Atomic-Scale Insights into Cu-Modified ZrO2 Catalysts: The Crucial Role of Surface Clusters in Phenol Carboxylation with CO2
Abstract
1. Introduction
2. Results and Discussion
2.1. The Langmuir–Hinshelwood Mechanism
2.2. The Eley–Rideal Mechanism
2.3. Assessing Cu Doping Effects and Surface Texture Influence on Catalytic Activity
3. Materials and Computational Details
3.1. Materials
3.2. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haber, J. Catalysis—Where Science and Industry Meet. Pure Appl. Chem. 1994, 66, 1597–1620. [Google Scholar] [CrossRef]
- Miceli, M.; Frontera, P.; Macario, A.; Malara, A. Recovery/Reuse of Heterogeneous Supported Spent Catalysts. Catalysts 2021, 11, 591. [Google Scholar] [CrossRef]
- Li, B.; Cho, S.; Liu, Y.; Astruc, D. Introduction: Materials Challenges for Catalysis. APL Mater. 2023, 11, 090401. [Google Scholar] [CrossRef]
- Zaera, F. Nanostructured Materials for Applications in Heterogeneous Catalysis. Chem. Soc. Rev. 2013, 42, 2746–2762. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, G.; Xi, S.; Xu, Z.J. Catalytically Influential Features in Transition Metal Oxides. ACS Catal. 2021, 11, 13947–13954. [Google Scholar] [CrossRef]
- Rossell, M.D.; Abakumov, A.M.; Ramasse, Q.M.; Erni, R. Direct Evidence of Stacking Disorder in the Mixed Ionic-Electronic Conductor Sr4Fe6O12+δ. ACS Nano 2013, 7, 3078–3085. [Google Scholar] [CrossRef] [PubMed]
- Rong, H.; Ji, S.; Zhang, J.; Wang, D.; Li, Y. Synthetic Strategies of Supported Atomic Clusters for Heterogeneous Catalysis. Nat. Commun. 2020, 11, 5884. [Google Scholar] [CrossRef]
- Dong, C.; Li, Y.; Cheng, D.; Zhang, M.; Liu, J.; Wang, Y.-G.; Xiao, D.; Ma, D. Supported Metal Clusters: Fabrication and Application in Heterogeneous Catalysis. ACS Catal. 2020, 10, 11011–11045. [Google Scholar] [CrossRef]
- Heiz, U.; Bullock, E.L. Fundamental Aspects of Catalysis on Supported Metal Clusters. J. Mater. Chem. 2004, 14, 564. [Google Scholar] [CrossRef]
- Li, X.; Mitchell, S.; Fang, Y.; Li, J.; Perez-Ramirez, J.; Lu, J. Advances in Heterogeneous Single-Cluster Catalysis. Nat. Rev. Chem. 2023, 7, 754–767. [Google Scholar] [CrossRef]
- Muetterties, E.L.; Krause, M.J. Catalysis by Molecular Metal Clusters. Angew. Chem. Int. Ed. Engl. 1983, 22, 135–148. [Google Scholar] [CrossRef]
- Fan, R.; Zhang, Y.; Hu, Z.; Chen, C.; Shi, T.; Zheng, L.; Zhang, H.; Zhu, J.; Zhao, H.; Wang, G. Synergistic Catalysis of Cluster and Atomic Copper Induced by Copper-Silica Interface in Transfer-Hydrogenation. Nano Res. 2021, 14, 4601–4609. [Google Scholar] [CrossRef]
- Liu, L.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118, 4981–5079. [Google Scholar] [CrossRef]
- Szalay, M.; Buzsáki, D.; Barabás, J.; Faragó, E.; Janssens, E.; Nyulászi, L.; Höltzl, T. Screening of Transition Metal Doped Copper Clusters for CO2 Activation. Phys. Chem. Chem. Phys. 2021, 23, 21738–21747. [Google Scholar] [CrossRef]
- Molina, L.M.; López, M.J.; Alonso, J.A. Interaction of Aromatic Molecules with Small Gold Clusters. Chem. Phys. Lett. 2017, 684, 91–96. [Google Scholar] [CrossRef]
- Iijima, T.; Yamaguchi, T. K2CO3-Catalyzed Direct Synthesis of Salicylic Acid from Phenol and Supercritical CO2. Appl. Catal. A Gen. 2008, 345, 12–17. [Google Scholar] [CrossRef]
- Wang, S.; Du, G.; Xi, C. Copper-Catalyzed Carboxylation Reactions Using Carbon Dioxide. Org. Biomol. Chem. 2016, 14, 3666–3676. [Google Scholar] [CrossRef]
- Tada, S.; Katagiri, A.; Kiyota, K.; Honma, T.; Kamei, H.; Noriyuki, A.; Uchida, S.; Satokawa, S. Cu Species Incorporated into Amorphous ZrO2 with High Activity and Selectivity in CO2-to-Methanol Hydrogenation. J. Phys. Chem. C 2018, 122, 5430–5442. [Google Scholar] [CrossRef]
- Yu, J.; Liu, S.; Mu, X.; Yang, G.; Luo, X.; Lester, E.; Wu, T. Cu-ZrO2 Catalysts with Highly Dispersed Cu Nanoclusters Derived from ZrO2@ HKUST-1 Composites for the Enhanced CO2 Hydrogenation to Methanol. Chem. Eng. J. 2021, 419, 129656. [Google Scholar] [CrossRef]
