Catalytic Glycerol Hydrodeoxygenation under Inert Atmosphere: Ethanol as a Hydrogen Donor
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalysts Characterization
Support | Composition (wt%) | BET surface area (m2·g−1) |
---|---|---|
FeAl | 61 (Fe2O3), 39 (Al2O3) | 80.0 |
CeZrLa | 78 (ZrO2), 17 (CeO2), 5 (La2O3) | 54.9 |
Catalyst | ||
Pt/FeAl | 5.0 (Pt) | 73.6 |
Ni/CeZrLa | 10.0 (Ni) | 37.2 |
Cu:Zn:Al | 49.0 (Cu), 26 (Zn), 3.5 (Al) | 71.5 |
2.2. Catalytic Performance in the Ethanol APR-Glycerol Hydrodeoxygenation Reaction Cycle
Catalyst | Conversion (%) | Mass-specific rate (Integral) (MSR) (mmoles gcat−1·h−1) | Selectivity (%) | 1,2-PDO productivity (g1,2-PDO gcat−1·h−1) | |||||
---|---|---|---|---|---|---|---|---|---|
Glycerol | Ethanol/Methanol | Glycerol | Ethanol/Methanol | 1,2-PDO | EG | AC | 1-PrOH | ||
Pt/FeAl | 97.4 | 9.5 | 26.4 | 3.6 | 32.2 | 2.1 | 4.5 | 7.3 | 0.65 |
Pt/FeAl a | 96.4 | 14.4 | 26.2 | 12.2 | 41.7 | 2.6 | 5.3 | 5.4 | 0.83 |
Ni/CeZrLa | 82.3 | 41.0 | 5.4 | 3.2 | 21.6 | 3.9 | 8.4 | 8.8 | 0.09 |
Cu:Zn:Al | 87.7 | 3.6 | 5.8 | 0.3 | 32.9 | 1.9 | 7.5 | 5.6 | 0.15 |
Cu:Zn:Al b | 88.8 | 14.1 | 6.7 | 1.9 | 39.2 | 1.9 | 5.4 | 6.1 | 0.20 |
2.3. Catalyst Stability
Catalysts | Dispersion, % | Pt particle size, nm |
---|---|---|
Pt/FeAl-fresh | 81 | 1.4 |
Pt/FeAl-used after 4th cycle | 72 | 1.6 |
2.4. Effect of Various Operating Conditions
3. Experimental Section
3.1. Catalyst Synthesis
3.1.1. Platinum Catalyst
- (1)
- C12H27AlO3 was dropwise and under vigorous stirring added into deionized water while heating at 80 °C.
- (2)
- After the addition of the alkoxide, the solution was maintained under stirring and heating for 30 min, so as to evaporate butanol (C4H9OH); then, Fe(NO3)3·9H2O was added, and the solution was subjected to reflux conditions for 17 h at 80 °C.
- (3)
- The final sample was obtained after calcination at 600 °C for 3 h.
3.1.2. Nickel Catalyst
3.1.3. Copper Catalyst
3.2. Catalyst Characterization
3.3. Catalyst Evaluation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ruppert, A.M.; Weinberg, K.; Palkovits, R. Hydrogenolysis goes bio: From carbohydrates and sugar alcohols to platform chemicals. Angew. Chem. Int. Ed. Engl. 2012, 51, 2564–2601. [Google Scholar] [CrossRef] [PubMed]
- Vennestrøm, P.N.R.; Osmundsen, C.M.; Christensen, C.H.; Taarning, E. Beyond petrochemicals: the renewable chemicals industry. Angew. Chem. Int. Ed. Engl. 2011, 50, 10502–10509. [Google Scholar] [CrossRef] [PubMed]
- Bauer, F.; Hulteberg, C. Is there a future in glycerol as a feedstock in the production of biofuels and biochemicals? Biofuels Bioprod. Biorefin. 2013, 7, 43–51. [Google Scholar] [CrossRef]
- Vasiliadou, E.S.; Heracleous, E.; Vasalos, I.A.; Lemonidou, A.A. Ru-based catalysts for glycerol hydrogenolysis—Effect of support and metal precursor. Appl. Catal. B 2009, 92, 90–99. [Google Scholar] [CrossRef]
- Vasiliadou, E.S.; Lemonidou, A.A. Parameters Affecting the Formation of 1,2-Propanediol from Glycerol over Ru/SiO2 Catalyst. Org. Process. Res. Dev. 2011, 15, 925–931. [Google Scholar] [CrossRef]
- Vasiliadou, E.S.; Lemonidou, A.A. Investigating the performance and deactivation behaviour of silica-supported copper catalysts in glycerol hydrogenolysis. Appl. Catal. A 2011, 396, 177–185. [Google Scholar] [CrossRef]
- Vasiliadou, E.S.; Eggenhuisen, T.M.; Munnik, P.; de Jongh, P.E.; de Jong, K.P.; Lemonidou, A.A. Synthesis and performance of highly dispersed Cu/SiO2 catalysts for the hydrogenolysis of glycerol. Appl. Catal. B 2014, 145, 108–119. [Google Scholar] [CrossRef]
