Advanced Electrocatalyst Supports for High-Temperature Proton Exchange Membrane Fuel Cells: A Comprehensive Review of Materials, Degradation Mechanisms, and Performance Metrics
Abstract
1. Introduction
2. Degradation of Conventional Carbon Black Supports
2.1. Mechanisms of Carbon Corrosion in the HT-PEMFC Environment
2.2. Consequences of Support Degradation
2.3. Experimental Evidence and Quantification of Degradation
3. Engineering Carbon for Stability: Advanced Carbon-Based Supports
3.1. Graphitized Carbons: Ordering for Stability
3.2. Carbon Nanostructures: Leveraging Inherent Graphitic Nature
3.2.1. CNTs
3.2.2. Graphene
3.3. Heteroatom-Doped Carbons: Electronic and Surface Modification
4. Beyond Carbon: Corrosion-Immune Non-Carbonaceous Supports
4.1. Metal Oxides: Stability at the Cost of Conductivity
4.2. Transition Metal Carbides: Pt-like Properties and High Stability
4.2.1. WC
4.2.2. TiC
4.3. Transition Metal Nitrides: The Emerging Class
5. Comparative Analysis and Performance Benchmarking
5.1. Benchmarking Methodology
5.2. Quantitative Comparison of Support Materials
6. Challenges, Perspectives, and Future Research Directions
6.1. Summary of the State-of-the-Art
6.2. The Critical Role of Advanced Characterization and Computational Modeling
6.3. Overarching Challenges for Future Development
- Graphitized carbons represent a potentially near-term solution; while the high-temperature heat treatment is energy-intensive, it is an additional process applied to an already low-cost, scaled industrial material, making it a pragmatic approach for incremental durability improvements.
- Non-carbonaceous composites, such as doped metal oxides, present a promising mid-to-long-term pathway. Although laboratory synthesis can be complex, many of the base oxides (e.g., TiO2) are inexpensive commodity chemicals. The primary hurdle is the development of scalable synthesis routes, such as spray pyrolysis, that can produce uniform materials cost-effectively.
- In contrast, high-purity carbon nanostructures such as CNTs and graphene, despite their superior performance, currently face the most significant long-term commercialization barriers due to persistently high production costs, limiting their immediate application to niche areas pending a major manufacturing breakthrough.
6.4. Future Outlook and Research Recommendations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, L.; Deng, H.; Zhang, Y.; Du, Q.; Leung, D.Y.C.; Wang, Y.; Jiao, K. Towards ultralow platinum loading proton exchange membrane fuel cells. Energy Environ. Sci. 2023, 16, 1466–1479. [Google Scholar] [CrossRef]
- Küffner, C. Multi-level perspective for the development and diffusion of fuel cell heavy-duty trucks. Transp. Res. Part D Transp. Environ. 2022, 111, 103460. [Google Scholar] [CrossRef]
- Hu, D.; Liu, J.; Yi, F.; Yang, Q.; Zhou, J. Enhancing heat dissipation to improve efficiency of two-stage electric air compressor for fuel cell vehicle. Energy Convers. Manag. 2022, 251, 115007. [Google Scholar] [CrossRef]
- Zucconi, A.; Hack, J.; Stocker, R.; Suter, T.A.M.; Rettie, A.J.E.; Brett, D.J.L. Challenges and opportunities for characterisation of high-temperature polymer electrolyte membrane fuel cells: A review. J. Mater. Chem. A 2024, 12, 8014–8064. [Google Scholar] [CrossRef]
- Haider, R.; Wen, Y.; Ma, Z.-F.; Wilkinson, D.P.; Zhang, L.; Yuan, X.; Song, S.; Zhang, J. High temperature proton exchange membrane fuel cells: Progress in advanced materials and key technologies. Chem. Soc. Rev. 2020, 50, 1138–1187. [Google Scholar] [CrossRef] [PubMed]
- Sheng, B.; Pan, T.; Luo, Y.; Jermsittiparsert, K. System Identification of the PEMFCs based on Balanced Manta-Ray Foraging Optimization algorithm. Energy Rep. 2020, 6, 2887–2896. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Weng, F.-B.; Yang, C.-Y.; Chiu, C.-W.; Nawale, S.-M. Real-Time Monitoring of HT-PEMFC. Membranes. 2022, 12, 94. [Google Scholar] [CrossRef] [PubMed]
- Tellez-Cruz, M.M.; Escorihuela, J.; Solorza-Feria, O.; Compañ, V. Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges. Polymers 2021, 13, 3064. [Google Scholar] [CrossRef]
- Halter, J.; Thomas, S.; Kær, S.; Schmidt, T.; Büchi, F. The influence of phosphoric acid migration on the performance of high temperature polymer electrolyte fuel cells. J. Power Sources. 2018, 399, 151–156. [Google Scholar] [CrossRef]
- Zabed, H.M.; Akter, S.; Yun, J.; Zhang, G.; Zhang, Y.; Qi, X. Biogas from microalgae: Technologies, challenges and opportunities. Renew. Sustain. Energy Rev. 2020, 117, 109503. [Google Scholar] [CrossRef]
- Authayanun, S.; Im-Orb, K.; Arpornwichanop, A. A review of the development of high temperature proton exchange membrane fuel cells. Chin. J. Catal. 2015, 36, 473–483. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, H.; Zhang, W.; Xu, Q.; Su, H. Enhancing high-temperature proton exchange membrane fuel cell performance with oxophilic ionic liquid modified catalyst layer. J. Power Sources 2025, 652, 237628. [Google Scholar] [CrossRef]
- Yu, S.; Xiao, L.; Benicewicz, B.C. Durability Studies of PBI-based High Temperature PEMFCs. Fuel Cells 2008, 8, 165–174. [Google Scholar] [CrossRef]
- Subianto, S. Recent advances in polybenzimidazole/phosphoric acid membranes for high-temperature fuel cells. Polym. Int. 2014, 63, 1134–1144. [Google Scholar] [CrossRef]
- Liang, J.; Li, C.; Zhang, S.; Wang, S.; Hu, X. Sequential activation of willow wood with ZnCl2 and H3PO4 drastically impacts pore structure of activated carbon. Ind. Crop. Prod. 2024, 221, 119387. [Google Scholar] [CrossRef]
- Berber, M.R.; Nakashima, N. Bipyridine-based polybenzimidazole membranes with outstanding hydrogen fuel cell performance at high temperature and non-humidifying conditions. J. Membr. Sci. 2019, 591, 117354. [Google Scholar] [CrossRef]
- Chi, B.; Ye, Y.; Lu, X.; Jiang, S.; Du, L.; Zeng, J.; Ren, J.; Liao, S. Enhancing membrane electrode assembly performance by improving the porous structure and hydrophobicity of the cathode catalyst layer. J. Power Sources 2019, 443, 227284. [Google Scholar] [CrossRef]
- Sasiwimonrit, K.; Chang, W.-C. To improve the high temperature polymer electrolyte membrane fuel cells performance by altering the properties of catalyst layer. Int. J. Hydrogen Energy 2020, 45, 14491–14499. [Google Scholar] [CrossRef]
- Rosli, R.E.; Sulong, A.B.; Daud, W.R.W.; Zulkifley, M.A.; Husaini, T.; Rosli, M.I.; Majlan, E.H.; Haque, M.A. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int. J. Hydrogen Energy 2017, 42, 9293–9314. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, Y.; Xv, C.; Liu, H.; Li, L.; Yan, W.; Zhang, J. Performance failure mechanisms and mitigation strategies of high-temperature proton exchange membrane fuel cells. Prog. Mater. Sci. 2024, 148, 101389. [Google Scholar] [CrossRef]
