Metal-Modified Zeolites for Catalytic Dehydration of Bioethanol to Ethylene: Mechanisms, Preparation, and Performance
Abstract
1. Introduction
2. Mechanism
2.1. Dehydration Pathways on Zeolite Catalysts
2.2. Role of Metal Sites in the Reaction Mechanism
3. Preparation Methods
3.1. Zeolite Support Preparation
3.2. Metal Modification Strategies
4. Catalytic Performance
4.1. Effect of Zeolite Support
4.2. Influence of Metal Modification
Catalyst | Modification Strategy | Metal Loading | Reaction Conditions | Conversion | Ethylene Selectivity/Yield | Stability | Reference |
---|---|---|---|---|---|---|---|
Ni-ZSM-5 | Impregnation | 5 wt% | 230 °C 50 vol% ethanol | 91.90% | 37.20% | Reusable for 4 cycles | [103] |
Ni/Sr-ZSM-5 | Ion exchange + impregnation | 0.5 wt% Sr + 3.3 wt% Ni | 250 °C 6% ethanol WHSV = 9 h−1 | ~96% | ~98% | Stable for 30 h | [55] |
NiW-HZSM-5 | Impregnation | 5 wt% Ni + 1 wt% W | 230 °C 6 wt% catalyst dose | 91.29% | 21.98% | 96.25% efficiency after 5 cycles | [62] |
Fe-ZSM-5 | Ion exchange | 0.46 wt% | 260 °C LHSV = 0.81 h−1 | 98%~99% | 97%~99% | Stable for 60 d | [59] |
Fe-ZSM-5 | Impregnation | 5.0 wt% | 220 °C WHSV = 2.4 h−1 | ~90% | 73% | N/A | [104] |
Cu-ZSM-5 | Impregnation | 2.5 wt% | 220 °C WHSV = 2.4 h−1 | ~82% | 35.50% | N/A | [104] |
FeCu-ZSM-5 | Impregnation | 2.5 wt% Fe + 2.5 wt% Cu | 220 °C WHSV = 2.4 h−1 | ~65% | 34.70% | N/A | [104] |
Sr-ZSM-5 | Impregnation | Sr/Al molar ratio = 1.0 | 400–600 °C W/F = 0.0125 g/(mL/min) | ~100% | 41.8%~99% | Stable for 25 h | [60] |
Ce-ZSM-5 | Ion exchange | 5 wt% | 350 °C WHSV = 5 h−1 | ~100% | ~100% | Stable for 12 h | [52] |
Ce-HZSM-5 | Impregnation | 2.5 wt% | 400 °C 20 vol% ethanol WHSV = 3 h−1 | 99.10% | 47.60% | Stable for 120 h | [105] |
La-ZSM-5 | Impregnation | N/A | 240 °C 20% bioethanol WHSV = 1.5 h−1 | 97.40% | 98.10% | Stable for 75 h | [50] |
La-HZSM-5 | Impregnation | 3 wt% | 260 °C 50 vol% ethanol LHSV 1.1 h−1 | 98.50% | 99.50% | Stable for 950 h | [63] |
Ru-HBZ | Impregnation | 0.33 wt% | 350 °C WHSV = 22.9 h−1 | ~90% | 98.30% | N/A | [53] |
Pt-HBZ | Impregnation | 0.33 wt% | 350 °C WHSV = 22.9 h−1 | ~95% | 99.80% | N/A | [53] |
Pd-HBZ | Impregnation | 1.57 wt% | 350 °C WHSV = 22.9 h−1 | ~95% | 96% | N/A | [53] |
Ba-Y | Ion exchange | 4.5 wt% | 280 °C 95% bioethanol contact time = 10 g/mL/min | 99% | 99.50% | Stable for 15 h with 98.5% yield | [102] |
Cu-SSZ-13 | One-pot synthesis | 12.9 wt% | 212 °C WHSV = 1.63 h−1 | >99% | >99% | 95.2% conversion after 12 h | [54] |
Sr-SAPO-34 | Ion exchange | 3.2 at% | 350 °C 15 vol% bioethanol WHSV = 1.5 h−1 | 98.40% | 94.50% | Stable for 913 min | [96] |
Mn-SAPO-34 | Hydrothermal | 5 wt% | 340 °C 20% ethanol WHSV = 2 h−1 | 99.35% | 98.44% | Stable for 10 h | [61] |
Zn-SAPO-34 | Hydrothermal | 5 wt% | 340 °C 20% ethanol WHSV = 2 h−1 | ~97% | ~96% | N/A | [61] |
Ni-APSO-34 | Hydrothermal | Ni/Al molar ratio = 0.0084 | 350 °C 70 vol% ethanol LHSV 3 h−1 | ~95% | 92.30% | Stable for 100 h | [37] |
HZSM-5 | - | - | 300 °C 70 vol% ethanol LHSV 3 h−1 | ~95% | 93.70% | Stable for 60 h | [37] |
H-Beta | - | - | 350 °C WHSV = 22.9 h−1 | ~95% | 98.70% | N/A | [53] |
γ-Al2O3 | - | - | 450 °C 70 vol% ethanol LHSV 3 h−1 | ~86% | 78.70% | Stable for 80 h | [37] |
