Performance Study of Biomass Carbon-Based Materials in Electrocatalytic Fenton Degradation of Printing and Dyeing Wastewater
Abstract
1. Introduction
2. Results and Discussion
2.1. Morphological and Structural Characterization
2.2. Electrochemical Performance Testing and Analysis
2.3. Hydrogen Peroxide Production and Faraday Efficiency Analysis
2.4. Catalytic Performance Analysis
3. Materials and Methods
3.1. Chemicals
3.2. Material Synthesis
3.2.1. Preparation of Biomass Carbon Materials
3.2.2. Preparation of Electrocatalytic Cathodes
3.3. Characterization
3.4. Electrochemical Characterizations
3.4.1. Electro-Fenton Test Method
3.4.2. Electrochemical Test Methods
4. Conclusions
- (1)
- Characterization of the catalyst material itself, including XRD and Raman, has shown that the proportion of amorphous carbon in the material decreases and the proportion of graphitic carbon increases as the temperature increases.
- (2)
- A detailed analysis of the XPS peaks and the ratios of each functional group of the three catalyst materials, combined with the electrochemical results of the control group, revealed that HBC-500, which is rich in both amorphous carbon sites and graphitic carbon as a substrate, can be a good two-electron cathodic oxygen reduction catalyst, and concluded that a large number of oxygen-containing functional groups and a suitable pyrrole nitrogen–pyridine nitrogen/graphite nitrogen ratio are important for the oxygen reduction process to follow a two-electron pathway.
- (3)
- Exploration of the electrocatalytic production of hydrogen peroxide with catalysts prepared at different pyrolysis temperatures and pH values led to the conclusion that HBC-500 exhibited experimental results consistent with the RRDE results at pH = 5, producing 238.40 mg·L−1 of hydrogen peroxide in 90 min at a current density of 50 mA·cm−2. Whereas the production effect on hydrogen peroxide increases with increasing pH, its current efficiency also increases, and it is worth noting that hydrogen peroxide production in a slightly acidic environment is higher than in a neutral environment, which provides the basis for an efficient Fenton reaction.
- (4)
- The biomass carbon material was applied to the electrocatalytic Fenton reaction, and the results showed that HBC-500 achieved more than 95% degradation within 30 min at pH = 5. After five consecutive electrocatalytic cycles of 300 min, the catalyst maintained approximately 91.79% electrocatalytic activity.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schreyers, L.J.; van Emmerik, T.H.M.; Huthoff, F.; Collas, F.P.L.; Wegman, C.; Vriend, P.; Boon, A.; de Winter, W.; Oswald, S.B.; Schoor, M.M.; et al. River plastic transport and storage budget. Water Res. 2024, 259, 121786. [Google Scholar] [CrossRef]
- Baccour, S.; Goelema, G.; Kahil, T.; Albiac, J.; van Vliet, M.T.H.; Zhu, X.; Strokal, M. Water quality management could halve future water scarcity cost-effectively in the Pearl River Basin. Nat. Commun. 2024, 15, 5669. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Wang, F.; Ma, J.; Li, E.; Zhou, X.; Zhang, Y.; Chu, H. Field-scale zero liquid discharge of coking wastewater—Operating efficiency and environmental impact. J. Cleaner Prod. 2023, 424, 138736. [Google Scholar] [CrossRef]