- Sun, X.; Li, Y.; Qi, F.; Jing, F.; Sun, H.; Sun, G. Degradation Studies of Single Cell and Short Stack for High Temperature Proton Exchange Membrane Fuel Cells Based on PBI/H3PO4 Membrane. ChemistrySelect 2019, 4, 12313–12319. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, Y.; Zhu, Y.; Du, S.; Huang, G.; Lin, J.; Long, P.; Wang, T.; Tao, L.; Fu, X.-Z.; et al. Ethylenediamine tetramethylenephosphonic acid boosting the electrocatalytic interface construct and proton transfer for high-temperature polymer electrolyte membrane fuel cells. J. Energy Chem. 2024, 99, 159–164. [Google Scholar] [CrossRef]
- Lim, K.H.; Matanovic, I.; Maurya, S.; Kim, Y.; De Castro, E.S.; Jang, J.-H.; Park, H.; Kim, Y.S. High Temperature Polymer Electrolyte Membrane Fuel Cells with High Phosphoric Acid Retention. ACS Energy Lett. 2022, 8, 529–536. [Google Scholar] [CrossRef]
- Zeis, R. Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells. Beilstein J. Nanotechnol. 2015, 6, 68–83. [Google Scholar] [CrossRef]
- Ravichandran, B.; Narayanan, N.; Liu, H.; Zhang, W.; Bhuvanendran, N.; Su, H. Catalytic synergy of PtCo alloy nanoparticles anchored on S, P-doped hierarchical carbon nitrides for efficient and durable oxygen reduction in high-temperature PEMFCs. Fuel 2025, 402, 136040. [Google Scholar] [CrossRef]
- Xiang, Y.; Wen, L.; Guo, Z.; Zhang, J.; Lu, S. Research progress on key materials of phosphoric acid doped high-temperature proton exchange membrane fuel cells. JBUAA 2022, 48, 1791–1805. [Google Scholar]
- Seselj, N.; Alfaro, S.M.; Bompolaki, E.; Cleemann, L.N.; Torres, T.; Azizi, K. Catalyst Development for High-Temperature Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) Applications. Adv. Mater. 2023, 35, e2302207. [Google Scholar] [CrossRef]
- Tuaev, X.; Rudi, S.; Strasser, P. The impact of the morphology of the carbon support on the activity and stability of nanoparticle fuel cell catalysts. Catal. Sci. Technol. 2016, 6, 8276–8288. [Google Scholar] [CrossRef]
- Wu, B.; Hu, D.; Yu, Y.; Kuang, Y.; Zhang, X.; Chen, J. Stabilization of platinum nanoparticles dispersed on carbon nanotubes by ionic liquid polymer. Chem. Commun. 2010, 46, 7954–7956. [Google Scholar] [CrossRef]
- Pavko, L.; Gatalo, M.; Finšgar, M.; Ruiz-Zepeda, F.; Ehelebe, K.; Kaiser, P.; Geuß, M.; Đukić, T.; Surca, A.K.; Šala, M.; et al. Graphene-Derived Carbon Support Boosts Proton Exchange Membrane Fuel Cell Catalyst Stability. ACS Catal. 2022, 12, 9540–9548. [Google Scholar] [CrossRef] [PubMed]
- Estudillo-Wong, L.A.; Alonso-Vante, N. Factors Intervening in Oxide and Oxide-Composite Supports on Nanocatalysts in the Energy Conversion. In Heterogeneous Nanocatalysis for Energy and Environmental Sustainability; Sudarsanam, P., Yamauchi, Y., Bharali, P., Eds.; Wiley: Wiley, CO, USA, 2022; pp. 1–60. [Google Scholar]
- Novikova, K.S.; Kuriganova, A.B.; Leontyev, I.N.; Gerasimova, E.; Maslova, O.A.; Rakhmatullin, A.; Smirnova, N.V.; Dobrovolsky, Y. Influence of Carbon Support on Catalytic Layer Performance of Proton Exchange Membrane Fuel Cells. Electrocatalysis 2018, 9, 22–30. [Google Scholar] [CrossRef]
- Kübler, M.; Wagner, S.; Jurzinsky, T.; Paul, S.; Weidler, N.; Gomez Villa, E.D.; Cremers, C.; Kramm, U.I. Impact of Surface Functionalization on the Intrinsic Properties of the Resulting Fe–N–C Catalysts for Fuel Cell Applications. Energy Technol. 2020, 8, 2000433. [Google Scholar] [CrossRef]
- Liu, L.; Tan, M.; Liu, H.; Zhang, W.; Xu, Q.; Hooshyari, K.; Yu, J.; Su, H. Improving stability of high temperature polymer electrolyte membrane fuel cell using Nb4N5/C composite support. Int. J. Hydrogen Energy 2023, 48, 35744–35752. [Google Scholar] [CrossRef]
- Pan, S.; Zabed, H.M.; Wei, Y.; Qi, X. Technoeconomic and environmental perspectives of biofuel production from sugarcane bagasse: Current status, challenges and future outlook. Ind. Crop. Prod. 2022, 188, 115684. [Google Scholar] [CrossRef]
- Meyer, Q.; Yang, C.; Cheng, Y.; Zhao, C. Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells. Electrochem. Energy Rev. 2023, 6, 1–40. [Google Scholar] [CrossRef]
- Shao, Y.; Yin, G.; Wang, Z.; Gao, Y. Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges. J. Power Sources 2007, 167, 235–242. [Google Scholar] [CrossRef]
- Hu, X.; Shi, J.; Shi, Y.; Zou, X.; Tahir, H.E.; Holmes, M.; Zhang, W.; Huang, X.; Li, Z.; Xu, Y. A dual-mode sensor for colorimetric and fluorescent detection of nitrite in hams based on carbon dots-neutral red system. Meat Sci. 2019, 147, 127–134. [Google Scholar] [CrossRef]
- Ma, S.; Wang, M.; You, T.; Wang, K. Using Magnetic Multiwalled Carbon Nanotubes as Modified QuEChERS Adsorbent for Simultaneous Determination of Multiple Mycotoxins in Grains by UPLC-MS/MS. J. Agric. Food Chem. 2019, 67, 8035–8044. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Li, H.; Chen, L.; Ren, M.; Fakayode, O.A.; Han, J.; Zhou, C. Efficient hydrogen evolution reaction performance using lignin-assisted chestnut shell carbon-loaded molybdenum disulfide. Ind. Crop. Prod. 2022, 193, 116214. [Google Scholar] [CrossRef]
- Zhang, T.; Yuan, D.; Guo, Q.; Qiu, F.; Yang, D.; Ou, Z. Preparation of a renewable biomass carbon aerogel reinforced with sisal for oil spillage clean-up: Inspired by green leaves to green Tofu. Food Bioprod. Process. 2019, 114, 154–162. [Google Scholar] [CrossRef]
- Zeng, K.; Wei, W.; Jiang, L.; Zhu, F.; Du, D. Use of Carbon Nanotubes as a Solid Support to Establish Quantitative (Centrifugation) and Qualitative (Filtration) Immunoassays to Detect Gentamicin Contamination in Commercial Milk. J. Agric. Food Chem. 2016, 64, 7874–7881. [Google Scholar] [CrossRef]
- Wang, X.; Pan, Y.; Wang, X.; Guo, Y.; Ni, C.; Wu, J.; Hao, C. High performance hybrid supercapacitors assembled with multi-cavity nickel cobalt sulfide hollow microspheres as cathode and porous typha-derived carbon as anode. Ind. Crop. Prod. 2022, 189, 115863. [Google Scholar] [CrossRef]
- Kumar, A.; Park, E.J.; Kim, Y.S.; Spendelow, J.S. Surface Functionalization of Carbon Black for PEM Fuel Cell Electrodes. Macromol. Chem. Phys. 2024, 225, 2400092. [Google Scholar] [CrossRef]
- Kozhushner, A.; Lori, O.; Cullen, D.A.; Honig, H.C.; Persky, Y.; Peles-Strahl, L.; Li, Q.; Elbaz, L. Operando carbon corrosion measurements in fuel cells using boron-doped carbon supports. Carbon 2024, 227, 119890. [Google Scholar] [CrossRef]
- Oh, H.-S.; Lee, J.-H.; Kim, H. Electrochemical carbon corrosion in high temperature proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2012, 37, 10844–10849. [Google Scholar] [CrossRef]
- Cleemann, L.N.; Buazar, F.; Li, Q.; Jensen, J.O.; Pan, C.; Steenberg, T.; Dai, S.; Bjerrum, N.J. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes. Fuel Cells 2013, 13, 822–831. [Google Scholar] [CrossRef]
- Strandberg, L.; Shokhen, V.; Skoglundh, M.; Wickman, B. Carbon Support Corrosion in PEMFCs Followed by Identical Location Electron Microscopy. ACS Catal. 2024, 14, 8494–8504. [Google Scholar] [CrossRef]
- Rau, M.; Jung, F.; Cremers, C.; Tübke, J.; Fernandez, A. Corrosion of Carbon Supports, Induced by High-Temperature PEMFC Operating Conditions. In Proceedings of the 11th European Space Power Conference, Thessaloniki, Greece, 3–7 October; p. 10001.
