H2-SCR over Low Loaded Platinum-Based Catalysts: Investigations in the Reaction Pathways
Abstract
1. Introduction
2. Results
2.1. Investigation in Silica-Alumina and Al2O3 Supports Properties for H2-SCR over 0.30 wt%Pt-Based Catalysts
2.1.1. Characterization
2.1.2. H2-SCR Behaviour
2.2. Investigation of the H2-SCR Behaviour Depending on the Involved Amount of Catalyst (0.30 wt%Pt/Siral-5)
2.3. Investigation on H2-SCR Reaction Pathways: H2-SCR, (NO + H2) Reaction, NH3-SCR, NH3 Oxidation Reactions
2.3.1. H2-SCR vs. (NO + H2) Reaction Behaviour
2.3.2. H2-SCR vs. NH3-SCR Reaction
2.3.3. H2-SCR vs. NH3 Oxidation (By O2)
2.3.4. H2-Reactivity
2.4. Discussion
2.4.1. Identification of the Main Active Sites Responsible for the Low Temperature H2-SCR Activity and the NH3-SCR Activity
2.4.2. Overview of the H2-SCR Reaction Pathways Depending on Temperature
3. Materials and Methods
3.1. Catalysts
3.2. Characterizations
3.3. Catalytic Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Catalytic Test: Calculations
Appendix A.1. H2-SCR Test
Appendix A.2. NH3-SCR Test
Appendix A.3. NH3-Oxidation Test
Appendix B. Preliminary Investigations for Support Selection
Appendix B.1. Textural Behaviour
Support | SiO2 Loading (%) | SBET (m2·g−1) | Average Pore Size (Å) | Pore Volume (cm3·g−1) |
---|---|---|---|---|
Alumina | - | 157 | 126 | 0.50 |
Siral-5 | 5 | 296 | 83 | 0.62 |
Siral-20 | 20 | 356 | 77 | 0.96 |
Siral-40 | 40 | 422 | 86 | 0.91 |
Appendix B.2. Acid Behaviours Estimated by Pyridine Adsorption
Appendix B.3. Support Selection: Catalytic Activity of 0.30%Pt/Support
Appendix C. Platinum Characterization and Catalytic Behaviour of the Selected Platinum-Based Samples
Catalyst | SBET (m2 g−1) | Pt Loading * (wt%) | Mean Pt Particle Size (nm) ** | Pt Dispersion (%) | H2 SCR Test ***: NOx Conv. at 60 °C (%) | H2 SCR Test ***: N2Ooulet at 60 °C (ppm) | H2 SCR Test ***: NH3 oulet at 100 °C (ppm) | NH3 Oxidation Test ***: NH3 Conv. at 180 °C (%) |
---|---|---|---|---|---|---|---|---|
0.30wt%Pt/Al2O3 | 144 | 0.39 | 7.0/- | 19 | 95 | 140 | 140 | 56 |
0.30wt%Pt/Siral-5 | 218 | 0.34 | 10.4/10.6 | 13 | 63 | 95 | 149 | 41 |
0.30wt%Pt/Siral-20 | 245 | 0.30 | 11.8/- | 11 | 73 | 129 | 80 | 99 |
0.30wt%Pt/Siral-40 | 232 | 0.32 | 13.4/- | 10 | 76 | 113 | 141 | 55 |
0.15wt%Pt/Al2O3 | 149 | 0.13 | -/4.5 | 27 | 57 | 85 | 136 | 13 |
0.15wt%Pt/Siral-5 | 225 | 0.16 | 11.4/11.2 | 12 | 31 | 48 | 60 | 40 |
0.15wt%Pt/Siral-20 | 239 | 0.15 | -/10.9 | 12 | 42 | 64 | 69 | 38 |
0.15wt%Pt/Siral-40 | 230 | 0.13 | 14.3/13.5 | 9 | 33 | 49 | 116 | 33 |
0.07wt%Pt/Siral-5 | 269 | 0.07 | 8.2/8.4 | 15 | 33 | 52 | 76 | 13 |
0.30wt%Pt/Siral-5 w/o hydrotreatment | 224 | 0.23 | 1.9/- | 56 | 37 | 56 | 71 | 18 |
1wt%Pt/Al2O3 (commercial) ** | 142 | 0.90 | -/2.6 | 44 | 46 | 76 | 149 | 9 |
References
- Turner, W.G. Future technological directions for hydrogen internal combustion engines in transport applications. Appl. Energy Combust. Sci. 2025, 21, 100302. [Google Scholar] [CrossRef]
- Sari, R.; Shah, A.; Kumar, P.; Cleary, D.; Rairikar, S.; Balkrishna, S.; Thipse, S.S. Hydrogen Internal Combustion Engine Strategies for Heavy-Duty Transportation: Engine and System Level Perspective. SAE Int. J. Adv. Curr. Prac. Mobil. 2024, 6, 2937–2953. [Google Scholar] [CrossRef]