4.3. Impact of Reaction Conditions
4.4. Catalyst Stability and Regeneration
5. Conclusions and Perspectives
5.1. Current Achievements
5.2. Challenges and Future Opportunities
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, J.; Wang, Y. Recent Advances in Catalytic Conversion of Ethanol to Chemicals. ACS Catal. 2014, 4, 1078–1090. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; Mediavilla, M.; De Castro, C.; Carpintero, Ó.; Miguel, L.J. Fossil Fuel Depletion and Socio-Economic Scenarios: An Integrated Approach. Energy 2014, 77, 641–666. [Google Scholar] [CrossRef]
- Farrell, A.E.; Plevin, R.J.; Turner, B.T.; Jones, A.D.; O’Hare, M.; Kammen, D.M. Ethanol Can Contribute to Energy and Environmental Goals. Science 2006, 311, 506–508. [Google Scholar] [CrossRef] [PubMed]
- Mohsenzadeh, A.; Zamani, A.; Taherzadeh, M.J. Bioethylene Production from Ethanol: A Review and Techno-economical Evaluation. ChemBioEng Rev. 2017, 4, 75–91. [Google Scholar] [CrossRef]
- Zhu, Y.; Romain, C.; Williams, C.K. Sustainable Polymers from Renewable Resources. Nature 2016, 540, 354–362. [Google Scholar] [CrossRef]
- Galadima, A.; Muraza, O. Zeolite Catalysts in Upgrading of Bioethanol to Fuels Range Hydrocarbons: A Review. J. Ind. Eng. Chem. 2015, 31, 1–14. [Google Scholar] [CrossRef]
- Kagyrmanova, A.P.; Chumachenko, V.A.; Korotkikh, V.N.; Kashkin, V.N.; Noskov, A.S. Catalytic Dehydration of Bioethanol to Ethylene: Pilot-Scale Studies and Process Simulation. Chem. Eng. J. 2011, 176–177, 188–194. [Google Scholar] [CrossRef]
- Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.; Negro, M.J. Pretreatment Technologies for an Efficient Bioethanol Production Process Based on Enzymatic Hydrolysis: A Review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef]
- Groom, M.J.; Gray, E.M.; Townsend, P.A. Biofuels and Biodiversity: Principles for Creating Better Policies for Biofuel Production. Conserv. Biol. 2008, 22, 602–609. [Google Scholar] [CrossRef]
- Samantaray, B.; Mohapatra, S.; Mishra, R.R.; Behera, B.C.; Thatoi, H. Bioethanol Production from Agro-Wastes: A Comprehensive Review with a Focus on Pretreatment, Enzymatic Hydrolysis, and Fermentation. Int. J. Green Energy 2024, 21, 1398–1424. [Google Scholar] [CrossRef]
- Niphadkar, S.; Bagade, P.; Ahmed, S. Bioethanol Production: Insight into Past, Present and Future Perspectives. Biofuels 2018, 9, 229–238. [Google Scholar] [CrossRef]
- Sanchez, N.; Cobo, M.; Rodriguez-Fontalvo, D.; Uribe-Laverde, M.Á.; Ruiz-Pardo, R.Y. Bioethanol Production from Sugarcane Press-Mud: Assessment of the Fermentation Conditions to Reduce Fusel Alcohol. Fermentation 2021, 7, 194. [Google Scholar] [CrossRef]
- Li, X.; Kant, A.; He, Y.; Thakkar, H.V.; Atanga, M.A.; Rezaei, F.; Ludlow, D.K.; Rownaghi, A.A. Light Olefins from Renewable Resources: Selective Catalytic Dehydration of Bioethanol to Propylene over Zeolite and Transition Metal Oxide Catalysts. Catal. Today 2016, 276, 62–77. [Google Scholar] [CrossRef]
- Shinke, Y.; Miyazawa, T.; Hiza, M.; Nakamura, I.; Fujitani, T. High-Throughput Development of Highly Active Catalyst System to Convert Bioethanol to 1,3-Butadiene. React. Chem. Eng. 2021, 6, 1381–1385. [Google Scholar] [CrossRef]
