From Pigment to Photocatalyst: CdSe/CdS Solutions Mimicking Cadmium Red for Visible-Light Dye Degradation
Abstract
1. Introduction
2. Results and Discussion
2.1. Cadmium Pigments: Microstructure and Phase Composition
2.2. Photocatalytic Activity
3. Materials and Methods
3.1. Materials
3.2. Synthesis
3.3. Materials Characterization
3.4. Photocatalytic Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pfaff, G. Cadmium Sulfide/Selenide Pigments. Phys. Sci. Rev. 2021, 6, 211–216. [Google Scholar] [CrossRef]
- Thoury, M.; Delaney, J.K.; Rie, E.R.d.l.; Palmer, M.; Morales, K.; Krueger, J. Near-Infrared Luminescence of Cadmium Pigments: In Situ Identification and Mapping in Paintings. Appl. Spectrosc. 2011, 65, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Premaratne, K.; Akuranthilaka, S.N.; Dharmadasa, I.M.; Samantilleka, A.P. Electrodeposition Using Non-Aqueous Solutions at 170 °C and Characterisation of CdS, CdSxSe(1−x) and CdSe Compounds for Use in Graded Band Gap Solar Cells. Renew. Energy 2004, 29, 549–557. [Google Scholar] [CrossRef]
- Friedman, O.; Moschovitz, O.; Golan, Y. Chemical, Structural and Photovoltaic Properties of Graded CdSxSe1−x Thin Films Grown by Chemical Bath Deposition on GaAs(100). CrystEngComm 2018, 20, 5735–5743. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Hwang, I.-S.; Park, J.-H.; Park, J.-G. Bandgap Modulation of Single Crystalline CdSXSe1−X Ternary Alloy Nanowires. In Proceedings of the 2006 IEEE Nanotechnology Materials and Devices Conference, Gyeongju, Republic of Korea, 22–25 October 2006; IEEE: New York, NY, USA; pp. 456–457. [Google Scholar] [CrossRef]
- da Silva, J.E.; Freitas, D.V.; Sousa, F.L.N.; Caires, A.J.; Escobar, D.M.P.; Reis, T.J.A.; Navarro, M. Electrosynthesis and Characterization of Alloyed CdSxSe1−x Ternary Quantum Dots. J. Alloys Compd. 2023, 969, 172315. [Google Scholar] [CrossRef]
- Cepriá, G.; García-Gareta, E.; Pérez-Arantegui, J. Cadmium Yellow Detection and Quantification by Voltammetry of Immobilized Microparticles. Electroanalysis 2005, 17, 1078–1084. [Google Scholar] [CrossRef]
- Comelli, D.; MacLennan, D.; Ghirardello, M.; Phenix, A.; Schmidt Patterson, C.; Khanjian, H.; Gross, M.; Valentini, G.; Trentelman, K.; Nevin, A. Degradation of Cadmium Yellow Paint: New Evidence from Photoluminescence Studies of Trap States in Picasso’s Femme (Époque Des “Demoiselles d’Avignon”). Anal. Chem. 2019, 91, 3421–3428. [Google Scholar] [CrossRef]
- Cesaratto, A.; D’Andrea, C.; Nevin, A.; Valentini, G.; Tassone, F.; Alberti, R.; Frizzi, T.; Comelli, D. Analysis of Cadmium-Based Pigments with Time-Resolved Photoluminescence. Anal. Methods 2014, 6, 130–138. [Google Scholar] [CrossRef]
- Rosmani, C.H.; Abdullah, S.; Rusop, M. Study of Time Effect to the Optical Properties of CdSe Nanocrystal. Adv. Mater. Res. 2013, 667, 48–52. [Google Scholar] [CrossRef]
- Sozanskyi, M.A.; Shapoval, P.Y.; Gnativ, T.B.; Guminilovych, R.R.; Stadnik, V.E.; Laruk, M.M. Comparison of Structural and Optical Properties of CdSe Films Grown by CSD and CBD Methods. J. Nano-Electron. Phys. 2022, 14, 05026. [Google Scholar] [CrossRef]