- Vasiliadou, E.S.; Lemonidou, A.A. Kinetic study of liquid-phase glycerol hydrogenolysis over Cu/SiO2 catalyst. Chem. Eng. J. 2013, 231, 103–112. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Shinmi, Y.; Koso, S.; Tomishige, K. Direct hydrogenolysis of glycerol into 1,3-propanediol over rhenium-modified iridium catalyst. J. Catal. 2010, 272, 191–194. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, Y.; Zheng, H.; Ding, G.; Li, Y. Direct Conversion of Glycerol into 1,3-Propanediol over Cu-H4SiW12O40/SiO2 in Vapor Phase. Catal. Lett. 2009, 131, 312–320. [Google Scholar] [CrossRef]
- Martin, A.; Armbruster, U.; Atia, H. Recent developments in dehydration of glycerol toward acrolein over heteropolyacids. Eur. J. Lipid Sci. Technol. 2012, 114, 10–23. [Google Scholar] [CrossRef]
- Liu, L.; Ye, X.P.; Bozell, J.J. A comparative review of petroleum-based and bio-based acrolein production. ChemSusChem 2012, 5, 1162–1180. [Google Scholar] [CrossRef] [PubMed]
- Dou, B.; Song, Y.; Wang, C.; Chen, H.; Xu, Y. Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges. Renew. Sustain. Energy Rev. 2014, 30, 950–960. [Google Scholar] [CrossRef]
- Serafim, H.; Fonseca, I.M.; Ramos, A.M.; Vital, J.; Castanheiro, J.E. Valorization of glycerol into fuel additives over zeolites as catalysts. Chem. Eng. J. 2011, 178, 291–296. [Google Scholar] [CrossRef]
- ADM Propylene Glycol—Life Cycle Analysis. Available online: http://www.adm.com (accessed on 30 September 2014).
- Nakagawa, Y.; Tomishige, K. Heterogeneous catalysis of the glycerol hydrogenolysis. Catal. Sci. Technol. 2011, 1, 179–190. [Google Scholar] [CrossRef]
- Mizugaki, T.; Arundhathi, R.; Mitsudome, T.; Jitsukawa, K.; Kaneda, K. Selective Hydrogenolysis of Glycerol to 1,2-Propanediol Using Heterogeneous Copper Nanoparticle Catalyst Derived from Cu–Al Hydrotalcite. Chem. Lett. 2013, 42, 729–731. [Google Scholar] [CrossRef]
- Akiyama, M.; Sato, S.; Takahashi, R.; Inui, K.; Yokota, M. Dehydration–hydrogenation of glycerol into 1,2-propanediol at ambient hydrogen pressure. Appl. Catal. A 2009, 371, 60–66. [Google Scholar] [CrossRef]
- Martin, A.; Armbruster, U.; Gandarias, I.; Arias, P.L. Glycerol hydrogenolysis into propanediols using in situ generated hydrogen—A critical review. Eur. J. Lipid Sci. Technol. 2013, 115, 9–27. [Google Scholar] [CrossRef]
- D’Hondt, E.; van de Vyver, S.; Sels, B.F.; Jacobs, P. Catalytic glycerol conversion into 1,2-propanediol in absence of added hydrogen. Chem. Commun. 2008, 45, 6011–6012. [Google Scholar] [CrossRef]
- Dasari, M.A.; Kiatsimkul, P.P.; Sutterlin, W.R.; Suppes, G.J. Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl. Catal. A 2005, 281, 225–231. [Google Scholar] [CrossRef]
- Miyazawa, T.; Kusunoki, Y.; Kunimori, K.; Tomishige, K. Glycerol conversion in the aqueous solution under hydrogen over Ru/C + an ion-exchange resin and its reaction mechanism. J. Catal. 2006, 240, 213–221. [Google Scholar] [CrossRef]
- Mane, R.B.; Rode, C.V. Simultaneous glycerol dehydration and in situ hydrogenolysis over Cu–Al oxide under an inert atmosphere. Green Chem. 2012, 14, 2780–2789. [Google Scholar] [CrossRef]
- Musolino, M.G.; Scarpino, L.A.; Mauriello, F.; Pietropaolo, R. Selective transfer hydrogenolysis of glycerol promoted by palladium catalysts in absence of hydrogen. Green Chem. 2009, 11, 1511–1513. [Google Scholar] [CrossRef]
- Xia, S.; Zheng, L.; Wang, L.; Chen, P.; Hou, Z. Hydrogen-free synthesis of 1,2-propanediol from glycerol over Cu-Mg-Al catalysts. RSC Adv. 2013, 3, 16569–16576. [Google Scholar] [CrossRef]