- Wang, X.; Lü, X. More than Biofuels. In Advances in 2nd Generation of Bioethanol Production; Elsevier: Amsterdam, The Netherlands, 2021; pp. 31–51. ISBN 978-0-12-818862-0. [Google Scholar]
- Tret’yakov, V.F.; Makarfi, Y.I.; Tret’yakov, K.V.; Frantsuzova, N.A.; Talyshinskii, R.M. The Catalytic Conversion of Bioethanol to Hydrocarbon Fuel: A Review and Study. Catal. Ind. 2010, 2, 402–420. [Google Scholar] [CrossRef]
- Ni, M.; Leung, D.Y.C.; Leung, M.K.H. A Review on Reforming Bio-Ethanol for Hydrogen Production. Int. J. Hydrogen Energy 2007, 32, 3238–3247. [Google Scholar] [CrossRef]
- Palanisamy, A.; Soundarrajan, N.; Ramasamy, G. Analysis on Production of Bioethanol for Hydrogen Generation. Environ. Sci. Pollut. Res. 2021, 28, 63690–63705. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Zhu, L.; Wu, Q.; Chen, C.; Wang, X.; Ji, Y.; Meng, X.; Xiao, F. Solvent-Free Synthesis of Zeolite Crystals Encapsulating Gold–Palladium Nanoparticles for the Selective Oxidation of Bioethanol. ChemSusChem 2015, 8, 2867–2871. [Google Scholar] [CrossRef]
- Chaipornchalerm, P.; Prasertsab, A.; Prasanseang, W.; Wattanakit, C. Perspectives on Recent Advances in Hierarchical Zeolites for Bioethanol Conversion to Chemicals, Jet Fuels, and Carbon Nanotubes. Energy Fuels 2024, 38, 13612–13636. [Google Scholar] [CrossRef]
- Frosi, M.; Tripodi, A.; Conte, F.; Ramis, G.; Mahinpey, N.; Rossetti, I. Ethylene from Renewable Ethanol: Process Optimization and Economic Feasibility Assessment. J. Ind. Eng. Chem. 2021, 104, 272–285. [Google Scholar] [CrossRef]
- Becerra, J.; Quiroga, E.; Tello, E.; Figueredo, M.; Cobo, M. Kinetic Modeling of Polymer-Grade Ethylene Production by Diluted Ethanol Dehydration over H-ZSM-5 for Industrial Design. J. Environ. Chem. Eng. 2018, 6, 6165–6174. [Google Scholar] [CrossRef]
- Vaud, S.; Pearcy, N.; Hanževački, M.; Van Hagen, A.M.W.; Abdelrazig, S.; Safo, L.; Ehsaan, M.; Jonczyk, M.; Millat, T.; Craig, S.; et al. Engineering Improved Ethylene Production: Leveraging Systems Biology and Adaptive Laboratory Evolution. Metab. Eng. 2021, 67, 308–320. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Gil, E.A.; Agrawal, R. Internally Heated Crackers for Decarbonization and Optimization of Ethylene Production. Syst. Control. Trans. 2024, 3, 883–891. [Google Scholar]
- Chauhan, R.; Sartape, R.; Minocha, N.; Goyal, I.; Singh, M.R. Advancements in Environmentally Sustainable Technologies for Ethylene Production. Energy Fuels 2023, 37, 12589–12622. [Google Scholar] [CrossRef]
- Karaba, A.; Dvořáková, V.; Patera, J.; Zámostný, P. Improving the Steam-Cracking Efficiency of Naphtha Feedstocks by Mixed/Separate Processing. J. Anal. Appl. Pyrolysis 2020, 146, 104768. [Google Scholar] [CrossRef]
- Mynko, O.; Amghizar, I.; Brown, D.J.; Chen, L.; Marin, G.B.; De Alvarenga, R.F.; Uslu, D.C.; Dewulf, J.; Van Geem, K.M. Reducing CO2 Emissions of Existing Ethylene Plants: Evaluation of Different Revamp Strategies to Reduce Global CO2 Emission by 100 Million Tonnes. J. Clean. Prod. 2022, 362, 132127. [Google Scholar] [CrossRef]
- González Rebordinos, J.; Herce, C.; González-Espinosa, A.; Gil, M.; Cortés, C.; Brunet, F.; Ferré, L.; Arias, A. Evaluation of Retrofitting of an Industrial Steam Cracking Furnace by Means of CFD Simulations. Appl. Therm. Eng. 2019, 162, 114206. [Google Scholar] [CrossRef]