- Devi, R.A.; Latha, M.; Velumani, S.; Oza, G.; Reyes-Figueroa, P.; Rohini, M.; Becerril-Juarez, I.G.; Lee, J.-H.; Yi, J. Synthesis and Characterization of Cadmium Sulfide Nanoparticles by Chemical Precipitation Method. J. Nanosci. Nanotechnol. 2015, 15, 8434–8439. [Google Scholar] [CrossRef]
- Soltani, N.; Saion, E.; Hussein, M.Z.; Yunus, R.B.; Navaseri, M. Characterization of CdS Nanoparticles Synthesized Using Microwave-Assisted Polyol Method. Adv. Mater. Res. 2013, 667, 122–127. [Google Scholar] [CrossRef]
- Hariech, S.; Cherif, R.M. Study of Effect of Cadmium Source on the Structural, Morphological, Vibrational, and Optical Properties of CdS Window Layers. Phys. Solid State 2025, 67, 214–224. [Google Scholar] [CrossRef]
- Qin, J.; Shen, C.; Li, L.; Liu, H.; Zhang, W.; Yang, X.; Shan, C. Broadband Negative Photoconductive Response in Carbon Nanodots. Adv. Mater. 2024, 36, 2404694. [Google Scholar] [CrossRef] [PubMed]
- Hegedus, S.; Ryan, D.; Dobson, K.; McCandless, B.; Desai, D. Photoconductive CdS: How Does It Affect CdTe/CdS Solar Cell Performance? MRS Online Proc. Libr. 2003, 763, B9-5. [Google Scholar] [CrossRef]
- Zhang, Y.; Fa, M.; Xiong, L.; Ma, Y.; Chen, W.; Li, X.; Zhou, S.; Mao, L. Pt4Pd–MgF2/2d-CdS: Dual-Site Enhanced Photocatalytic Water Splitting for Hydrogen Evolution. Int. J. Hydrog. Energy 2025, 156, 150398. [Google Scholar] [CrossRef]
- Li, G.; Xu, T.; He, R.; Li, C.; Bai, J. Hollow Cadmium Sulfide Tubes with Novel Morphologies for Enhanced Stability of the Photocatalytic Hydrogen Evolution. Appl. Surf. Sci. 2019, 495, 143642. [Google Scholar] [CrossRef]
- Li, Y.; Yin, M.; Sun, J.; Liang, K.; Fan, Y.; Li, Z. Preparation Condition Optimization and Stability of Cubic Phase CdS in Photocatalytic Hydrogen Production. New J. Chem. 2021, 45, 6739–6744. [Google Scholar] [CrossRef]
- Quyen, N.D.V.; Tuyen, T.N.; Khieu, D.Q.; Tin, D.X.; Diem, B.T.H.; Nhung, N.T.A.; Hai, N.T.T.; Hoa, D.T.N.; Dung, H.T.T.; Nhiem, Đ.N.; et al. Thermodynamic and Kinetic Studies of Victoria Blue B Removal Using the Photocatalyst of Flower-like Cadmium Sulfide Microspheres Synthesized via Hydrothermal Process. Environ. Eng. Res. 2025, 30, 240564. [Google Scholar] [CrossRef]
- Adinarayana, D.; Annapurna, N.; Mohan, B.S.; Douglas, P. Enhanced Photocatalytic Removal of Cr(VI) and Rhodamine B from Water Using Plant-Mediated CdS Nanoparticles: Mechanistic Insights and Environmental Applications. Desalination Water Treat. 2024, 320, 100593. [Google Scholar] [CrossRef]
- Park, J.; Park, S.; Selvaraj, R.; Kim, Y. Microwave-Assisted Synthesis of Au/CdS Nanorods for a Visible-Light Responsive Photocatalyst. RSC Adv. 2015, 5, 52737–52742. [Google Scholar] [CrossRef]
- Mathuri, S.; Ramamurthi, K.; Babu, R.R. Influence of Deposition Distance on the Properties of CdSe Thin Films by Electron Beam Evaporation Technique. Adv. Sci. Lett. 2016, 22, 3886–3888. [Google Scholar] [CrossRef]
