 3500 |
7 | Au0.78/Rh0.31/TNTs-12 | 36.67 | 70.00 | 100 | 1080 |
8 | Au0.98/Rh0.33/TNTs-12 | 32.47 | 59.74 | 100 | 870 |
9 | Au0.49/Rh0.33/TNTs-22 | 62.52 | 76.88 | 100 | 2020 |
10 | Au0.50/Rh0.32/TNTs-11 | 49.68 | 83.16 | 100 | 1800 |
11 | Rh0.31/Au0.51/TNTs-21 | 51.08 | 88.75 | 100 | 2030 |
12 | Au0.52/Rh0.32/TNTs-12* | 28.08 | 34.77 | 100 | 440 |
13 | Au0.52/Rh0.32/TNTs-12-U2 | 51.73 | 73.40 | 100 | 1700 |
14 | Au0.52/Rh0.32/TNTs-12-U3 | 35.27 | 47.86 | 100 | 750 |
15 | Rh(acac)(CO)2, 3.21 mmol | 90.00 | 58.93 | 100 | 2200 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Su, P.; Liu, X.; Liu, H.; Zhu, B.; Zhang, S.; Huang, W. Titanate Nanotube-Supported Au–Rh Bimetallic Catalysts: Characterization and Their Catalytic Performances in Hydroformylation of Vinyl Acetate. Catalysts 2018, 8, 420. https://doi.org/10.3390/catal8100420
Chen Y, Su P, Liu X, Liu H, Zhu B, Zhang S, Huang W. Titanate Nanotube-Supported Au–Rh Bimetallic Catalysts: Characterization and Their Catalytic Performances in Hydroformylation of Vinyl Acetate. Catalysts. 2018; 8(10):420. https://doi.org/10.3390/catal8100420
Chicago/Turabian StyleChen, Ya, Penghe Su, Xiaotong Liu, Hongchi Liu, Baolin Zhu, Shoumin Zhang, and Weiping Huang. 2018. "Titanate Nanotube-Supported Au–Rh Bimetallic Catalysts: Characterization and Their Catalytic Performances in Hydroformylation of Vinyl Acetate" Catalysts 8, no. 10: 420. https://doi.org/10.3390/catal8100420
APA StyleChen, Y., Su, P., Liu, X., Liu, H., Zhu, B., Zhang, S., & Huang, W. (2018). Titanate Nanotube-Supported Au–Rh Bimetallic Catalysts: Characterization and Their Catalytic Performances in Hydroformylation of Vinyl Acetate. Catalysts, 8(10), 420. https://doi.org/10.3390/catal8100420