- Rohatgi, N.K.; Ingham, J.D. Conversion of Bioprocess Ethanol to Industrial Chemical Products: Applications of Process Models for Energy-Economic Assessments. Appl. Biochem. Biotechnol. 1992, 34–35, 515–526. [Google Scholar] [CrossRef]
- Deng, Y.; Batmunkh, M.; Ye, L.; Song, C.; Ge, T.; Xu, Y.; Mu, X.; Liu, W.; Jin, X.; Wong, P.K.; et al. Integrated Full-Spectrum Solar Energy Catalysis for Zero-Emission Ethylene Production from Bioethanol. Adv. Funct. Mater. 2022, 32, 2110026. [Google Scholar] [CrossRef]
- Takahara, I.; Saito, M.; Inaba, M.; Murata, K. Dehydration of Ethanol into Ethylene over Solid Acid Catalysts. Catal. Lett. 2005, 105, 249–252. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, Y. Dehydration of Ethanol to Ethylene. Ind. Eng. Chem. Res. 2013, 52, 9505–9514. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, B.; Yuan, H.; Sun, Y.; Yang, D.; Cui, X.; Shi, F. The Catalytic Dehydrogenation of Ethanol by Heterogeneous Catalysts. Catal. Sci. Technol. 2021, 11, 1652–1664. [Google Scholar] [CrossRef]
- Fan, D.; Dai, D.-J.; Wu, H.-S. Ethylene Formation by Catalytic Dehydration of Ethanol with Industrial Considerations. Materials 2012, 6, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.B.; Quang, T.L.N.; Quang, L.N. Ethylene Production via Ethanol Dehydration over Desilicated ZSM-5 Catalyst. Vietnam J. Catal. Adsorp. 2021, 10, 79–83. [Google Scholar] [CrossRef]
- Varisli, D.; Dogu, T.; Dogu, G. Ethylene and Diethyl-Ether Production by Dehydration Reaction of Ethanol over Different Heteropolyacid Catalysts. Chem. Eng. Sci. 2007, 62, 5349–5352. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, R.; Yang, X.; Zhang, F. Comparison of Four Catalysts in the Catalytic Dehydration of Ethanol to Ethylene. Microporous Mesoporous Mater. 2008, 116, 210–215. [Google Scholar] [CrossRef]
- Chizallet, C.; Bouchy, C.; Larmier, K.; Pirngruber, G. Molecular Views on Mechanisms of Brønsted Acid-Catalyzed Reactions in Zeolites. Chem. Rev. 2023, 123, 6107–6196. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, N.; Yu, J. Advances in Catalytic Applications of Zeolite-Supported Metal Catalysts. Adv. Mater. 2021, 33, 2104442. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, S.; Yu, J. Metal Sites in Zeolites: Synthesis, Characterization, and Catalysis. Chem. Rev. 2023, 123, 6039–6106. [Google Scholar] [CrossRef]
- Derbe, T.; Temesgen, S.; Bitew, M. A Short Review on Synthesis, Characterization, and Applications of Zeolites. Adv. Mater. Sci. Eng. 2021, 2021, 6637898. [Google Scholar] [CrossRef]
- Serati-Nouri, H.; Jafari, A.; Roshangar, L.; Dadashpour, M.; Pilehvar-Soltanahmadi, Y.; Zarghami, N. Biomedical Applications of Zeolite-Based Materials: A Review. Mater. Sci. Eng. C 2020, 116, 111225. [Google Scholar] [CrossRef]
- Han, Y.; Li, Y.; Yu, J.; Xu, R. A Gallogermanate Zeolite Constructed Exclusively by Three-Ring Building Units. Angew. Chem. Int. Ed. 2011, 50, 3003–3005. [Google Scholar] [CrossRef]
- Muraoka, K.; Chaikittisilp, W.; Okubo, T. Energy Analysis of Aluminosilicate Zeolites with Comprehensive Ranges of Framework Topologies, Chemical Compositions, and Aluminum Distributions. J. Am. Chem. Soc. 2016, 138, 6184–6193. [Google Scholar] [CrossRef] [PubMed]