- Salem, M.S.; Shaker, A.; Okil, M.; Li, L.; Chen, C.; Aledaily, A.N.; Al-Dhlan, K.A.; Zekry, A. Design Considerations of CdSe Solar Cells for Indoor Applications under White LED Illumination. Sol. Energy Mater. Sol. Cells 2024, 276, 113087. [Google Scholar] [CrossRef]
- Kashyout, A.B.; Soliman, H.M.A.; Fathy, M.; Gomaa, E.A.; Zidan, A.A. CdSe Quantum Dots for Solar Cell Devices. Int. J. Photoenergy 2012, 2012, 1–7. [Google Scholar] [CrossRef]
- Rawat, J.; Kandwal, P.; Juyal, A.; Sharma, H.; Dwivedi, C. Synthesis and Photocatalytic Activity of Polymer Stabilized Cadmium Selenide Quantum Dots-Titanium Dioxide Nanocomposites. Mater. Today Proc. 2023, 83, 48–52. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiang, C.; Meng, T.; Yao, J.; Peng, Z.; Wang, P.; Zhang, Z.; Wang, C.; Zhang, Y.; Zhao, Y. Heterojunction Engineering of g-C3N4 with Superior Photogenerated Electron Transfer for Boosting Photodegradation of Methylene Blue. Opt. Mater. 2025, 159, 116626. [Google Scholar] [CrossRef]
- Ahmed, A.T.; Altalbawy, F.M.A.; Al-Hetty, H.R.A.K.; Fayzullaev, N.; Jamuna, K.V.; Sharma, J.; F, F.; Abd, B.; Ahmed, A.M.; Noorizadeh, H. Cadmium Selenide Quantum Dots in Photo- and Electrocatalysis: Advances in Hydrogen, Oxygen, and CO2 Reactions. Mater. Sci. Semicond. Process. 2025, 199, 109831. [Google Scholar] [CrossRef]
- Mulvihill, M.J.; Habas, S.E.; Jen-La Plante, I.; Wan, J.; Mokari, T. Influence of Size, Shape, and Surface Coating on the Stability of Aqueous Suspensions of CdSe Nanoparticles. Chem. Mater. 2010, 22, 5251–5257. [Google Scholar] [CrossRef]
- Banerjee, R.; Pal, A.; Ghosh, D.; Ghosh, A.B.; Nandi, M.; Biswas, P. Improved Photocurrent Response, Photostability and Photocatalytic Hydrogen Generation Ability of CdS Nanoparticles in Presence of Mesoporous Carbon. Mater. Res. Bull. 2021, 134, 111085. [Google Scholar] [CrossRef]
- Khan, J.A.; Ahamad, S.; Ansari, M.A.H.; Tauqeer, M.; Park, C.-H.; Park, J.P.; Choi, C.-H.; Mohammad, A. State-of-the-Art in ZnS-Based Nanoarchitects for Visible-Light Photocatalytic Degradation of Antibiotics and Organic Dyes. J. Water Process Eng. 2024, 67, 106151. [Google Scholar] [CrossRef]
- Hasija, V.; Raizada, P.; Thakur, V.K.; Parwaz Khan, A.A.; Asiri, A.M.; Singh, P. An Overview of Strategies for Enhancement in Photocatalytic Oxidative Ability of MoS2 for Water Purification. J. Environ. Chem. Eng. 2020, 8, 104307. [Google Scholar] [CrossRef]
- Dong, C.; Liu, S.; Barange, N.; Lee, J.; Pardue, T.; Yi, X.; Yin, S.; So, F. Long-Wavelength Lead Sulfide Quantum Dots Sensing up to 2600 nm for Short-Wavelength Infrared Photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 44451–44457. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gao, H.; Long, M.; Fu, H.; Alvarez, P.J.J.; Li, Q.; Zheng, S.; Qu, X.; Zhu, D. Sunlight Promotes Fast Release of Hazardous Cadmium from Widely-Used Commercial Cadmium Pigment. Environ. Sci. Amp; Technol. 2017, 51, 6877–6886. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Wang, P.; Zhan, S. Shedding Light on the Role of Interfacial Chemical Bond in Heterojunction Photocatalysis. Nano Res. 2022, 15, 10158–10170. [Google Scholar] [CrossRef]