- Safari, H.; Jazayeri, S.A.; Ebrahimi, R. Potentials of NOX emission reduction methods in SI hydrogen engines: Simulation study. Int. J. Hydrogen Energy 2009, 34, 1015–1025. [Google Scholar] [CrossRef]
- Rakopoulos, C.D.; Kosmadakis, G.M.; Demuynck, J.; De Paepe, M.; Verhelst, S. A combined experimental and numerical study of thermal processes, performance and nitric oxide emissions in a hydrogen-fuelled spark-ignition engine. Int. J. Hydrogen Energy 2011, 36, 5163–5180. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Woo, S.I. Recent advances in the selective catalytic reduction of NOx by hydrogen in the presence of oxygen. Energy Environ. Sci. 2012, 5, 8799–8814. [Google Scholar] [CrossRef]
- Savva, P.G.; Costa, C.N. Hydrogen Lean-DeNOx as an Alternative to the Ammonia and Hydrocarbon Selective Catalytic Reduction (SCR). Catal. Rev. 2011, 53, 91–151. [Google Scholar] [CrossRef]
- Burch, R.; Coleman, M.D. An investigation of the NO/H2/O2 reaction on noble-metal catalysts at low temperatures under lean-burn conditions. Appl. Catal. B 1999, 23, 115–121. [Google Scholar] [CrossRef]
- Frank, B.; Emig, G.; Renken, A. Kinetics and mechanism of the reduction of nitric oxides by H2 under lean-burn conditions on a Pt–Mo–Co/α-Al2O3 catalyst. Appl. Catal. B 1998, 19, 45–57. [Google Scholar] [CrossRef]
- Pirug, G.; Bonzel, H.P. A low-pressure study of the reduction of NO by H2 on polycrystalline platinum. J. Catal. 1977, 50, 64–76. [Google Scholar] [CrossRef]
- Burch, R. The Investigation of Mechanisms in Environmental Catalysis Using Time-Resolved Methods. Top. Catal. 2003, 24, 97–102. [Google Scholar] [CrossRef]
- Papp, H.; Sabde, D.P. An investigation on the mechanism of NO decomposition over Rh/SiO2 catalysts in presence of pulse injected H2. Appl. Catal. B 2005, 60, 65–71. [Google Scholar] [CrossRef]
- Zhou, S.; Varughese, B.; Eichhorn, B.; Jackson, G.; McIlwrath, K. Pt-Cu Core-Shell and Alloy Nanoparticles for Heterogeneous NOx Reduction: Anomalous Stability and Reactivity of a Core-Shell Nanostructure. Angew. Chem. Int. Ed. 2005, 117, 4615–4619. [Google Scholar] [CrossRef]
- Burch, R.; Shestov, A.A.; Sullivan, J.A. A Steady-State Isotopic Transient Kinetic Analysis of the NO/O2/H2 Reaction over Pt/SiO2 Catalysts. J. Catal. 1999, 188, 69–82. [Google Scholar] [CrossRef]
- Li, J.; Chang, H.; Ma, L.; Hao, J.; Yang, R.T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review. Catal. Today 2011, 175, 147–156. [Google Scholar] [CrossRef]
- Qi, G.; Yang, R.T.; Rinaldi, F.C. Selective catalytic reduction of nitric oxide with hydrogen over Pd-based catalysts. J. Catal. 2006, 237, 381–392. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Zhao, X.; Xu, Y.; Gao, H.; Zhang, F. An investigation on N2O formation route over Pt/HY in H2-SCR. Chem. Eng. J. 2014, 252, 288–297. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Xu, Y.; Liu, Y.; Wang, X. Influence of support properties on H2 selective catalytic reduction activities and N2 selectivities of Pt catalysts. Chin. J. Catal. 2015, 36, 197–203. [Google Scholar] [CrossRef]