- Ducamp, M.; Coudert, F.-X. Systematic Study of the Thermal Properties of Zeolitic Frameworks. J. Phys. Chem. C 2021, 125, 15647–15658. [Google Scholar] [CrossRef]
- Ghobarkar, H.; Schäf, O.; Massiani, Y.; Knauth, P. General Description of the Zeolites. In The Reconstruction of Natural Zeolites; Springer: Boston, MA, USA, 2003; pp. 6–18. ISBN 978-1-4613-4807-8. [Google Scholar]
- Pornsetmetakul, P.; Klinyod, S.; Rodaum, C.; Salakhum, S.; Iadrat, P.; Hensen, E.J.M.; Wattanakit, C. Fine-Tuning Texture of Highly Acidic HZSM-5 Zeolite for Efficient Ethanol Dehydration. ChemCatChem 2023, 15, e202201387. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, S.; Hong, S.B. Nanocrystalline H-RTH Zeolite: An Efficient Catalyst for the Low-Temperature Dehydration of Ethanol to Ethene. ChemSusChem 2018, 11, 2035–2039. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kim, Y.H.; Kim, B.C.; Endo, A.; Thongprachan, N.; Ohmori, T. Adsorption Characteristics of Zeolites for Dehydration of Ethanol: Evaluation of Diffusivity of Water in Porous Structure. Chem. Eng. J. 2012, 181–182, 443–448. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Wu, H.-S. Ethylene Formation from Ethanol Dehydration Using ZSM-5 Catalyst. ACS Omega 2017, 2, 4287–4296. [Google Scholar] [CrossRef]
- Tarach, K.A.; Tekla, J.; Filek, U.; Szymocha, A.; Tarach, I.; Góra-Marek, K. Alkaline-Acid Treated Zeolite L as Catalyst in Ethanol Dehydration Process. Microporous Mesoporous Mater. 2017, 241, 132–144. [Google Scholar] [CrossRef]
- Ketkaew, M.; Klinyod, S.; Saenluang, K.; Rodaum, C.; Thivasasith, A.; Kidkhunthod, P.; Wattanakit, C. Fine-Tuning the Chemical State and Acidity of Ceria Incorporated in Hierarchical Zeolites for Ethanol Dehydration. Chem. Commun. 2020, 56, 11394–11397. [Google Scholar] [CrossRef]
- Kamsuwan, T.; Praserthdam, P.; Jongsomjit, B. Diethyl Ether Production during Catalytic Dehydration of Ethanol over Ru- and Pt- Modified H-Beta Zeolite Catalysts. J. Oleo Sci. 2017, 66, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, J.; Su, Z.; Wang, P.; Tan, T.; Xiao, F.-S. Low-Temperature Dehydration of Ethanol to Ethylene over Cu–Zeolite Catalysts Synthesized from Cu–Tetraethylenepentamine. Ind. Eng. Chem. Res. 2020, 59, 17300–17306. [Google Scholar] [CrossRef]
- Saini, S.; Verma, A.; Sharma, B.; Singh, V.; Oluokun, T.; Viswanadham, N.; Ray, A.; Kumar, U. Ni and Sr Modified ZSM-5 Catalyst with Enhanced Catalytic Activity for Selective Dehydration of Bio-Derived Ethanol to Ethylene. Mol. Catal. 2023, 551, 113587. [Google Scholar] [CrossRef]
- Kamsuwan, T.; Jongsomjit, B. Characterization of Different Si- and Al-Based Catalysts with Pd Modification and Their Use for Catalytic Dehydration of Ethanol. J. Oleo Sci. 2018, 67, 1005–1014. [Google Scholar] [CrossRef]
- Almohalla, M.; Gallegos-Suarez, E.; Arcoya, A.; Rodríguez-Ramos, I.; Guerrero-Ruiz, A. Comparative Study of Bioethanol Transformation Catalyzed by Ru or Pt Nanoparticles Supported on KL Zeolite. Catal. Sci. Technol. 2016, 6, 521–529. [Google Scholar] [CrossRef]
- Lin, L.; Cao, P.; Pang, J.; Wang, Z.; Jiang, Q.; Su, Y.; Chen, R.; Wu, Z.; Zheng, M.; Luo, W. Zeolite-Encapsulated Cu Nanoparticles with Enhanced Performance for Ethanol Dehydrogenation. J. Catal. 2022, 413, 565–574. [Google Scholar] [CrossRef]