- Wen, H.; Chen, S.; Zuo, J.; Zhang, J.; Liu, C.; Liu, Y.; Wang, K.; Chen, H.; Pei, Y. Insights into Charge Separation of Heterojunction Photoanodes: Overlooked Significance of Directionality of Built-in Electric Field. J. Colloid Interface Sci. 2025, 698, 138030. [Google Scholar] [CrossRef]
- Li, Y.-B.; Li, T.; Dai, X.-C.; Huang, M.-H.; He, Y.; Xiao, G.; Xiao, F.-X. Cascade Charge Transfer Mediated by in Situ Interface Modulation toward Solar Hydrogen Production. J. Mater. Chem. A 2019, 7, 8938–8951. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Yu, J. Surface and Interface Modification Strategies of CdS-Based Photocatalysts. Surf. Sci. Photocatal. 2020, 31, 313–348. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, L.; Yu, J. CdS-Based S-Scheme Photocatalyst. Interface Sci. Technol. 2023, 35, 175–199. [Google Scholar] [CrossRef]
- Yang, S.; Yang, H.; Zhang, J.; Lin, B.; Xu, J. Constructing High Efficient Carrier Channels in Double Ternary Compounds MoSSe/CdSSe Heterojunction for Photoelectrochemistry and Electrocatalytic Hydrogen Production. J. Alloys Compd. 2024, 1007, 176429. [Google Scholar] [CrossRef]
- Grazia, C.; Rosi, F.; Gabrieli, F.; Romani, A.; Paolantoni, M.; Vivani, R.; Brunetti, B.G.; Colomban, P.; Miliani, C. UV–Vis-NIR and MicroRaman Spectroscopies for Investigating the Composition of Ternary CdS1−x Sex Solid Solutions Employed as Artists’ Pigments. Microchem. J. 2016, 125, 279–289. [Google Scholar] [CrossRef]
- Monico, L.; Rosi, F.; Vivani, R.; Cartechini, L.; Janssens, K.; Gauquelin, N.; Chezganov, D.; Verbeeck, J.; Cotte, M.; d’Acapito, F.; et al. Deeper Insights into the Photoluminescence Properties and (Photo)Chemical Reactivity of Cadmium Red (CdS1−xSex) Paints in Renowned Twentieth Century Paintings by State-of-the-Art Investigations at Multiple Length Scales. Eur. Phys. J. Plus 2022, 137, 331. [Google Scholar] [CrossRef]
- Monico, L.; Chieli, A.; De Meyer, S.; Cotte, M.; de Nolf, W.; Falkenberg, G.; Janssens, K.; Romani, A.; Miliani, C. Role of the Relative Humidity and the Cd/Zn Stoichiometry in the Photooxidation Process of Cadmium Yellows (CdS/Cd1−xZnxS) in Oil Paintings. Chem. Eur. J. 2018, 24, 11584–11593. [Google Scholar] [CrossRef]
- Pisu, F.A.; Carbonaro, C.M.; Ricci, P.C.; Porcu, S.; Chiriu, D. Cadmium Yellow Pigments in Oil Paintings: Optical Degradation Studies Utilizing 3D Fluorescence Mapping Supported by Raman Spectroscopy and Colorimetry. Heritage 2024, 7, 2426–2443. [Google Scholar] [CrossRef]
- Assunta Pisu, F.A.; Ricci, P.C.; Porcu, S.; Carbonaro, C.M.; Chiriu, D. Degradation of CdS Yellow and Orange Pigments: A Preventive Characterization of the Process through Pump–Probe, Reflectance, X-Ray Diffraction, and Raman Spectroscopy. Materials 2022, 15, 5533. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Grass, D.; Warren, W.S.; Fischer, M.C. Non-Destructive Three-Dimensional Imaging of Artificially Degraded CdS Paints by Pump-Probe Microscopy. J. Phys. Photonics 2024, 6, 025013. [Google Scholar] [CrossRef]