- Ji, Q.; Yu, X.; Chen, L.; Yarley, O.P.N.; Zhou, C. Facile preparation of sugarcane bagasse-derived carbon supported MoS2 nanosheets for hydrogen evolution reaction. Ind. Crop. Prod. 2021, 172, 114064. [Google Scholar] [CrossRef]
- Dubau, L.; Castanheira, L.; Maillard, F.; Chatenet, M.; Lottin, O.; Maranzana, G.; Dillet, J.; Lamibrac, A.; Perrin, J.; Moukheiber, E.; et al. A review of PEM fuel cell durability: Materials degradation, local heterogeneities of aging and possible mitigation strategies. WIREs Energy Environ. 2014, 3, 540–560. [Google Scholar] [CrossRef]
- Zhang, J.; Bai, H.; Yan, W.; Zhang, J.; Wang, H.; Xiang, Y.; Lu, S. Enhancing Cell Performance and Durability of High Temperature Polymer Electrolyte Membrane Fuel Cells by Inhibiting the Formation of Cracks in Catalyst Layers. J. Electrochem. Soc. 2020, 167, 114501. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, X.Z.; Martin, J.J.; Wang, H.; Zhang, J.; Shen, J.; Wu, S.; Merida, W. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. J. Power Sources 2008, 184, 104–119. [Google Scholar] [CrossRef]
- Meier, J.C.; Galeano, C.; Katsounaros, I.; Witte, J.; Bongard, H.J.; A Topalov, A.; Baldizzone, C.; Mezzavilla, S.; Schüth, F.; Mayrhofer, K.J.J. Design criteria for stable Pt/C fuel cell catalysts. Beilstein J. Nanotechnol. 2014, 5, 44–67. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Tu, Z.; Chan, S.H. Carbon corrosion mechanism and mitigation strategies in a proton exchange membrane fuel cell (PEMFC): A review. J. Power Sources 2021, 488, 229434. [Google Scholar] [CrossRef]
- Shao, Y.; Yin, G.; Gao, Y. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J. Power Sources 2007, 171, 558–566. [Google Scholar] [CrossRef]
- Zhao, J.; Li, X. A review of polymer electrolyte membrane fuel cell durability for vehicular applications: Degradation modes and experimental techniques. Energy Convers. Manag. 2019, 199, 112022. [Google Scholar] [CrossRef]
- Schulenburg, H.; Schwanitz, B.; Linse, N.; Scherer, G.G.; Wokaun, A.; Krbanjevic, J.; Grothausmann, R.; Manke, I. 3D Imaging of Catalyst Support Corrosion in Polymer Electrolyte Fuel Cells. J. Phys. Chem. C 2011, 115, 14236–14243. [Google Scholar] [CrossRef]
- Søndergaard, T.; Cleemann, L.N.; Zhong, L.; Becker, H.; Steenberg, T.; Hjuler, H.A.; Seerup, L.; Li, Q.; Jensen, J.O. Catalyst Degradation Under Potential Cycling as an Accelerated Stress Test for PBI-Based High-Temperature PEM Fuel Cells—Effect of Humidification. Electrocatalysis 2017, 9, 302–313. [Google Scholar] [CrossRef]
- Lauf, P.; Morales, A.L.; Ehelebe, K.; Hutzler, A.; Mayrhofer, K.J.J.; Lloret, V.; Cherevko, S. Benchmarking Performance and Degradation of Pt Supported on Different Carbons for PEMFC Applications Using Gas Diffusion Electrode Half-Cell. ACS Appl. Energy Mater. 2025, 8, 7939–7947. [Google Scholar] [CrossRef]
- Shao, S.; Sun, T.; Li, X.; Wang, Y.; Ma, L.; Liu, Z.; Wu, S. Preparation of heavy bio-oil-based porous carbon by pyrolysis gas activation and its performance in the aldol condensation for aviation fuel as catalyst carrier. Ind. Crop. Prod. 2024, 218, 118963. [Google Scholar] [CrossRef]
- Jing, Z.; Ding, J.; Zhang, T.; Yang, D.; Qiu, F.; Chen, Q.; Xu, J. Flexible, versatility and superhydrophobic biomass carbon aerogels derived from corn bracts for efficient oil/water separation. Food Bioprod. Process. 2019, 115, 134–142. [Google Scholar] [CrossRef]
- Liu, Y.; Jing, Z.; Zhang, T.; Chen, Q.; Qiu, F.; Peng, Y.; Tang, S. Fabrication of functional biomass carbon aerogels derived from sisal fibers for application in selenium extraction. Food Bioprod. Process. 2018, 111, 93–103. [Google Scholar] [CrossRef]
- Nazir, M.J.; Li, G.; Nazir, M.M.; Zulfiqar, F.; Siddique, K.H.; Iqbal, B.; Du, D. Harnessing soil carbon sequestration to address climate change challenges in agriculture. Soil Tillage Res. 2023, 237, 105959. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Y.; Fang, Z.; Shi, G.; Lou, L.; Ren, K.; Cai, Q. Italian ryegrass–rice rotation system for biomass production and cadmium removal from contaminated paddy fields. J. Soils Sediments 2019, 20, 874–882. [Google Scholar] [CrossRef]
- Yuan, J.; Zhu, Y.; Wang, J.; Gan, L.; He, M.; Zhang, T.; Li, P.; Qiu, F. Preparation and application of Mg–Al composite oxide/coconut shell carbon fiber for effective removal of phosphorus from domestic sewage. Food Bioprod. Process. 2021, 126, 293–304. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, B.; Chen, Q.; Peng, X.; Yang, D.; Qiu, F. Layered double hydroxide functionalized biomass carbon fiber for highly efficient and recyclable fluoride adsorption. Appl. Biol. Chem. 2019, 62, 12. [Google Scholar] [CrossRef]
- Xue, Q.; Huang, J.-B.; Yang, D.-J.; Li, B.; Zhang, C.-M. Enhanced PEMFC durability with graphitized carbon black cathode catalyst supports under accelerated stress testing. RSC Adv. 2021, 11, 19417–19425. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lai, Z.; Shang, Z.; Zhang, Y.; Xu, B.; Shen, L.; Zhao, L.; Wang, G.; Wang, Z. Graphitized carbon support for enhanced durability and mitigation of reversal degradation in proton exchange membrane fuel cells. Carbon 2025, 243, 120599. [Google Scholar] [CrossRef]
- Mohanta, P.K.; Regnet, F.; Jörissen, L. Graphitized Carbon: A Promising Stable Cathode Catalyst Support Material for Long Term PEMFC Applications. Materials 2018, 11, 907. [Google Scholar] [CrossRef]
- Fegade, U.; Suryawanshi, K.E. Carbon Nanotube–Based Membranes for Proton Exchange Membrane Fuel Cells. In Proton Exchange Membrane Fuel Cells; Omid Moraid, I., Ahmaed, M.A., Eds.; Wiley: Wiley, CO, USA, 2023; pp. 51–72. [Google Scholar]
- Zeng, K.; Chen, B.; Li, Y.; Meng, H.; Wu, Q.; Yang, J.; Liang, H. Gold nanoparticle-carbon nanotube nanohybrids with peroxidase-like activity for the highly-sensitive immunoassay of kanamycin in milk. Int. J. Food Sci. Technol. 2022, 57, 6028–6037. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, C.; Zou, X.; Zhang, H.; Xu, Y. A β-CD/MWCNT-modified-microelectrode array for rapid determination of imidacloprid in vegetables. Food Anal. Methods 2019, 12, 2326–2333. [Google Scholar] [CrossRef]