- Chen, B.; Lu, J.; Wu, L.; Chao, Z. Dehydration of Bio-Ethanol to Ethylene over Iron Exchanged HZSM-5. Chin. J. Catal. 2016, 37, 1941–1948. [Google Scholar] [CrossRef]
- Xia, W.; Wang, J.; Wang, L.; Qian, C.; Ma, C.; Huang, Y.; Fan, Y.; Hou, M.; Chen, K. Ethylene and Propylene Production from Ethanol over Sr/ZSM-5 Catalysts: A Combined Experimental and Computational Study. Appl. Catal. B Environ. 2021, 294, 120242. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Y.; Tao, L.; Dai, B.; Yang, M.; Chen, Z.; Zhu, X. Dehydration Reaction of Bio-Ethanol to Ethylene over Modified SAPO Catalysts. J. Ind. Eng. Chem. 2010, 16, 717–722. [Google Scholar] [CrossRef]
- Sarve, D.T.; Singh, S.K.; Ekhe, J.D. Ethanol Dehydration to Diethyl Ether over ZSM-5 and β-Zeolite Supported Ni W Catalyst. Inorg. Chem. Commun. 2022, 139, 109397. [Google Scholar] [CrossRef]
- Ouyang, J.; Kong, F.; Su, G.; Hu, Y.; Song, Q. Catalytic Conversion of Bio-Ethanol to Ethylene over La-Modified HZSM-5 Catalysts in a Bioreactor. Catal. Lett. 2009, 132, 64–74. [Google Scholar] [CrossRef]
- Phung, T.K.; Busca, G. Diethyl Ether Cracking and Ethanol Dehydration: Acid Catalysis and Reaction Paths. Chem. Eng. J. 2015, 272, 92–101. [Google Scholar] [CrossRef]
- Masih, D.; Rohani, S.; Kondo, J.N.; Tatsumi, T. Catalytic Dehydration of Ethanol-to-Ethylene over Rho Zeolite under Mild Reaction Conditions. Microporous Mesoporous Mater. 2019, 282, 91–99. [Google Scholar] [CrossRef]
- Iadrat, P.; Yomthong, K.; Rodaum, C.; Pornsetmetakul, P.; Thivasasith, A.; Prasertsab, A.; Fan, X.; Sooknoi, T.; Wattanakit, C. Effects of Zeolite Frameworks and Hierarchical Structures on Catalytic Bioethanol Dehydration: In-Situ DRIFTS and DFT Studies. Fuel 2023, 338, 127208. [Google Scholar] [CrossRef]
- Sujeerakulkai, S.; Jitkarnka, S. Bio-Ethanol Dehydration to Hydrocarbons Using Ga2O3/Beta Zeolites with Various Si/Al2 Ratios. Chem. Eng. Trans. 2014, 39, 967–972. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, C.; Chu, Y.; Xu, J.; Wang, Q.; Qi, G.; Zhao, X.; Feng, N.; Deng, F. Observation of an Oxonium Ion Intermediate in Ethanol Dehydration to Ethene on Zeolite. Nat. Commun. 2019, 10, 1961. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Ma, C.; Huang, Y.; Li, S.; Wang, X.; Chen, K.; Liu, D. Bioethanol Conversion into Propylene over Various Zeolite Catalysts: Reaction Optimization and Catalyst Deactivation. Nanomaterials 2022, 12, 2746. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, Z.; Lobo, R.F.; Xu, B. Site Diversity and Mechanism of Metal-Exchanged Zeolite Catalyzed Non-Oxidative Propane Dehydrogenation. Adv. Sci. 2023, 10, 2207756. [Google Scholar] [CrossRef]
- Narula, C.K.; Li, Z.; Casbeer, E.M.; Geiger, R.A.; Moses-Debusk, M.; Keller, M.; Buchanan, M.V.; Davison, B.H. Heterobimetallic Zeolite, InV-ZSM-5, Enables Efficient Conversion of Biomass Derived Ethanol to Renewable Hydrocarbons. Sci. Rep. 2015, 5, 16039. [Google Scholar] [CrossRef]
- Gao, K.; Mielby, J.; Kegnæs, S. Catalytic Dehydrogenation of Ethanol over Zinc-Containing Zeolites. Catal. Today 2022, 405–406, 144–151. [Google Scholar] [CrossRef]