- Van der Snickt, G.; Janssens, K.; Dik, J.; De Nolf, W.; Vanmeert, F.; Jaroszewicz, J.; Cotte, M.; Falkenberg, G.; Van der Loeff, L. Combined Use of Synchrotron Radiation Based Micro-X-Ray Fluorescence, Micro-X-Ray Diffraction, Micro-X-Ray Absorption Near-Edge, and Micro-Fourier Transform Infrared Spectroscopies for Revealing an Alternative Degradation Pathway of the Pigment Cadmium Yellow in a Painting by Van Gogh. Anal. Chem. 2012, 84, 10221–10228. [Google Scholar] [CrossRef]
- White, R.; Phillips, M.R.; Thomas, P.; Wuhrer, R. In-Situ Investigation of Discolouration Processes Between Historic Oil Paint Pigments. Microchim. Acta 2006, 155, 319–322. [Google Scholar] [CrossRef]
- de Keijzer, M.; van Bommel, M.R.; Keijzer, R.H.; Knaller, R.; Oberhumer, E. Indigo Carmine: Understanding a Problematic Blue Dye. Stud. Conserv. 2012, 57, S87–S95. [Google Scholar] [CrossRef]
- Chastrette, M. The Discovery of Fuchsine. L’Actualité Chim. 2009, 333, 48–53. [Google Scholar]
- Mir, F.A.; Chattarjee, I.; Dar, A.A.; Asokan, K.; Bhat, G.M. Preparation and Characterizations of Cadmium Sulfide Nanoparticles. Optik 2015, 126, 1240–1244. [Google Scholar] [CrossRef]
- Contreras-Rascón, J.I.; Díaz-Reyes, J.; Flores-Mena, J.E.; Galvan-Arellano, M.; Juárez-Morán, L.A.; Castillo-Ojeda, R.S. Characterization of CBD-CdSe1−ySy Deposited at Low-Temperature for Photovoltaic Applications. Curr. Appl. Phys. 2015, 15, 1568–1575. [Google Scholar] [CrossRef]
- Haptipoglu, M.; Babalik, H. Micro-Raman Characterization of the Lapeyreite Minerla, the Aples-Maritimes Region, Nice, France. Asian J. Chem. 2012, 24, 1941–1944. [Google Scholar]
- Haryński, Ł.; Olejnik, A.; Grochowska, K.; Siuzdak, K. A Facile Method for Tauc Exponent and Corresponding Electronic Transitions Determination in Semiconductors Directly from UV–Vis Spectroscopy Data. Opt. Mater. 2022, 127, 112205. [Google Scholar] [CrossRef]
- He, X.; Li, C.; Wu, L.; Hao, X.; Zhang, J.; Feng, L.; Tang, P.; Du, Z. First-Principles Investigation on the Electronic Structures of CdSexS1−x and Simulation of CdTe Solar Cell with a CdSexS1−x Window Layer by SCAPS. RSC Adv. 2022, 12, 22188–22196. [Google Scholar] [CrossRef]
- Baron, A.S.; Mohammed, K.A.; Abood, M.M. The Role of Ag Layer in the Optical Properties of CdS Thin Film. Chalcogenide Lett. 2021, 18, 585–588. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Y.; Su, L.; Gao, W.; Zhang, B.; Chu, H.; Wang, Y.; Zhao, J.; Yu, W.W. Photoelectrochemical Properties of CdS/CdSe Sensitized TiO2 Nanocable Arrays. Electrochim. Acta 2015, 165, 110–115. [Google Scholar] [CrossRef]
- Ingle, R.V.; Shaikh, S.F.; Kaur, J.; Ubaidullah, M.; Pandit, B.; Pathan, H.M. Optical and Electronic Properties of Colloidal Cadmium Sulfide. Mater. Sci. Eng. B 2023, 294, 116487. [Google Scholar] [CrossRef]
- Yadav, S.K.; Vishwakarma, A.K.; Yadava, L. Structural and Optical Properties of Cadmium Sulfide (CdS) Nano-Powder. Macromol. Symp. 2023, 407, 2100441. [Google Scholar] [CrossRef]