- Zhang, K.; Ma, C.; Paul, S.; Zaffran, J. Unveiling the Phenol Direct Carboxylation Reaction Mechanism at ZrO2 Surface. Mol. Catal. 2024, 569, 114606. [Google Scholar] [CrossRef]
- Baxter, R.J.; Hu, P. Insight into Why the Langmuir–Hinshelwood Mechanism Is Generally Preferred. J. Chem. Phys. 2002, 116, 4379–4381. [Google Scholar] [CrossRef]
- Kepp, K.P. A Quantitative Scale of Oxophilicity and Thiophilicity. Inorg. Chem. 2016, 55, 9461–9470. [Google Scholar] [CrossRef]
- Prins, R. Eley–Rideal, the Other Mechanism. Top. Catal. 2018, 61, 714–721. [Google Scholar] [CrossRef]
- Watkins, A.R. Protonation of Aromatic Carboxylic Acids in the First Excited Singlet State. J. Chem. Soc. Faraday Trans. 1972, 68, 28. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, S.; Wang, J.; Zhong, W. Modulating the D-Band Center of Electrocatalysts for Enhanced Water Splitting. Chem. Eur. J. 2024, 30, e202402725. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, C.; Zhang, R.; Wang, X.; Wei, Y.; Sun, M.; Liu, Z.; Ge, R.; Ma, M.; Tian, J. Size-Induced d Band Center Upshift of Copper for Efficient Nitrate Reduction to Ammonia. J. Colloid Interface Sci. 2024, 658, 934–942. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, T.; Ding, R.; Zhai, Y.; Lu, X. Sub-Nano Copper Sites on SiO2 with Downshifted d-Band Centers Dominate Non-Radical Selective Oxidation of Benzene to Phenol. Nano Lett. 2025, 25, 10998–11004. [Google Scholar] [CrossRef]
- Fukui, H.; Fujimoto, M.; Akahama, Y.; Sano-Furukawa, A.; Hattori, T. Structure Change of Monoclinic ZrO2 Baddeleyite Involving Softenings of Bulk Modulus and Atom Vibrations. Acta Cryst. 2019, 75, 742–749. [Google Scholar] [CrossRef]
- Hafner, J. Ab-initio simulations of Materials Using VASP: Density-functional Theory and Beyond. J. Comput. Chem. 2008, 29, 2044–2078. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Hafner, J. Ab Initio molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Hafner, J. Ab Initio molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Henkelman, G.; Jónsson, H. Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points. J. Chem. Phys. 2000, 113, 9978–9985. [Google Scholar] [CrossRef]
- Henkelman, G.; Uberuaga, B.P.; Jónsson, H. A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. J. Chem. Phys. 2000, 113, 9901–9904. [Google Scholar] [CrossRef]
- Heyden, A.; Bell, A.T.; Keil, F.J. Efficient Methods for Finding Transition States in Chemical Reactions: Comparison of Improved Dimer Method and Partitioned Rational Function Optimization Method. J. Chem. Phys. 2005, 123, 224101. [Google Scholar] [CrossRef]
- Kästner, J.; Sherwood, P. Superlinearly Converging Dimer Method for Transition State Search. J. Chem. Phys. 2008, 128, 014106. [Google Scholar] [CrossRef] [PubMed]
Langmuir–Hinshelwood | Eley–Rideal | |||
---|---|---|---|---|
(ΔE/Ea) in eV | Step 1 (C–H dissociation) | Step 2 (C–C coupling) | Step 3 (O–H association) | Concerted Step |
Cu-ZrO2 | +0.24/1.74 | −1.26/1.23 | +1.55/1.88 | −0.16/1.84 |
Cu@ZrO2 | +0.27/1.25 | −0.90/0.99 | +1.24/1.72 | +0.49/2.46 |
Pure ZrO2 | −0.18/1.22 | +0.12/3.52 | +1.40/1.76 | −0.33/1.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Paul, S.; Zaffran, J. Atomic-Scale Insights into Cu-Modified ZrO2 Catalysts: The Crucial Role of Surface Clusters in Phenol Carboxylation with CO2. Catalysts 2025, 15, 902. https://doi.org/10.3390/catal15090902
Zhang K, Paul S, Zaffran J. Atomic-Scale Insights into Cu-Modified ZrO2 Catalysts: The Crucial Role of Surface Clusters in Phenol Carboxylation with CO2. Catalysts. 2025; 15(9):902. https://doi.org/10.3390/catal15090902
Chicago/Turabian StyleZhang, Kaihua, Sébastien Paul, and Jérémie Zaffran. 2025. "Atomic-Scale Insights into Cu-Modified ZrO2 Catalysts: The Crucial Role of Surface Clusters in Phenol Carboxylation with CO2" Catalysts 15, no. 9: 902. https://doi.org/10.3390/catal15090902
APA StyleZhang, K., Paul, S., & Zaffran, J. (2025). Atomic-Scale Insights into Cu-Modified ZrO2 Catalysts: The Crucial Role of Surface Clusters in Phenol Carboxylation with CO2. Catalysts, 15(9), 902. https://doi.org/10.3390/catal15090902