- Wu, Q.; Luan, H.; Xiao, F.-S. Theoretical Design for Zeolite Synthesis. Sci. China Chem. 2022, 65, 1683–1690. [Google Scholar] [CrossRef]
- Bae, J.; Plessers, D.; Ivanushkin, G.; Bugaev, A.; McCusker, L.B.; Dusselier, M. Zeolite Structure Direction: Metals with a Dual Role as Amine Coordinators and Siloxy Connectors. Adv. Mater. 2025, 2504932. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Zhong, Y.; Xie, Q.; Chen, N. Two-Step Hydrothermal Synthesis and Conversion Mechanism of Zeolite X from Stellerite Zeolite. RSC Adv. 2022, 12, 3313–3321. [Google Scholar] [CrossRef]
- Su, S.; Ma, H.; Chuan, X. Hydrothermal Synthesis of Zeolite A from K-Feldspar and Its Crystallization Mechanism. Adv. Powder Technol. 2016, 27, 139–144. [Google Scholar] [CrossRef]
- Tosheva, L.; Valtchev, V.P. Nanozeolites: Synthesis, Crystallization Mechanism, and Applications. Chem. Mater. 2005, 17, 2494–2513. [Google Scholar] [CrossRef]
- Knyazeva, E.E.; Ivanova, I.I. Synthesis of Nanoscale Zeolites. Pet. Chem. 2019, 59, 262–274. [Google Scholar] [CrossRef]
- Mallette, A.J.; Seo, S.; Rimer, J.D. Synthesis Strategies and Design Principles for Nanosized and Hierarchical Zeolites. Nat. Synth. 2022, 1, 521–534. [Google Scholar] [CrossRef]
- Qiao, Z.-A.; Huo, Q.-S. Synthetic Chemistry of the Inorganic Ordered Porous Materials. In Modern Inorganic Synthetic Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; pp. 389–428. ISBN 978-0-444-63591-4. [Google Scholar]
- Hould, N.; Haouas, M.; Nikolakis, V.; Taulelle, F.; Lobo, R. Mechanisms of Quick Zeolite Beta Crystallization. Chem. Mater. 2012, 24, 3621–3632. [Google Scholar] [CrossRef]
- Bertolazzo, A.A.; Dhabal, D.; Molinero, V. Polymorph Selection in Zeolite Synthesis Occurs after Nucleation. J. Phys. Chem. Lett. 2022, 13, 977–981. [Google Scholar] [CrossRef]
- Koohsaryan, E.; Anbia, M. Nanosized and Hierarchical Zeolites: A Short Review. Chin. J. Catal. 2016, 37, 447–467. [Google Scholar] [CrossRef]
- Cundy, C.S.; Cox, P.A. The Hydrothermal Synthesis of Zeolites: Precursors, Intermediates and Reaction Mechanism. Microporous Mesoporous Mater. 2005, 82, 1–78. [Google Scholar] [CrossRef]
- Wu, T.-L.; Chen, Y.-H.; Hsu, W.-D. Phase Transition Pathway of Hydrothermal Zeolite Synthesis. Phys. Chem. Miner. 2021, 48, 1. [Google Scholar] [CrossRef]
- Xia, H. Monomolecular Dehydration of Ethanol into Ethylene over H-MOR Studied by Density Functional Theory. ACS Omega 2020, 5, 9707–9713. [Google Scholar] [CrossRef] [PubMed]
- Soh, J.C.; Chong, S.L.; Cheng, C.K. Ethylene Production from Ethanol Dehydration over Zeolite Y Under Mild Conditions. In Proceedings of the March 2017 Singapore International Conferences, EAP, Singapore, 27 March 2017. [Google Scholar]
- Kamsuwan, T.; Jongsomjit, B. A Comparative Study of Different Al-Based Solid Acid Catalysts for Catalytic Dehydration of Ethanol. Eng. J. 2016, 20, 63–75. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Xiao, F.-S. Metal@Zeolite Hybrid Materials for Catalysis. ACS Cent. Sci. 2020, 6, 1685–1697. [Google Scholar] [CrossRef]
- Yuan, C.; Liu, H.; Zhang, Z.; Lu, H.; Zhu, Q.; Chen, Y. Alkali-Metal-Modified ZSM-5 Zeolites for Improvement of Catalytic Dehydration of Lactic Acid to Acrylic Acid. Chin. J. Catal. 2015, 36, 1861–1866. [Google Scholar] [CrossRef]