- Gandarias, I.; Arias, P.L.; Requies, J.; El Doukkali, M.; Güemez, M.B. Liquid-phase glycerol hydrogenolysis to 1,2-propanediol under nitrogen pressure using 2-propanol as hydrogen source. J. Catal. 2011, 282, 237–247. [Google Scholar] [CrossRef]
- Gandarias, I.; Requies, J.; Arias, P.L.; Armbruster, U.; Martin, A. Liquid-phase glycerol hydrogenolysis by formic acid over Ni-Cu/Al2O3 catalysts. J. Catal. 2012, 290, 79–89. [Google Scholar] [CrossRef]
- Gandarias, I.; Fernández, S.G.; El Doukkali, M.; Requies, J.; Arias, P.L. Physicochemical Study of Glycerol Hydrogenolysis Over a Ni–Cu/Al2O3 Catalyst Using Formic Acid as the Hydrogen Source. Top. Catal. 2013, 56, 995–1007. [Google Scholar] [CrossRef]
- Vasileiadou, E.S.; Lemonidou, A.A. Catalytic process for the production of 1,2-propanediol from crude glycerol stream. Patent EP 2565175 A1, 31 August 2011. [Google Scholar]
- Vasiliadou, E.S.; Yfanti, V.-L.; Lemonidou, A.A. One-pot tandem processing of glycerol stream to 1,2-propanediol with methanol reforming as hydrogen donor reaction. Appl. Catal. B 2014, 163, 258–266. [Google Scholar] [CrossRef]
- Ni, M.; Leung, D.Y.C.; Leung, M.K.H. A review on reforming bio-ethanol for hydrogen production. Int. J. Hydrogen Energy 2007, 32, 3238–3247. [Google Scholar] [CrossRef]
- Zhang, X.-R.; Wang, L.-C.; Yao, C.-Z.; Cao, Y.; Dai, W.-L.; He, H.-Y.; Fan, K.-N. A highly efficient Cu/ZnO/Al2O3 catalyst via gel-coprecipitation of oxalate precursors for low-temperature steam reforming of methanol. Catal. Lett. 2005, 102, 183–190. [Google Scholar] [CrossRef]
- Pendem, C.; Gupta, P.; Chaudhary, N.; Singh, S.; Kumar, J.; Sasaki, T.; Datta, A.; Bal, R. Aqueous phase reforming of glycerol to 1,2-propanediol over Pt-nanoparticles supported on hydrotalcite in the absence of hydrogen. Green Chem. 2012, 14, 3107–3113. [Google Scholar] [CrossRef]
- Angeli, S.D.; Monteleone, G.; Giaconia, A.; Angeliki, A. Low Temperature Methane Steam Reforming: Catalytic Activity and Coke Deposition Study. Chem. Eng. Trans. 2013, 35, 1201–1206. [Google Scholar]
- Guerreiro, E.D.; Gorriz, O.F.; Rivarola, J.B.; Arrfia, L.A. Characterization of Cu/SiO2 catalysts prepared by ion exchange for methanol dehydrogenation. Appl. Catal. A 1997, 165, 259–271. [Google Scholar] [CrossRef]
- Sales, A. Production of Biodiesel from Sunflower Oil and Ethanol by Base Catalyzed Transesterification. Master Thesis, Department of Chemical Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden, June 2011. [Google Scholar]
- Vaidya, P.D.; Rodrigues, A.E. Glycerol Reforming for Hydrogen Production: A Review. Chem. Eng. Technol. 2009, 32, 1463–1469. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Higuchi, K.; Takahashi, N.; Yokota, K.; Doi, H.; Sugiura, M. Effect of the addition of Fe on catalytic activities of Pt/Fe/γ-Al2O3 catalyst. Appl. Catal. B 1999, 23, 159–167. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasiliadou, E.S.; Lemonidou, A.A. Catalytic Glycerol Hydrodeoxygenation under Inert Atmosphere: Ethanol as a Hydrogen Donor. Catalysts 2014, 4, 397-413. https://doi.org/10.3390/catal4040397
Vasiliadou ES, Lemonidou AA. Catalytic Glycerol Hydrodeoxygenation under Inert Atmosphere: Ethanol as a Hydrogen Donor. Catalysts. 2014; 4(4):397-413. https://doi.org/10.3390/catal4040397
Chicago/Turabian StyleVasiliadou, Efterpi S., and Angeliki A. Lemonidou. 2014. "Catalytic Glycerol Hydrodeoxygenation under Inert Atmosphere: Ethanol as a Hydrogen Donor" Catalysts 4, no. 4: 397-413. https://doi.org/10.3390/catal4040397
APA StyleVasiliadou, E. S., & Lemonidou, A. A. (2014). Catalytic Glycerol Hydrodeoxygenation under Inert Atmosphere: Ethanol as a Hydrogen Donor. Catalysts, 4(4), 397-413. https://doi.org/10.3390/catal4040397