- Han, E.; Li, L.; Gao, T.; Pan, Y.; Cai, J. Nitrite determination in food using electrochemical sensor based on self-assembled MWCNTs/AuNPs/poly-melamine nanocomposite. Food Chem. 2023, 437, 137773. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.; Li, Y.; Li, Y.; Li, Z.; Zhang, W.; Zou, X.; Shi, J.; Huang, X.; Liu, C.; et al. Rapid detection of cadmium ions in meat by a multi-walled carbon nanotubes enhanced metal-organic framework modified electrochemical sensor. Food Chem. 2021, 357, 129762. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Zou, B.; Liu, F.; Wang, P.; Yan, Y. Sensitive glucose biosensor based on cyclodextrin modified carbon nanotubes for detecting glucose in honey. J. Food Compos. Anal. 2022, 105, 104221. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Chen, Z.; Waje, M.; Yan, Y. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J. Power Sources 2006, 158, 154–159. [Google Scholar] [CrossRef]
- Devrim, Y.; Arıca, E.D. Investigation of the effect of graphitized carbon nanotube catalyst support for high temperature PEM fuel cells. Int. J. Hydrogen Energy 2020, 45, 3609–3617. [Google Scholar] [CrossRef]
- Qin, C.; Guo, W.; Liu, Y.; Liu, Z.; Qiu, J.; Peng, J. A Novel Electrochemical Sensor Based on Graphene Oxide Decorated with Silver Nanoparticles–Molecular Imprinted Polymers for Determination of Sunset Yellow in Soft Drinks. Food Anal. Methods 2017, 10, 2293–2301. [Google Scholar] [CrossRef]
- Li, Y.; Luo, S.; Sun, L.; Kong, D.; Sheng, J.; Wang, K.; Dong, C. A Green, Simple, and Rapid Detection for Amaranth in Candy Samples Based on the Fluorescence Quenching of Nitrogen-Doped Graphene Quantum Dots. Food Anal. Methods 2019, 12, 1658–1665. [Google Scholar] [CrossRef]
- Wu, S.; Duan, N.; Qiu, Y.; Li, J.; Wang, Z. Colorimetric aptasensor for the detection of Salmonella enterica serovar typhimurium using ZnFe 2 O 4 -reduced graphene oxide nanostructures as an effective peroxidase mimetics. Int. J. Food Microbiol. 2017, 261, 42–48. [Google Scholar] [CrossRef]
- Ji, Z.; Chen, J.; Guo, Z.; Zhao, Z.; Cai, R.; Rigby, M.T.; Haigh, S.J.; Perez-Page, M.; Shen, Y.; Holmes, S.M. Graphene/carbon structured catalyst layer to enhance the performance and durability of the high-temperature proton exchange membrane fuel cells. J. Energy Chem. 2022, 75, 399–407. [Google Scholar] [CrossRef]
- Kwon, K.; Kim, T.Y.; Yoo, D.Y.; Hong, S.-G.; Park, J.O. Maximization of high-temperature proton exchange membrane fuel cell performance with the optimum distribution of phosphoric acid. J. Power Sources 2009, 188, 463–467. [Google Scholar] [CrossRef]
- Alpaydin, G.U.; Devrim, Y.; Colpan, C.O. Performance of an HT-PEMFC having a catalyst with graphene and multiwalled carbon nanotube support. Int. J. Energy Res. 2019, 43, 3578–3589. [Google Scholar] [CrossRef]
- Chen, J.; Bailey, J.J.; Britnell, L.; Perez-Page, M.; Sahoo, M.; Zhang, Z.; Strudwick, A.; Hack, J.; Guo, Z.; Ji, Z.; et al. The performance and durability of high-temperature proton exchange membrane fuel cells enhanced by single-layer graphene. Nano Energy 2022, 93, 106829. [Google Scholar] [CrossRef]
- Su, H.; Hu, Y.H. Recent advances in graphene-based materials for fuel cell applications. Energy Sci. Eng. 2021, 9, 958–983. [Google Scholar] [CrossRef]
- Cai, X.; Liu, X.; Wei, X.; Lin, R. Effect of Nitrogen-Doped Carbon Support on the Performance of Catalysts for the Oxygen Reduction Reaction. ACS Appl. Energy Mater. 2024, 7, 8705–8714. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Wang, Y.-G.; Chen, X.; Liu, M.; Zheng, Z.; Peng, X. Carbon corrosion mechanism on nitrogen-doped carbon support—A density functional theory study. Int. J. Hydrogen Energy 2021, 46, 13273–13282. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.; Shi, J.; Zou, X.; Li, Y.; Elrasheid, T.H.; Huang, X.; Li, Z.; Zhai, X.; Hu, X. Electrodeposition of gold nanoparticles and reduced graphene oxide on an electrode for fast and sensitive determination of methylmercury in fish. Food Chem. 2017, 237, 423–430. [Google Scholar] [CrossRef]
- Zhou, W.; Li, C.; Sun, C.; Yang, X. Simultaneously determination of trace Cd2+ and Pb2+ based on l-cysteine/graphene modified glassy carbon electrode. Food Chem. 2016, 192, 351–357. [Google Scholar] [CrossRef]
- Dai, Y.; Peng, W.; Ji, Y.; Wei, J.; Che, J.; Huang, Y.; Huang, W.; Yang, W.; Xu, W. A self-powered photoelectrochemical aptasensor using 3D-carbon nitride and carbon-based metal-organic frameworks for high-sensitivity detection of tetracycline in milk and water. J. Food Sci. 2024, 89, 8022–8035. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, L.; Liu, P.; Zhao, K.; Ye, S.; Liang, G. Rapid, ultrasensitive and non-enzyme electrochemiluminescence detection of hydrogen peroxide in food based on the ssDNA/g-C3N4 nanosheets hybrid. Food Chem. 2021, 357, 129753. [Google Scholar] [CrossRef]
- Rajalakshmi, N.; Lakshmi, N.; Dhathathreyan, K. Nano titanium oxide catalyst support for proton exchange membrane fuel cells. Int. J. Hydrogen Energy. 2008, 33, 7521–7526. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Wang, W.; Chenge, J.; Li, X.; Cheng, P.; Chen, C.; Zhu, Y.; Zhang, S. Research progress of metal oxide supports for fuel cells electrocatalysts. ChemistrySelect 2024, 9, 2400479. [Google Scholar] [CrossRef]
- Parrondo, J.; Mijangos, F.; Rambabu, B. Platinum/tin oxide/carbon cathode catalyst for high temperature PEM fuel cell. J. Power Sources 2010, 195, 3977–3983. [Google Scholar] [CrossRef]
- Tsai, D.-C.; Kuo, B.-H.; Chen, H.-P.; Chen, E.-C.; Shieu, F.-S. Enhanced performance of proton exchange membrane fuel cells by Pt/carbon/antimony-doped tin dioxide triple-junction catalyst. Sci. Rep. 2023, 13, 1–10. [Google Scholar] [CrossRef]
- von Kraemer, S.; Wikander, K.; Lindbergh, G.; Lundblad, A.; Palmqvist, A.E. Evaluation of TiO2 as catalyst support in Pt-TiO2/C composite cathodes for the proton exchange membrane fuel cell. J. Power Sources 2008, 180, 185–190. [Google Scholar] [CrossRef]
- Ramani, V.K.; Sankarasubramanian, S.; Matanovic, I.; Atanassov, P.; He, C.; Wang, X.; Yadav, A.; Bhattacharyya, K.; Liang, X.; Parrondo, J.; et al. Corrosion-Resistant Non-Carbon Electrocatalyst Supports for PEFCS; Washington University: St. Louis, MO, USA, 2024. [Google Scholar]