- Jabłońska, M.; Osorio Hernández, A. Selective Catalytic Reduction of Nitrogen Oxides with Hydrogen (H2-SCR-DeNOx) over Platinum-Based Catalysts. ChemCatChem 2024, 16, e202400977. [Google Scholar] [CrossRef]
- Shao, J.; Ho, P.H.; Creaser, D.; Olsson, L. Novel catalysts expanding the temperature range for NO selective catalytic reduction by H2. Appl. Catal. O 2024, 188, 206947. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, T.; Zhang, Y.; Du, J.; Sun, Y.; Liu, Z.; Ding, W.; Shan, Y.; Shan, W.; He, H. Revealing the reaction mechanism of H2 selective catalytic reduction of NOx in the presence of O2 over Pt/SSZ-13 zeolites. Appl. Catal. B 2025, 371, 125217. [Google Scholar] [CrossRef]
- Shibata, J.; Hashimoto, M.; Shimizu, K.; Yoshida, H.; Hattori, T.; Satsuma, A. Factors Controlling Activity and Selectivity for SCR of NO by Hydrogen over Supported Platinum Catalysts. J. Phys. Chem. B 2004, 108, 18327–18335. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, S.; Li, J.; He, E.; Liu, Z. Unraveling the Promotional Effect of Co on the Pd/TiO2 Catalyst for H2-SCR of NOx in the Presence of Oxygen. J. Phys. Chem. C 2023, 127, 7248–7256. [Google Scholar] [CrossRef]
- Fiorin, V.; Borthwick, D.; King, D.A. Microcalorimetry of O2 and NO on flat and stepped platinum surfaces. Surf. Sci. 2009, 603, 1360–1364. [Google Scholar] [CrossRef]
- Sen, B.; Vannice, M.A. Enthalpy changes during O2 adsorption and H2 titration of adsorbed oxygen on Platinum. J. Catal. 1991, 129, 31–37. [Google Scholar] [CrossRef]
- Basset, J.M.; Theolier, A.; Primet, M.; Prettre, M. Proceedings of the 5th International Congress on Catalysis, Palm Beach, FL, USA, 21–25 August 1972; Hightower, J.W., Ed.; North-Holland: Amsterdam, The Netherlands, 1973; Volume 2, p. 915. [Google Scholar]
- Briot, P.; Auroux, A.; Jones, D.; Primet, M. Effect of particle size on the reactivity of oxygen-adsorbed platinum supported on alumina. Appl. Catal. 1990, 59, 141–152. [Google Scholar] [CrossRef]
- Norton, P.R.; King, D.A. The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis; King, D.A., Woodruff, D.P., Eds.; Elsevier: Amsterdam, The Netherlands, 1982; Volume 4, p. 27. [Google Scholar]
- O’Rear, D.J.; Loffler, D.G.; Boudart, M. Stoichiometry of the titration by dihydrogen of oxygen adsorbed on platinum. J. Catal. 1990, 121, 131–140. [Google Scholar] [CrossRef]
- Christmann, K. Interaction of hydrogen with solid surfaces. Surf. Sci. Rep. 1998, 9, 1–163. [Google Scholar] [CrossRef]
- Sen, B.; Vannice, M.A. The influence of platinum crystallite size on H2 and CO heats of adsorption and CO hydrogenation. J. Catal. 1991, 130, 9–20. [Google Scholar] [CrossRef]
- Campbell, C.T.; Ertl, G.; Segner, J. A molecular beam study on the interaction of NO with a Pt(111) surface. Surf. Sci. 1982, 115, 309–322. [Google Scholar] [CrossRef]
- Rienks, E.D.L.; Bakker, J.W.; Baraldi, A.; Carabineiro, S.A.C.; Lizzit, S.; Weststrate, C.J.; Nieuwenhuys, B.E. Interaction of nitric oxide with Pt(1 0 0). A fast X-ray photoelectron spectroscopy study. Surf. Sci. 2002, 516, 109–117. [Google Scholar] [CrossRef]
- Ge, Q.; King, D.A. Energetics, geometry and spin density of NO chemisorbed on Pt{111}. Chem. Phys. Lett. 1998, 285, 15–20. [Google Scholar] [CrossRef]