- Sharkey, J.J.; Dhanasekaran, V.; Lee, C.W.; Peter, A.J. Microstructural Parameters and Optical Constants of CdS Thin Films Synthesized with Various Bath Temperature. Chem. Phys. Lett. 2011, 503, 86–90. [Google Scholar] [CrossRef]
- Sahay, P.P.; Nath, R.K.; Tewari, S. Optical Properties of Thermally Evaporated CdS Thin Films. Cryst. Res. Technol. 2007, 42, 275–280. [Google Scholar] [CrossRef]
- Ates, A.; Yildirim, M.A.; Kundakçi, M.; Yildirim, M. Investigation of Optical and Structural Properties of CdS Thin Films. Chin. J. Phys. 2007, 45, 135–141. [Google Scholar]
- Trivedi, H.; Ghorannevis, Z.; Chaudhary, S.; Parmar, A.S. Investigations on Tailoring Physical Properties of RF Magnetron Sputtered Cadmium Sulphide Thin Films. Mater. Lett. X 2023, 18, 100190. [Google Scholar] [CrossRef]
- Banu, N.N.; Ravichandran, K. Analysis of Sulphur Deficiency Defect Prevalent in SILAR-CdS Films. J. Mater. Sci. Mater. Electron. 2017, 28, 11584–11590. [Google Scholar] [CrossRef]
- Khatter, J.; Chauhan, R.P. Impact of Argon Ion Implantation on CdS Nanorod Mesh. Mater. Lett. 2022, 307, 131082. [Google Scholar] [CrossRef]
- Sharma, M.; Jeevanandam, P. Synthesis, Characterization and Studies on Optical Properties of Hierarchical ZnO–CdS Nanocomposites. Mater. Res. Bull. 2012, 47, 1755–1761. [Google Scholar] [CrossRef]
- Lagergren, S. About the Theory of So-Called Adsorption of Soluble Substances. K. Sven. Vetenskapsakademiens Handl. 1898, 24, 1–39. Available online: https://sid.ir/paper/563615/en (accessed on 30 July 2025).
- Doğan, M.; Özdemir, Y.; Alkan, M. Adsorption Kinetics and Mechanism of Cationic Methyl Violet and Methylene Blue Dyes onto Sepiolite. Dye. Pigment. 2007, 75, 701–713. [Google Scholar] [CrossRef]
- Kusior, A.; Michalec, K.; Micek-Ilnicka, A.; Radecka, M. Unraveling the Impact of Adsorbed Molecules on Photocatalytic Processes: Advancements in Understanding Facet-Controlled Semiconductor Photocatalysts. Molecules 2024, 29, 2290. [Google Scholar] [CrossRef]
- Michalec, K.; Mozgawa, B.; Kusior, A.; Pietrzyk, P.; Sojka, Z.; Radecka, M. Tunable Generation of Reactive Oxygen Species in SnO2/SnS2 Nanostructures: Mechanistic Insights into Indigo Carmine Photodegradation. J. Phys. Chem. C 2024, 128, 5011–5029. [Google Scholar] [CrossRef]
- Neto, J.S.G.; Satyro, S.; Saggioro, E.M.; Dezotti, M. Investigation of Mechanism and Kinetics in the TiO2 Photocatalytic Degradation of Indigo Carmine Dye Using Radical Scavengers. Int. J. Environ. Sci. Technol. 2021, 18, 163–172. [Google Scholar] [CrossRef]
- Huy, B.T.; Paeng, D.S.; Thi Bich Thao, C.; Kim Phuong, N.T.; Lee, Y.-I. ZnO-Bi2O3/Graphitic Carbon Nitride Photocatalytic System with H2O2-Assisted Enhanced Degradation of Indigo Carmine under Visible Light. Arab. J. Chem. 2020, 13, 3790–3800. [Google Scholar] [CrossRef]
- Nosaka, Y.; Nosaka, A.Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 2017, 117, 11302–11336. [Google Scholar] [CrossRef]