- Sun, S.; Zhang, G.; Sun, X.; Cai, M.; Ruthkosky, M. Highly Stable and Active Pt/Nb-TiO2Carbon-Free Electrocatalyst for Proton Exchange Membrane Fuel Cells. J. Nanotechnol. 2012, 2012, 1–8. [Google Scholar] [CrossRef]
- Inaba, M.; Murase, R.; Takeshita, T.; Yano, K.; Kosaka, S.; Takahashi, N.; Isomura, N.; Oh-Ishi, K.; Yoshimune, W.; Tsuchiya, K.; et al. Synthesis of a Mesoporous SnO2 Catalyst Support and the Effect of Its Pore Size on the Performance of Polymer Electrolyte Fuel Cells. ACS Appl. Mater. Interfaces 2024, 16, 10295–10306. [Google Scholar] [CrossRef]
- Ali, Z.; Ma, H.; Rashid, M.T.; Wali, A.; Younas, S. Preliminary study to evaluate the phytochemicals and physiochemical properties in red and black date's vinegar. Food Sci. Nutr. 2019, 7, 1976–1985. [Google Scholar] [CrossRef]
- Lu, B.; Han, F.; Aheto, J.H.; Rashed, M.M.A.; Pan, Z. Artificial bionic taste sensors coupled with chemometrics for rapid detection of beef adulteration. Food Sci. Nutr. 2021, 9, 5220–5228. [Google Scholar] [CrossRef] [PubMed]
- Perchthaler, M.; Ossiander, T.; Juhart, V.; Mitzel, J.; Heinzl, C.; Scheu, C.; Hacker, V. Tungsten materials as durable catalyst supports for fuel cell electrodes. J. Power Sources 2013, 243, 472–480. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Fang, J.; Wan, Q. Investigation of Nanoscale Tungsten Carbide Enhanced Surface Carbon as a Platinum Support for the Hydrogen Evolution Reaction. Nanomaterials 2023, 13, 1369. [Google Scholar] [CrossRef]
- Lori, O.; Gonen, S.; Kapon, O.; Elbaz, L. Durable Tungsten Carbide Support for Pt-Based Fuel Cells Cathodes. ACS Appl. Mater. Interfaces 2021, 13, 8315–8323. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Rajbongshi, B.; Ramani, V.; Verma, A. Titanium carbide: An emerging electrocatalyst for fuel cell and electrolyser. Int. J. Hydrogen Energy 2021, 46, 12801–12821. [Google Scholar] [CrossRef]
- Lobato, J.; Zamora, H.; Plaza, J.; Rodrigo, M.A. Composite Titanium Silicon Carbide as a Promising Catalyst Support for High-Temperature Proton-Exchange Membrane Fuel Cell Electrodes. ChemCatChem 2016, 8, 848–854. [Google Scholar] [CrossRef]
- Zhu, W.; Ignaszak, A.; Song, C.; Baker, R.; Hui, R.; Zhang, J.; Nan, F.; Botton, G.; Ye, S.; Campbell, S. Nanocrystalline tungsten carbide (WC) synthesis/characterization and its possible application as a PEM fuel cell catalyst support. Electrochimica Acta 2012, 61, 198–206. [Google Scholar] [CrossRef]
- Ignaszak, A.; Song, C.; Zhu, W.; Zhang, J.; Bauer, A.; Baker, R.; Neburchilov, V.; Ye, S.; Campbell, S. Titanium carbide and its core-shelled derivative TiC@TiO2 as catalyst supports for proton exchange membrane fuel cells. Electrochimica Acta 2012, 69, 397–405. [Google Scholar] [CrossRef]
- Lobato, J.; Zamora, H.; Plaza, J.; Cañizares, P.; Rodrigo, M.A. Enhancement of high temperature PEMFC stability using catalysts based on Pt supported on SiC based materials. Appl. Catal. B Environ. 2016, 198, 516–524. [Google Scholar] [CrossRef]
- Boateng, I.D.; Yang, X.-M.; Yin, H.; Liu, W. Separation and purification of polyprenols from Ginkgo biloba leaves by silver ion anchored on imidazole-based ionic liquid functionalized mesoporous MCM-41 sorbent. Food Chem. 2024, 450, 139284. [Google Scholar] [CrossRef]
- Gao, Y.; Cao, J.; Chen, C. Electrochemical and microscopic characterization of fuel cell catalyst layer degradation during accelerated stress tests: A review. J. Energy Chem. 2025, 105, 96–111. [Google Scholar] [CrossRef]
- Gasteiger, H.; Panels, J.; Yan, S. Dependence of PEM fuel cell performance on catalyst loading. J. Power Sources 2004, 127, 162–171. [Google Scholar] [CrossRef]
- Shroti, N.; Daletou, M.K. The Pt–Co alloying effect on the performance and stability of high temperature PEMFC cathodes. Int. J. Hydrogen Energy 2022, 47, 16235–16248. [Google Scholar] [CrossRef]
- Durst, J.; Lopez-Haro, M.; Dubau, L.; Chatenet, M.; Soldo-Olivier, Y.; Guétaz, L.; Bayle-Guillemaud, P.; Maillard, F. Reversibility of Pt-Skin and Pt-Skeleton Nanostructures in Acidic Media. J. Phys. Chem. Lett. 2014, 5, 434–439. [Google Scholar] [CrossRef]
- Wang, J.; Wu, G.; Wang, W.; Xuan, W.; Jiang, J.; Wang, J.; Li, L.; Lin, W.-F.; Ding, W.; Wei, Z. A neural-network-like catalyst structure for the oxygen reduction reaction: Carbon nanotube bridged hollow PtCo alloy nanoparticles in a MOF-like matrix for energy technologies. J. Mater. Chem. A 2019, 7, 19786–19792. [Google Scholar] [CrossRef]
- Stamenkovic, V.R.; Fowler, B.; Mun, B.S.; Wang, G.; Ross, P.N.; Lucas, C.A.; Markovicć, N.M. Improved Oxygen Reduction Activity on Pt 3 Ni(111) via Increased Surface Site Availability. Sci 2007, 315, 493–497. [Google Scholar] [CrossRef]
- Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H.L.; Snyder, J.D.; Li, D.; Herron, J.A.; Mavrikakis, M.; et al. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science 2014, 343, 1339–1343. [Google Scholar] [CrossRef]
- Serov, A.; Artyushkova, K.; Atanassov, P. Fe-N-C Oxygen Reduction Fuel Cell Catalyst Derived from Carbendazim: Synthesis, Structure, and Reactivity. Adv. Energy Mater. 2014, 4, 1301735. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, Z.; Zhang, J.; Peng, K.; Ma, Q.; Xu, Q.; Su, H. Enhanced Durability of Pt-Based Electrocatalysts in High-Temperature Polymer Electrolyte Membrane Fuel Cells Using a Graphitic Carbon Nitride Nanosheet Support. ACS Sustain. Chem. Eng. 2020, 8, 9195–9205. [Google Scholar] [CrossRef]
- Cheng, Y.; He, S.; Lu, S.; Veder, J.; Johannessen, B.; Thomsen, L.; Saunders, M.; Becker, T.; De Marco, R.; Li, Q.; et al. Iron Single Atoms on Graphene as Nonprecious Metal Catalysts for High-Temperature Polymer Electrolyte Membrane Fuel Cells. Adv. Sci. 2019, 6, 1802066. [Google Scholar] [CrossRef] [PubMed]
- Eren, E.O.; Özkan, N.; Devrim, Y. Polybenzimidazole-modified carbon nanotubes as a support material for platinum-based high-temperature proton exchange membrane fuel cell electrocatalysts. Int. J. Hydrogen Energy 2021, 46, 29556–29567. [Google Scholar] [CrossRef]
- Endo, M.; Kim, Y.A.; Hayashi, T.; Yanagisawa, T.; Muramatsu, H.; Ezaka, M.; Terrones, H.; Terrones, M.; Dresselhaus, M.S. Microstructural changes induced in “stacked cup” carbon nanofibers by heat treatment. Carbon 2003, 41, 1941–1947. [Google Scholar] [CrossRef]