- Khan, U.A.; Löffler, P.; Spilsbury, F.; Wiberg, K.; Stålsby Lundborg, C.; Lai, F.Y. Towards sustainable water reuse: A critical review and meta-analysis of emerging chemical contaminants with risk-based evaluation, health hazard prediction and prioritization for assessment of effluent water quality. J. Hazard. Mater. 2024, 480, 136175. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Abu-Reesh, I.M.; He, Z. Domestic wastewater treatment towards reuse by “self-supplied” microbial electrochemical system assisted UV/H2O2 process. Water Res. 2024, 267, 122504. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, Z.; Liu, G.; Casazza, M.; Yin, X. Analyzing virtual water pollution transfer embodied in economic activities based on gray water footprint: A case study. J. Cleaner Prod. 2017, 161, 1064–1073. [Google Scholar] [CrossRef]
- Baig, U.; Faizan, M.; Sajid, M. Multifunctional membranes with super-wetting characteristics for oil-water separation and removal of hazardous environmental pollutants from water: A review. Adv. Colloid Interface 2020, 285, 102276. [Google Scholar] [CrossRef]
- Awad, A.M.; Shaikh, S.M.R.; Jalab, R.; Gulied, M.H.; Nasser, M.S.; Benamor, A.; Adham, S. Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Sep. Purif. Technol. 2019, 228, 115719. [Google Scholar] [CrossRef]
- Lin, H.; Fang, Q.; Wang, W.; Li, G.; Guan, J.; Shen, Y.; Ye, J.; Liu, F. Prussian blue/PVDF catalytic membrane with exceptional and stable Fenton oxidation performance for organic pollutants removal. Appl. Catal. B Environ. Energy 2020, 273, 119047. [Google Scholar] [CrossRef]
- Shi, L.; Shi, Y.; Zhuo, S.; Zhang, C.; Aldrees, Y.; Aleid, S.; Wang, P. Multi-functional 3D honeycomb ceramic plate for clean water production by heterogeneous photo-Fenton reaction and solar-driven water evaporation. Nano Energy 2019, 60, 222–230. [Google Scholar] [CrossRef]
- Wang, H.; Guo, H.; Zhao, Y.; Dong, X.; Gong, M. Thermodynamic analysis of a petroleum volatile organic compounds (VOCs) condensation recovery system combined with mixed-refrigerant refrigeration. Int. J. Refrig. 2020, 116, 23–35. [Google Scholar] [CrossRef]
- Rahman, Z. An overview on heavy metal resistant microorganisms for simultaneous treatment of multiple chemical pollutants at co-contaminated sites, and their multipurpose application. J. Hazard. Mater. 2020, 396, 122682. [Google Scholar] [CrossRef] [PubMed]
- Mai, W.; Chen, J.; Liu, H.; Liang, J.; Tang, J.; Wei, Y. Advances in Studies on Microbiota Involved in Nitrogen Removal Processes and Their Applications in Wastewater Treatment. Front. Microbiol. 2021, 12, 746293. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.A.; Ahmad, S.; Cui, Q.; Wang, Z.; Wei, H.; Chen, X.; Ni, S.-Q.; Ismail, S.; Awad, H.M.; Tawfik, A. The environmental distribution and removal of emerging pollutants, highlighting the importance of using microbes as a potential degrader: A review. Sci. Total Environ. 2022, 809, 151926. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Devi, M.K.; Kumar, P.S. Engineering microbes for enhancing the degradation of environmental pollutants: A detailed review on synthetic biology. Environ. Res. 2022, 214, 113868. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chatterjee, T.; Lim, S.R.; Woo, S.H. Adsorption of a cationic dye, methylene blue, on to chitosan hydrogel beads generated by anionic surfactant gelation. Environ. Technol. 2011, 32, 1503–1514. [Google Scholar] [CrossRef]
- Qi, N.; Zhao, H.; Qin, Y.; Wang, Q.; Wang, G.; Li, Y. An innovative strategy for synchronous treatment of combined heavy metal and organic pollutants through polysaccharide gel encapsulating S2−. Sci. Total Environ. 2020, 742, 140601. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, S.; Sun, Y.; Tang, J.; Zheng, H. Ozone catalytic oxidation capacity of Ti-Co@Al2O3 for the treatment of biochemical tailwater from the coal chemical industry. Water Environ. Res. 2020, 92, 1283–1292. [Google Scholar] [CrossRef]