- Yang, H.; Fdez Sanz, J.; Wang, Y.; Whitten, J.L. Adsorption Energetics of NO and CO on Pt(111). J. Clust. Sci. 1995, 10, 581–590. [Google Scholar] [CrossRef]
- Dhainaut, F.; Pietrzyk, S.; Granger, P. Kinetics of the NO/H2 reaction on Pt/LaCoO3: A combined theoretical and experimental study. J. Catal. 2008, 258, 296–305. [Google Scholar] [CrossRef]
- Le Valant, A.; Bouchet, S.; Van Assche, A.; Especel, C.; Epron, F. Description of supported metal structure sensitivity by a geometric approach. J. Catal. 2021, 397, 64–74. [Google Scholar] [CrossRef]
- Corbos, E.C.; Courtois, X.; Can, F.; Marécot, P.; Duprez, D. NOx storage properties of Pt/Ba/Al model catalysts prepared by different methods: Beneficial effects of a N2 pre-treatment before hydrothermal aging. Appl. Catal. B 2008, 84, 514–523. [Google Scholar] [CrossRef]
- Khabtou, S.; Chevreau, T.; Lavalley, J.C. Quantitative infrared study of the distinct acidic hydroxyl groups contained in modified Y zeolites. Microporous Mater. 1994, 3, 133–148. [Google Scholar] [CrossRef]
- Le Valant, A.; Comminges, C.; Can, F.; Thomas, K.; Houalla, M.; Epron, F. Platinum Supported Catalysts: Predictive CO and H2 Chemisorption by a Statistical Cuboctahedron Cluster Model. J. Phys. Chem. C 2016, 120, 26374–26385. [Google Scholar] [CrossRef]
Catalyst | SBET (m2 g−1) | Pt Loading from ICP Analysis (wt%) | Mean Pt Particle Size (nm) * | Pt Dispersion (%) |
---|---|---|---|---|
0.30 wt%Pt/Al2O3 | 144 | 0.39 | 7.0/- | 19 |
0.30 wt%Pt/Siral-5 | 218 | 0.34 | 10.4/10.6 | 13 |
0.30 wt%Pt/Siral-20 | 245 | 0.30 | 11.8/- | 11 |
0.30 wt%Pt/Siral-40 | 232 | 0.32 | 13.4/- | 10 |
0.15 wt%Pt/Al2O3 | 149 | 0.13 | -/4.5 | 27 |
0.15 wt%Pt/Siral-5 | 225 | 0.16 | 11.4/11.2 | 12 |
0.15 wt%Pt/Siral-20 | 239 | 0.15 | -/10.9 | 12 |
0.15 wt%Pt/Siral-40 | 230 | 0.13 | 14.3/13.5 | 9 |
0.07 wt%Pt/Siral-5 | 269 | 0.07 | 8.2/8.4 | 15 |
0.30 wt%Pt/Siral-5 w/o hydrotreatment | 224 | 0.23 | 1.9/- | 56 |
1% wtPt/Al2O3 (commercial) ** | 142 | 0.90 | -/2.6 | 44 |
Catalytic Test | NO (ppm) | NH3 (ppm) | H2 (%) | O2 (%) | N2 |
---|---|---|---|---|---|
H2-SCR | 400 | - | 1 | 2 | balance |
NO + H2 reaction | 400 | - | 1 | - | balance |
NH3-SCR | 400 | 400 | - | 2 | balance |
NH3 oxidation | - | 400 | - | 2 | balance |
H2 + O2 reaction | - | - | 1 | 2 | balance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Attia, A.; Can, F.; Courtois, X. H2-SCR over Low Loaded Platinum-Based Catalysts: Investigations in the Reaction Pathways. Catalysts 2025, 15, 838. https://doi.org/10.3390/catal15090838
Ben Attia A, Can F, Courtois X. H2-SCR over Low Loaded Platinum-Based Catalysts: Investigations in the Reaction Pathways. Catalysts. 2025; 15(9):838. https://doi.org/10.3390/catal15090838
Chicago/Turabian StyleBen Attia, Amira, Fabien Can, and Xavier Courtois. 2025. "H2-SCR over Low Loaded Platinum-Based Catalysts: Investigations in the Reaction Pathways" Catalysts 15, no. 9: 838. https://doi.org/10.3390/catal15090838
APA StyleBen Attia, A., Can, F., & Courtois, X. (2025). H2-SCR over Low Loaded Platinum-Based Catalysts: Investigations in the Reaction Pathways. Catalysts, 15(9), 838. https://doi.org/10.3390/catal15090838