- Chen, D.; Zou, Y.; Shi, W.; Serbin, S.; You, H. Proton exchange membrane fuel cells using new cathode field designs of multi-inlet shunt intake design. Int. J. Energy Res. 2021, 45, 9948–9960. [Google Scholar] [CrossRef]
- Selvaganesh, S.V.; Sridhar, P.; Pitchumani, S.; Shukla, A.K. A Durable Graphitic-Carbon Support for Pt and Pt3Co Cathode Catalysts in Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 2012, 160, F49–F59. [Google Scholar] [CrossRef]
- Myles, T.; Bonville, L.; Maric, R. Catalyst, Membrane, Free Electrolyte Challenges, and Pathways to Resolutions in High Temperature Polymer Electrolyte Membrane Fuel Cells. Catalysts 2017, 7, 16. [Google Scholar] [CrossRef]
- Cha, B.-C.; Jun, S.; Jeong, B.; Ezazi, M.; Kwon, G.; Kim, D.; Lee, D.H. Carbon nanotubes as durable catalyst supports for oxygen reduction electrode of proton exchange membrane fuel cells. J. Power Sources 2018, 401, 296–302. [Google Scholar] [CrossRef]
- Samantaray, S.; Mohanty, D.; Satpathy, S.K.; Hung, I.-M. Exploring Recent Developments in Graphene-Based Cathode Materials for Fuel Cell Applications: A Comprehensive Overview. Molecules 2024, 29, 2937. [Google Scholar] [CrossRef]
- Jin, X.; Li, Y.; Sun, H.; Gao, X.; Li, J.; Lü, Z.; Liu, W.; Sun, X. Phosphorus induced activity-enhancement of Fe-N-C catalysts for high temperature polymer electrolyte membrane fuel cells. Nano Res. 2022, 16, 6531–6536. [Google Scholar] [CrossRef]
- Orfanidi, A.; Madkikar, P.; El-Sayed, H.A.; Harzer, G.S.; Kratky, T.; Gasteiger, H.A. The Key to High Performance Low Pt Loaded Electrodes. J. Electrochem. Soc. 2017, 164, F418–F426. [Google Scholar] [CrossRef]
- Pimperl, N.; Bevilacqua, N.; Schmid, M.A.; Torres, P.A.L.; El-Sayed, H.A.; Zeis, R.; Zeyer, K.P. Nitrogen-functionalized carbon-supported Pt catalysts implemented in high-temperature polymer electrolyte membrane fuel cell. J. Power Sources 2021, 507, 229971. [Google Scholar] [CrossRef]
- Ji, Z.; Perez-Page, M.; Chen, J.; Rodriguez, R.G.; Cai, R.; Haigh, S.J.; Holmes, S.M. A structured catalyst support combining electrochemically exfoliated graphene oxide and carbon black for enhanced performance and durability in low-temperature hydrogen fuel cells. Energy 2021, 226, 120318. [Google Scholar] [CrossRef]
- Eberhardt, S.H.; Marone, F.; Stampanoni, M.; Büchi, F.N.; Schmidt, T.J. Operando X-ray Tomographic Microscopy Imaging of HT-PEFC: A Comparative Study of Phosphoric Acid Electrolyte Migration. J. Electrochem. Soc. 2016, 163, F842–F847. [Google Scholar] [CrossRef]
- Eberhardt, S.H.; Toulec, M.; Marone, F.; Stampanoni, M.; Büchi, F.N.; Schmidt, T.J. Dynamic Operation of HT-PEFC: In-Operando Imaging of Phosphoric Acid Profiles and (Re)distribution. J. Electrochem. Soc. 2015, 162, F310–F316. [Google Scholar] [CrossRef]
- Ott, S.; Orfanidi, A.; Schmies, H.; Anke, B.; Nong, H.N.; Hübner, J.; Gernert, U.; Gliech, M.; Lerch, M.; Strasser, P. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat. Mater. 2019, 19, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Yamada, H.; Kato, H.; Kodama, K. Cell Performance and Durability of Pt/C Cathode Catalyst Covered by Dopamine Derived Carbon Thin Layer for Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 2020, 167, 084508. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, N.; Wang, D. Highly efficient CeO2-supported noble-metal catalysts: From single atoms to nanoclusters. Chem Catal. 2022, 2, 1594–1623. [Google Scholar] [CrossRef]
- Zhang, L.; Kuang, L.; Zhang, L.; Chu, W.; Qin, H.; Zhang, J.; He, J.; Ni, H.; Chi, H. Nano high-entropy oxide cathode with enhanced stability for direct borohydride fuel cells. J. Energy Chem. 2024, 100, 309–316. [Google Scholar] [CrossRef]
- Solà-Hernández, L.; Claudel, F.; Maillard, F.; Beauger, C. Doped tin oxide aerogels as oxygen evolution reaction catalyst supports. Int. J. Hydrogen Energy 2019, 44, 24331–24341. [Google Scholar] [CrossRef]
- Lv, R.; Huang, X.; Aheto, J.H.; Mu, L.; Tian, X. Analysis of fish spoilage by gas chromatography–mass spectrometry and electronic olfaction bionic system. J. Food Saf. 2018, 38, 12557. [Google Scholar] [CrossRef]
- Shen, L.; Zhou, X.; Zhang, C.; Yin, H.; Wang, A.; Wang, C. Functional characterization of bimetallic CuPd nanoparticles in hydrothermal conversion of glycerol to lactic acid. J. Food Biochem. 2019, 43, e12931. [Google Scholar] [CrossRef]
- Huang, K.; Lin, H.; Zhou, L.; Wang, L.; Jia, H. Improve the Activity and Stability of PtCo/C Catalyst by Ionic Liquid in Proton Exchange Membrane Fuel Cell. J. Electrochem. Soc. 2022, 169, 044516. [Google Scholar] [CrossRef]
- Chen, M.-H.; Jiang, Y.-X.; Chen, S.-R.; Huang, R.; Lin, J.-L.; Chen, S.-P.; Sun, S.-G. Synthesis and Durability of Highly Dispersed Platinum Nanoparticles Supported on Ordered Mesoporous Carbon and Their Electrocatalytic Properties for Ethanol Oxidation. J. Phys. Chem. C 2010, 114, 19055–19061. [Google Scholar] [CrossRef]
- Litkohi, H.R.; Bahari, A.; Gatabi, M.P. Improved oxygen reduction reaction in PEMFCs by functionalized CNTs supported Pt–M (M = Fe, Ni, Fe–Ni) bi- and tri-metallic nanoparticles as efficient electrocatalyst. Int. J. Hydrogen Energy 2020, 45, 23543–23556. [Google Scholar] [CrossRef]
- Xia, T.; Zhao, K.; Zhu, Y.; Bai, X.; Gao, H.; Wang, Z.; Gong, Y.; Feng, M.; Li, S.; Zheng, Q.; et al. Mixed-Dimensional Pt–Ni Alloy Polyhedral Nanochains as Bifunctional Electrocatalysts for Direct Methanol Fuel Cells. Adv. Mater. 2022, 35, e2206508. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Zhao, X.; Su, Y.-Q.; Wang, L.; Wang, H.; Dang, D.; Chi, B.; Liu, H.; Hensen, E.J.; Lou, X.W.; et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856. [Google Scholar] [CrossRef]
- Narayanan, N.; Liu, H.; Zhang, W.; Ravichandran, B.; Xu, Q.; Khotseng, L.; Cheng, Y.; Su, H. Spinel Nickel–Cobalt Oxide Nanorods Supported on Ti3C2Tx-MXene Nanosheets as Electrocatalysts for the Methanol Oxidation Reaction via a CO-Free Pathway. ACS Appl. Nano Mater. 2024, 7, 3907–3917. [Google Scholar] [CrossRef]
- Liu, W.; Li, H.; Xu, C.; Khatami, Y.; Banerjee, K. Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 2011, 49, 4122–4130. [Google Scholar] [CrossRef]