- Beltrán, F.J.; González, M.; Alvarez, R.P. Fenton Reagent Advanced Oxidation of Polynuclear Aromatic Hydrocarbons in Water. Water Air Soil Poll. 1998, 105, 685–700. [Google Scholar] [CrossRef]
- Zheng, H.; Hou, Y.; Li, S.; Ma, J.; Nan, J.; Li, T. Recent advances in the application of metal organic frameworks using in advanced oxidation progresses for pollutants degradation. Chin. Chem. Lett. 2022, 33, 5013–5022. [Google Scholar] [CrossRef]
- Choi, C.H.; Kwon, H.C.; Yook, S.; Shin, H.; Kim, H.; Choi, M. Hydrogen Peroxide Synthesis via Enhanced Two-Electron Oxygen Reduction Pathway on Carbon-Coated Pt Surface. J. Phys. Chem. C 2014, 118, 30063–30070. [Google Scholar] [CrossRef]
- von Weber, A.; Baxter, E.T.; White, H.S.; Anderson, S.L. Cluster Size Controls Branching between Water and Hydrogen Peroxide Production in Electrochemical Oxygen Reduction at Ptn/ITO. J. Phys. Phys. C 2015, 119, 11160–11170. [Google Scholar] [CrossRef]
- He, D.; Zhong, L.; Gan, S.; Xie, J.; Wang, W.; Liu, Z.; Guo, W.; Yang, X.; Niu, L. Hydrogen peroxide electrosynthesis via regulating the oxygen reduction reaction pathway on Pt noble metal with ion poisoning. Electrochim. Acta 2021, 371, 137721. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, S.; Ma, W.; Zhou, Z. Oxygen reduction reaction on Pt-based electrocatalysts: Four-electron vs. two-electron pathway. Chin. J. Catal. 2022, 43, 1433–1443. [Google Scholar] [CrossRef]
- Wang, N.; Ma, S.; Zuo, P.; Duan, J.; Hou, B. Recent Progress of Electrochemical Production of Hydrogen Peroxide by Two-Electron Oxygen Reduction Reaction. Adv. Sci. 2021, 8, 2100076. [Google Scholar] [CrossRef] [PubMed]
- Anotai, J.; Su, C.C.; Tsai, Y.C.; Lu, M.C. Effect of hydrogen peroxide on aniline oxidation by electro-Fenton and fluidized-bed Fenton processes. J. Hazard. Mater. 2010, 183, 888–893. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Wang, J. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects. J. Hazard. Mater. 2021, 404, 124191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wen, Y.; Pan, Z.; Kuwahara, Y.; Mori, K.; Yamashita, H.; Zhao, Y.; Qian, X. Overcoming Acidic H2O2/Fe(II/III) Redox-Induced Low H2O2 Utilization Efficiency by Carbon Quantum Dots Fenton-like Catalysis. Environ. Sci. Technol. 2022, 56, 2617–2625. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Q.; Gou, F.; He, B.; Chen, W.; Zheng, W.; Jiang, X.; Chen, K.; Qi, C.; Ma, D. Gd-doped CuBi2O4/CuO heterojunction film photocathodes for photoelectrochemical H2O2 production through oxygen reduction. Nano Res. 2021, 14, 3439–3445. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Hu, X.; Wu, X.; Chen, W.; Zhou, S.; Li, J.; Qi, C.; Ma, D.-K. Fluorine-doped CuBi2O4 nanorod arrays for enhanced photoelectrochemical oxygen reduction reaction toward H2O2 production. J. Catal. 2022, 410, 339–346. [Google Scholar] [CrossRef]
- Song, M.; Liu, W.; Zhang, J.; Zhang, C.; Huang, X.; Wang, D. Single-Atom Catalysts for H2O2 Electrosynthesis via Two-Electron Oxygen Reduction Reaction. Adv. Funct. Mater. 2023, 33, 2212087. [Google Scholar] [CrossRef]
- Wang, K.; Huang, J.; Chen, H.; Wang, Y.; Song, S. Recent advances in electrochemical 2e oxygen reduction reaction for on-site hydrogen peroxide production and beyond. Chem. Commun. 2020, 56, 12109–12121. [Google Scholar] [CrossRef]
- Wang, Y.; Waterhouse, G.I.N.; Shang, L.; Zhang, T. Electrocatalytic Oxygen Reduction to Hydrogen Peroxide: From Homogenous to Heterogenous Electrocatalysis. Adv. Energy Mater. 2020, 11, 2003323. [Google Scholar] [CrossRef]