- Kanwal, H.; Khoja, A.H.; Hajji, Y.; Shakir, S.; Anwar, M.; Liaquat, R.; Din, I.U.; Bahadar, A.; Hleili, M. Photocatalytic Performance of Dual-Function Selenium-Enriched Biomass-Derived Activated Carbon as a Catalyst for Dye Degradation and Hydrogen Production. Int. J. Hydrogen Energy 2025, 101, 1288–1303. [Google Scholar] [CrossRef]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Graham, J.P.; Rauf, M.A.; Hisaindee, S.; Alzamly, A. Spectral Behavior and Computational Studies of Fuchsin in Various Solvents. J. Mol. Liq. 2017, 238, 193–197. [Google Scholar] [CrossRef]
- Resen, N.D.; Gomaa, E.A.; Salem, S.E.; El-Defrawy, A.M.; El-Hady, M.N.A. Cyclic Voltammetry for Interaction between Mercuric Chloride and Diamond Fuchsin (Rosaniline) in 0.05 M NaClO4 Aqueous Solutions at 303 K. Chem. Methodol. 2023, 7, 736–747. [Google Scholar] [CrossRef]
- Kusior, A.; Michalec, K.; Jelen, P.; Radecka, M. Shaped Fe2O3 Nanoparticles—Synthesis and Enhanced Photocatalytic Degradation towards RhB. Appl. Surf. Sci. 2019, 476, 342–352. [Google Scholar] [CrossRef]
- Zhang, L.; Jaroniec, M. Toward Designing Semiconductor-Semiconductor Heterojunctions for Photocatalytic Applications. Appl. Surf. Sci. 2018, 430, 2–17. [Google Scholar] [CrossRef]
Sample | Cell Parameters (Å) | |||||
---|---|---|---|---|---|---|
CdS (C) | CdS (H) | CdSSe | CdSe (C) | CdSe (H) | Se | |
CdSe | - | - | - | a = b = c = 6.08806 | a = b = 4.14255 c = 6.37272 | a = b = 3.89157 c = 6.5.18936 |
50 mol% CdS | - | - | a = b = 4.20701 c = 6.92681 | a = b = c = 5.96577 | - | - |
75 mol% CdS | a = b = c = 5.86438 | a = b = 4.16639 c = 6.79831 | - | a = b = c = 5.91300 | - | - |
90 mol% CdS | a = b = c = 5.85225 | a = b = 4.15547 c = 6.76906 | - | - | - | - |
CdS | a = b = c = 5.84177 | a = b = 4.14255 c = 6.73272 | - | - | - | - |
Sample | Solution A—Composition | Solution B—Composition | Time | Temperature | |||||
---|---|---|---|---|---|---|---|---|---|
1M NaOH | NaBH4 | Se | Cd2+ * | H2O | TAA | Cd2+ * | (h) | (°C) | |
CdSe | 100 mL | 0.5 mol | 0.5 mol | 0.5 mol | - | - | - | 24 | 160 |
50 mol% CdS | 50 mL | 50 | 0.5 mol | 0.5 mol | |||||
75 mol% CdS | 25 mL | 75 | |||||||
90 mol% CdS | 10 mL | 90 | |||||||
CdS | - | - | - | - | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łacic, J.; Kusior, A.M. From Pigment to Photocatalyst: CdSe/CdS Solutions Mimicking Cadmium Red for Visible-Light Dye Degradation. Catalysts 2025, 15, 883. https://doi.org/10.3390/catal15090883
Łacic J, Kusior AM. From Pigment to Photocatalyst: CdSe/CdS Solutions Mimicking Cadmium Red for Visible-Light Dye Degradation. Catalysts. 2025; 15(9):883. https://doi.org/10.3390/catal15090883
Chicago/Turabian StyleŁacic, Julia, and Anna Magdalena Kusior. 2025. "From Pigment to Photocatalyst: CdSe/CdS Solutions Mimicking Cadmium Red for Visible-Light Dye Degradation" Catalysts 15, no. 9: 883. https://doi.org/10.3390/catal15090883
APA StyleŁacic, J., & Kusior, A. M. (2025). From Pigment to Photocatalyst: CdSe/CdS Solutions Mimicking Cadmium Red for Visible-Light Dye Degradation. Catalysts, 15(9), 883. https://doi.org/10.3390/catal15090883