- Tian, T.; Cheng, Y.; Sun, Z.; Huang, K.; Lei, M.; Tang, H. Carbon nanotubes supported oxygen reduction reaction catalysts: Role of inner tubes. Adv. Compos. Hybrid Mater. 2022, 6, 1–10. [Google Scholar] [CrossRef]
- Huda, M.; Kawahara, T.; Park, J.-H.; Kawasumi, M.; Matsuo, Y. Single-Walled Carbon Nanotubes Supported Pt Electrocatalyst as a Cathode Catalyst of a Single Fuel Cell with High Durability against Start-up/Shut-down Potential Cycling. ACS Appl. Energy Mater. 2023, 6, 12226–12236. [Google Scholar] [CrossRef]
- Hunt, S.T.; Milina, M.; Alba-Rubio, A.C.; Hendon, C.H.; Dumesic, J.A.; Román-Leshkov, Y. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 2016, 352, 974–978. [Google Scholar] [CrossRef]
- Alipour MoghadamEsfahani, R.; Vankova, S.K.; Easton, E.B.; Ebralidze, I.I.; Specchia, S. A hybrid Pt/NbO/CNTs catalyst with high activity and durability for oxygen reduction reaction in PEMFC. Renew. Energy 2020, 154, 913–924. [Google Scholar] [CrossRef]
- Kodama, K.; Nagai, T.; Kuwaki, A.; Jinnouchi, R.; Morimoto, Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nat. Nanotechnol. 2021, 16, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Gui, R.; Yu, H.; Wang, C.; Liu, S.; Liu, H.; Zhou, T.; Zhang, N.; Zheng, X.; Chu, W.; et al. Subsize Pt-based intermetallic compound enables long-term cyclic mass activity for fuel-cell oxygen reduction. Proc. Natl. Acad. Sci. USA 2021, 118, e2104026118. [Google Scholar] [CrossRef]
- Avid, A.; Ochoa, J.L.; Huang, Y.; Liu, Y.; Atanassov, P.; Zenyuk, I.V. Revealing the role of ionic liquids in promoting fuel cell catalysts reactivity and durability. Nat. Commun. 2022, 13, 1–13. [Google Scholar] [CrossRef]
- Zhang, G.-R.; Yong, C.; Shen, L.-L.; Yu, H.; Brunnengräber, K.; Imhof, T.; Mei, D.; Etzold, B.J.M. Increasing Accessible Active Site Density of Non-Precious Metal Oxygen Reduction Reaction Catalysts through Ionic Liquid Modification. ACS Appl. Mater. Interfaces 2023, 15, 18781–18789. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, J.; Xia, B.; Li, Y.; Du, S. Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells. Front. Chem. Sci. Eng. 2019, 13, 695–701. [Google Scholar] [CrossRef]
- Li, W.; Bhuvanendran, N.; Zhang, W.; Xu, Q.; Hooshyari, K.; Su, H. Multi-skeletal PtPdNi nanodendrites as efficient electrocatalyst with high activity and durability towards oxygen reduction reaction. Int. J. Hydrogen Energy 2022, 47, 24807–24816. [Google Scholar] [CrossRef]
- Tran, Q.C.; Dao, V.-D.; Kim, H.Y.; Jung, K.-D.; Choi, H.-S. Pt-based alloy/carbon black nanohybrid covered with ionic liquid supramolecules as an efficient catalyst for oxygen reduction reactions. Appl. Catal. B Environ. 2017, 204, 365–373. [Google Scholar] [CrossRef]
- Zhang, G.-R.; Munoz, M.; Etzold, B.J.M. Boosting Performance of Low Temperature Fuel Cell Catalysts by Subtle Ionic Liquid Modification. ACS Appl. Mater. Interfaces 2015, 7, 3562–3570. [Google Scholar] [CrossRef]
- Huang, K.; Morales-Collazo, O.; Chen, Z.; Song, T.; Wang, L.; Lin, H.; Brennecke, J.F.; Jia, H. The Activity Enhancement Effect of Ionic Liquids on Oxygen Reduction Reaction Catalysts: From Rotating Disk Electrode to Membrane Electrode Assembly. Catalysts 2021, 11, 989. [Google Scholar] [CrossRef]
- Zhang, G.-R.; Wolker, T.; Sandbeck, D.J.S.; Munoz, M.; Mayrhofer, K.J.J.; Cherevko, S.; Etzold, B.J.M. Tuning the Electrocatalytic Performance of Ionic Liquid Modified Pt Catalysts for the Oxygen Reduction Reaction via Cationic Chain Engineering. ACS Catal. 2018, 8, 8244–8254. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Kwon, O.; Jeon, O.S.; Yim, S.; Jeon, Y.; Shul, Y.-G. Effective single web–structured electrode for high membrane electrode assembly performance in polymer electrolyte membrane fuel cell. Sci. Adv. 2023, 9, eadf4863. [Google Scholar] [CrossRef]
- Long, P.; Du, S.; Liu, Q.; Tao, L.; Peng, C.; Wang, T.; Gu, K.; Xie, C.; Zhang, Y.; Chen, R.; et al. Fluorination-enabled interface of PtNi electrocatalysts for high-performance high-temperature proton exchange membrane fuel cells. Sci. China Mater. 2021, 65, 904–912. [Google Scholar] [CrossRef]
- Mora, D.; Colombo, E.; Casalegno, A.; Baricci, A. Evaluation of PEM Fuel Cell Degradation Through Accelerated Stress Tests to Investigate Heterogeneity of Ageing. J. Electrochem. Soc. 2025, 172, 044509. [Google Scholar] [CrossRef]
- Zhang, Z.; Xia, Z.; Huang, J.; Jing, F.; Zhang, X.; Li, H.; Wang, S.; Sun, G. Uneven phosphoric acid interfaces with enhanced electrochemical performance for high-temperature polymer electrolyte fuel cells. Sci. Adv. 2023, 9, eade1194. [Google Scholar] [CrossRef]
- Wang, L. Suppressing phosphate poisoning via ionic liquid interface engineering for high-performance high-temperature PEMFCs. J. Power Sources 2025, 655, 237904. [Google Scholar] [CrossRef]
- Stariha, S.; Macauley, N.; Sneed, B.T.; Langlois, D.; More, K.L.; Mukundan, R.; Borup, R.L. Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells. J. Electrochem. Soc. 2018, 165, F492–F501. [Google Scholar] [CrossRef]
- Yu, X.; Ye, S. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. J. Power Sources 2007, 172, 133–144. [Google Scholar] [CrossRef]
- Islam, M.N.; Basha, A.B.M.; Kollath, V.O.; Soleymani, A.P.; Jankovic, J.; Karan, K. Designing fuel cell catalyst support for superior catalytic activity and low mass-transport resistance. Nat. Commun. 2022, 13, 1–11. [Google Scholar] [CrossRef]
Property | Ideal Requirement | Rationale |
---|---|---|
Electronic Conductivity | >1 S cm−1 | To minimize ohmic losses and ensure efficient electron transport to/from catalyst sites. |
Specific Surface Area | >100 m2 g−1 | To achieve high dispersion and utilization of Pt nanoparticles, maximizing ECSA. |
Porosity | Hierarchical (micro/meso/macro) | To facilitate efficient mass transport of reactant gases and removal of product water. |
Chemical Stability | Inert in hot, concentrated H3PO4 | To prevent chemical dissolution and structural degradation of the support material itself. |
Electrochemical Stability | High corrosion resistance at >0.8 V vs. RHE | To prevent electrochemical oxidation, especially at the cathode during operation and transients. |
Catalyst–Support Interaction | Strong (e.g., covalent, SMSI) | To anchor catalyst nanoparticles, preventing detachment, migration, and agglomeration. |