- Ding, Y.; Zhou, W.; Gao, J.; Sun, F.; Zhao, G. H2O2 Electrogeneration from O2 Electroreduction by N-Doped Carbon Materials: A Mini-Review on Preparation Methods, Selectivity of N Sites, and Prospects. Adv. Mater. Interfaces 2021, 8, 2002091. [Google Scholar] [CrossRef]
- Peng, W.; Liu, J.; Liu, X.; Wang, L.; Yin, L.; Tan, H.; Hou, F.; Liang, J. Facilitating two-electron oxygen reduction with pyrrolic nitrogen sites for electrochemical hydrogen peroxide production. Nat. Commun. 2023, 14, 4430. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; van Dijk, B.; Wu, L.; Maheu, C.; Tudor, V.; Hofmann, J.P.; Jiang, L.; Hetterscheid, D.; Schneider, G.F. Role of Vacancy Defects and Nitrogen Dopants for the Reduction of Oxygen on Graphene. ACS Catal. 2024, 14, 11065–11075. [Google Scholar] [CrossRef]
- Albashir, A.I.M.; Lu, X.; Dai, X.; Qi, W. Effects of porous structure and oxygen functionalities on electrochemical synthesis of hydrogen peroxide on ordered mesoporous carbon. Commun. Chem. 2024, 7, 111. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, G.; Jin, H.; Wu, J.; Zhang, N.; Yao, B.; Liu, K.; Liu, M.; Liu, T.; Huang, L. Microwave-assisted synthesis of well-defined nitrogen doping configuration with high centrality in carbon to identify the active sites for electrochemical hydrogen peroxide production. Carbon 2022, 191, 340–349. [Google Scholar] [CrossRef]
- Ren, Y.; Yan, Y.; Wang, Y.; Zhang, H.; Li, X. Thermally treated candle soot as a novel catalyst for hydrogen peroxide in-situ production enhancement in the bio-electro-Fenton system. Chemosphere 2021, 262, 127839. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.; Ning, B.; Qian, S.; Zheng, D.; Wang, L. Highly efficient electrochemical generation of H2O2 on N/O co-modified defective carbon. Int. J. Hydrog. Energy 2021, 46, 14277–14287. [Google Scholar] [CrossRef]
- Xin, S.; Li, Y.; Guan, J.; Ma, B.; Zhang, C.; Ma, X.; Liu, W.; Xin, Y.; Gao, M. Electrocatalytic oxygen reduction to hydrogen peroxide through a biomass-derived nitrogen and oxygen self-doped porous carbon metal-free catalyst. J. Mater. Chem. A 2021, 9, 25136–25149. [Google Scholar] [CrossRef]
- Shahzadi, S.; Akhtar, M.; Arshad, M.; Ijaz, M.H.; Janjua, M.R.S.A. A review on synthesis of MOF-derived carbon composites: Innovations in electrochemical, environmental and electrocatalytic technologies. RSC Adv. 2024, 14, 27575–27607. [Google Scholar] [CrossRef]
- Huang, B.; Cui, Y.; Hu, R.; Huang, J.; Guan, L. Promoting the Two-Electron Oxygen Reduction Reaction Performance of Carbon Nanospheres by Pore Engineering. ACS Appl. Energy Mater. 2021, 4, 4620–4629. [Google Scholar] [CrossRef]
- Yang, S.; Verdaguer-Casadevall, A.; Logi, A.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Ib, C.; Stephens, I.E.L. Toward the Decentralized Electrochemical Production of H2O2: A Focus on the Catalysis. ACS Catal. 2018, 8, 4064–4081. [Google Scholar] [CrossRef]
- Chang, Q.; Zhang, P.; Mostaghimi, A.H.B.; Zhao, X.; Denny, S.R.; Lee, J.H.; Gao, H.; Zhang, Y.; Xin, H.L.; Siahrostami, S.; et al. Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon. Nat. Commun. 2020, 11, 2178. [Google Scholar] [CrossRef]
- Mayer, Z.A.; Apfelbacher, A.; Hornung, A. Nitrogen cycle of effluent-irrigated energy crop plantations: From wastewater treatment to thermo-chemical conversion processes. J. Sci. Ind. Res. India 2011, 70, 675–682. [Google Scholar] [CrossRef]