Cost & Scalability | Low-cost, scalable synthesis | To enable economically viable, large-scale manufacturing for commercial applications. |
Support Type | Typical Specific Surface Area (m2/g) | Electronic Conductivity | Corrosion Resistance (Stability) | Reported ECSA/Performance Retention | Key Trade-Off/Advantage |
---|---|---|---|---|---|
Conventional Carbon Black (e.g., Vulcan XC-72) [46,47,60] | High (>200) | Good | Low | Low (~40–60% loss in typical ASTs) | Trade-off: High initial Pt dispersion at the cost of very poor long-term stability. |
Graphitized Carbon Black (GCB) [47,68,69] | Moderate (60–130) | Good to Excellent | High | Very High (e.g., 0.5% potential decay vs. 35% for Pt/C) | Trade-off: Sacrifices some initial surface area for a dramatic improvement in durability. |
Carbon Nanotubes (CNTs) [77,78] | High (Variable, >100) | Excellent | Very High | High (e.g., 67% retention after 10k cycles) | Advantage: Excellent balance of high surface area and inherent graphitic stability. Cost and dispersion can be challenging. |
Graphene [82,84,85] | Very High (Theoretical max ~2600) | Excellent | Very High | High (Markedly attenuated voltage decay vs. Pt/C) | Advantage: Superior intrinsic properties, but synthesis of high-quality, defect-free material at scale is a primary challenge. |
Support Material | Catalyst | Test Conditions | Initial Performance | Durability Metric | Reference(s) |
---|---|---|---|---|---|
Conventional Carbon | |||||
Vulcan XC-72 | Pt | HT-PEMFC, AST: 1 k cycles (0.6–1.2 V) | 633.8 mA cm−2 @ 0.6 V | 58.35% Performance loss | [47] |
Vulcan XC-72 | Pt | GDE Half-cell, AST: 5k cycles | N/A | ~40% ECSA loss | [60] |
Commercial Carbon | Pt | PEMFC, High-potential hold | N/A | 34.9% Potential decay | [68] |
Advanced Carbons | |||||
Graphitized Carbon (1800 °C) | Pt | PEMFC, High-potential hold | N/A | 0.5% Potential decay @ 1000 mA cm−2 | [68] |
Graphitized CNT (GCNT) | Pt | HT-PEMFC @ 160 °C, AST: 10 k cycles | 0.36 A cm−2 @ 0.6 V | 61% Performance retention | [78] |
N-doped Carbon | Pt | MEA Test, AST: 30 k cycles | Peak Power Density: 0.91 W cm−2 | 6.9% Performance decay | [87] |
Graphene/CB Composite | Pt | HT-PEMFC @ 160 °C, 100 h test | Peak Power: ~450 mW cm−2 | High stability, low voltage decay | [82] |
B-doped Carbon | Pt | PEMFC, AST: 4 k cycles | N/A | >50% Current retention | [45] |
MWCNT-GNP | Pt-Ru | HT-PEMFC @ 160 °C (reformate) | Peak Power Density: 266 mW cm−2 | N/A | [84] |
S,P-doped Carbon Nitride | Pt-Co | HT-PEMFC | Enhanced ORR Activity | High stability | [25] |
Non-Carbonaceous Supports | |||||
Nb-TiO2 (Carbon-free) | Pt | RDE & AST: 30 k cycles (0.6–1.4 V) | Mass Activity: 15% > Pt/C | ~40% ECSA Retention (vs. 19% for Pt/C) | [99] |
Nb4N5/C (Composite) | Pt | HT-PEMFC @ 150 °C, AST: 5 k cycles | Peak Power Density: 520.48 mW cm−2 | 5.2% Performance loss (vs. 11.7% for Pt/C) | [110] |
Sb-SnO2/C (Composite) | Pt | PEMFC | Power Density: 15% > Pt/C | N/A | [96] |
Tungsten Carbide (WC) | Pt | Half-cell, AST: 5 k cycles | Specific Activity: 7x > Pt/C | ~60% ECSA Retention (vs. <20% for Pt/C) | [105] |
SiC-TiC (Composite) | Pt | HT-PEMFC, 100 h test | N/A | High voltage stability over 100 h | [107,110] |
Technique | Purpose in Catalyst Support R&D | Reference(s) |
---|---|---|
Synthesis Methods | ||
Polyol / Wet-Chemical | Solution-based synthesis of catalyst nanoparticles (e.g., Pt) for deposition onto supports. | [142,143,144] |
Hydrothermal / Solvothermal | Synthesis of crystalline materials, such as oxides or nanostructures, under elevated temperature and pressure. | [145,146] |
Sol-Gel | Synthesis of porous metal oxides (e.g., TiO2, SnO2) from molecular precursors. | [143,147] |
Chemical Vapor Deposition (CVD) | Growth of high-quality nanostructures, such as CNTs and graphene. | [148,149] |
Pyrolysis / Heat Treatment | Graphitization of carbon supports; synthesis of doped carbons and carbides from precursors. | [78,150] |
Characterization Techniques | ||
X-Ray Diffraction (XRD) | To determine the crystal structure, phase purity, and crystallite size of the support and catalyst. | [151,152] |
Transmission/Scanning Electron Microscopy (TEM/SEM) | To visualize the morphology, particle size, and dispersion of the support and catalyst nanoparticles. | [153,154] |
Brunauer–Emmett–Teller (BET) Analysis | To measure the specific surface area and pore size distribution of the support material. | [155,156] |
X-Ray Photoelectron Spectroscopy (XPS) | To determine the surface elemental composition and chemical/oxidation states (e.g., N-doping, Pt oxidation). | [157,158] |
CV | To measure the ECSA of the catalyst. | [159,160] |
Rotating Disk Electrode (RDE) | To evaluate the intrinsic kinetic activity of the catalyst for ORR in a controlled half-cell environment. | [161,162] |
AST | To assess the long-term durability of the catalyst and support by simulating operational stressors. | [163,164] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Liu, H.; Zhang, W.; Xu, Q.; Su, H. Advanced Electrocatalyst Supports for High-Temperature Proton Exchange Membrane Fuel Cells: A Comprehensive Review of Materials, Degradation Mechanisms, and Performance Metrics. Catalysts 2025, 15, 871. https://doi.org/10.3390/catal15090871
Liu Q, Liu H, Zhang W, Xu Q, Su H. Advanced Electrocatalyst Supports for High-Temperature Proton Exchange Membrane Fuel Cells: A Comprehensive Review of Materials, Degradation Mechanisms, and Performance Metrics. Catalysts. 2025; 15(9):871. https://doi.org/10.3390/catal15090871
Chicago/Turabian StyleLiu, Qingqing, Huiyuan Liu, Weiqi Zhang, Qian Xu, and Huaneng Su. 2025. "Advanced Electrocatalyst Supports for High-Temperature Proton Exchange Membrane Fuel Cells: A Comprehensive Review of Materials, Degradation Mechanisms, and Performance Metrics" Catalysts 15, no. 9: 871. https://doi.org/10.3390/catal15090871
APA StyleLiu, Q., Liu, H., Zhang, W., Xu, Q., & Su, H. (2025). Advanced Electrocatalyst Supports for High-Temperature Proton Exchange Membrane Fuel Cells: A Comprehensive Review of Materials, Degradation Mechanisms, and Performance Metrics. Catalysts, 15(9), 871. https://doi.org/10.3390/catal15090871