- Li, R.; Tang, Y.; Song, X.; Wang, S.; Che, Q.; Chen, C. Chemical Structure Evolution of Thermally Altered Coal during the Preparation of Coal-Based Graphene and Division of Thermally Altered Zone: Based on FTIR and Raman. ACS Omega 2024, 9, 34397–34412. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Lai, H.K.; Chou, Y.Z.; Lee, M.H.; Lin, K.Y. Coordination polymer-derived cobalt nanoparticle-embedded carbon nanocomposite as a magnetic multi-functional catalyst for energy generation and biomass conversion. Chem. Eng. J. 2018, 332, 717–726. [Google Scholar] [CrossRef]
- Hu, L.; Liao, Y.; Xia, D.; Peng, F.; Tan, L.; Hu, S.; Zheng, C.; Lu, X.; He, C.; Shu, D. Engineered photocatalytic fuel cell with oxygen vacancies-rich rGO/BiO1−xI as photoanode and biomass-derived N-doped carbon as cathode: Promotion of reactive oxygen species production via Fe2+/Fe3+ redox. Chem. Eng. J. 2020, 385, 123824. [Google Scholar] [CrossRef]
- Xue, Y.; Du, X.; Cai, W.; Sun, Z.; Zhang, Y.; Zheng, S.; Zhang, Y.; Jin, W. Ramie Biomass Derived Nitrogen-Doped Activated Carbon for Efficient Electrocatalytic Production of Hydrogen Peroxide. J. Electrochem. Soc. 2018, 165, E171–E176. [Google Scholar] [CrossRef]
- Wu, Q.; Zou, H.; Mao, X.; He, J.; Shi, Y.; Chen, S.; Yan, X.; Wu, L.; Lang, C.; Zhang, B.; et al. Unveiling the dynamic active site of defective carbon-based electrocatalysts for hydrogen peroxide production. Nat. Commun. 2023, 14, 6275. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Wang, L.; Shen, D.; Meng, X.; Bai, H.; Li, C. Oxygen-containing functional groups cooperate to boost electrochemical ORR selectivity to H2O2. Inorg. Chem. Front. 2025, 10, 1039. [Google Scholar] [CrossRef]
- Guo, Q.; Kong, F.; Yu, X.; Dai, N.; Li, Q.; Wu, P.; Tian, H.; Song, K.; Sun, W.; Cui, X. An inter-atomic synergistic Co–Zn diatomic catalyst for efficient H2O2 electrosynthesis in neutral and alkaline media. Green Chem. 2025, 27, 3032–3043. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, S.; Zhang, X.; Xu, M.; Han, M.; Zheng, L.R.; Zhang, Y.; Wang, G.; Zhang, H.; Zhao, H. Atomically Dispersed Iron Regulating Electronic Structure of Iron Atom Clusters for Electrocatalytic H2O2 Production and Biomass Upgrading. Angew. Chem. Int. Ed. Engl. 2023, 62, e202314414. [Google Scholar] [CrossRef] [PubMed]
- Lv, T.; Jin, H.; Sang, Z.; Li, Z.; Li, X.; Wang, L.; Cai, S.; Liang, J.; Li, Q.; Yan, X. Carbon-based catalysts for electrosynthesis of hydrogen peroxide. ChemSusChem 2025, 18, e202500675. [Google Scholar] [CrossRef]
- Jia, J.; Li, Z.; Tian, Y.; Li, X.; Chen, R.; Liu, J.; Liang, J. Electrosynthesis of H2O2 via two-electron oxygen reduction over carbon-based catalysts: From microenvironment control to electrode/reactor design. Energy Rev. 2024, 3, 100069. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, L.; An, Y.; Lei, Y. Performance Study of Biomass Carbon-Based Materials in Electrocatalytic Fenton Degradation of Printing and Dyeing Wastewater. Catalysts 2025, 15, 818. https://doi.org/10.3390/catal15090818
Wen L, An Y, Lei Y. Performance Study of Biomass Carbon-Based Materials in Electrocatalytic Fenton Degradation of Printing and Dyeing Wastewater. Catalysts. 2025; 15(9):818. https://doi.org/10.3390/catal15090818
Chicago/Turabian StyleWen, Lie, Yan An, and Yanhua Lei. 2025. "Performance Study of Biomass Carbon-Based Materials in Electrocatalytic Fenton Degradation of Printing and Dyeing Wastewater" Catalysts 15, no. 9: 818. https://doi.org/10.3390/catal15090818
APA StyleWen, L., An, Y., & Lei, Y. (2025). Performance Study of Biomass Carbon-Based Materials in Electrocatalytic Fenton Degradation of Printing and Dyeing Wastewater. Catalysts, 15(9), 818. https://doi.org/10.3390/catal15090818