- Chiosso, M.E.; Crespo, I.; Merlo, A.B.; Valle, B. Metal-Doped HZSM-5 Zeolite Catalysts for Catalytic Cracking of Raw Bio-Oil: Exploring Activity toward Value-Added Products. Catalysts 2023, 13, 1198. [Google Scholar] [CrossRef]
- Sugiarti, S.; Septian, D.D.; Maigita, H.; Khoerunnisa, N.A.; Hasanah, S.; Wukirsari, T.; Hanif, N.; Apriliyanto, Y.B. Investigation of H-Zeolite and Metal-Impregnated Zeolites as Transformation Catalysts of Glucose to Hydroxymethylfurfural. In Proceedings of the 8th International Conference of the Indonesian Chemical Society (ICICS) 2019, Bogor, Indonesia, 6–7 August 2019; p. 020027. [Google Scholar]
- Kristiani, A.; Sudiyarmanto, S.; Aulia, F.; Nurul Hidayati, L.; Abimanyu, H. Metal Supported on Natural Zeolite as Catalysts for Conversion of Ethanol to Gasoline. MATEC Web Conf. 2017, 101, 01001. [Google Scholar] [CrossRef]
- Potter, M.E.; Armstrong, L.-M.; Raja, R. Combining Catalysis and Computational Fluid Dynamics towards Improved Process Design for Ethanol Dehydration. Catal. Sci. Technol. 2018, 8, 6163–6172. [Google Scholar] [CrossRef]
- Cheng, Y.W.; Chong, C.C.; Cheng, C.K.; Ng, K.H.; Witoon, T.; Juan, J.C. Ethylene Production from Ethanol Dehydration over Mesoporous SBA-15 Catalyst Derived from Palm Oil Clinker Waste. J. Clean. Prod. 2020, 249, 119323. [Google Scholar] [CrossRef]
- Yao, J.; Liu, S.; Chen, G.; Yi, W.; Liu, J. Enhanced Bioethanol-to-Ethylene Performance over Nanosized Sheet-like M-SAPO-34 (M = Sr and K) Catalysts. Microporous Mesoporous Mater. 2022, 338, 111980. [Google Scholar] [CrossRef]
- Palčić, A.; Valtchev, V. Analysis and Control of Acid Sites in Zeolites. Appl. Catal. A Gen. 2020, 606, 117795. [Google Scholar] [CrossRef]
- Wang, S.; He, Y.; Jiao, W.; Wang, J.; Fan, W. Recent Experimental and Theoretical Studies on Al Siting/Acid Site Distribution in Zeolite Framework. Curr. Opin. Chem. Eng. 2019, 23, 146–154. [Google Scholar] [CrossRef]
- Shamzhy, M.; Opanasenko, M.; Concepción, P.; Martínez, A. New Trends in Tailoring Active Sites in Zeolite-Based Catalysts. Chem. Soc. Rev. 2019, 48, 1095–1149. [Google Scholar] [CrossRef]
- Yarulina, I.; De Wispelaere, K.; Bailleul, S.; Goetze, J.; Radersma, M.; Abou-Hamad, E.; Vollmer, I.; Goesten, M.; Mezari, B.; Hensen, E.J.M.; et al. Structure–Performance Descriptors and the Role of Lewis Acidity in the Methanol-to-Propylene Process. Nat. Chem. 2018, 10, 804–812. [Google Scholar] [CrossRef]
- Ouayloul, L.; El Doukkali, M.; Jiao, M.; Dumeignil, F.; Agirrezabal-Telleria, I. New Mechanistic Insights into the Role of Water in the Dehydration of Ethanol into Ethylene over ZSM-5 Catalysts at Low Temperature. Green Chem. 2023, 25, 3644–3659. [Google Scholar] [CrossRef]
- Oluokun, T.; Saini, S.; Verma, A.; Sharma, B.; Konathala, S.; Vorontsov, A.; Smirniotis, P.G.; Babalola, J.O.; Kumar, U. Green Ethylene Production from Bio-Ethanol with Acidity Controlled Barium Exchanged Zeolite Y Catalyst. Mol. Catal. 2024, 566, 114415. [Google Scholar] [CrossRef]
- Sarve, D.T.; Singh, S.K.; Ekhe, J.D. Kinetic and Mechanistic Study of Ethanol Dehydration to Diethyl Ether over Ni-ZSM-5 in a Closed Batch Reactor. React. Kinet. Mech. Cat. 2020, 131, 261–281. [Google Scholar] [CrossRef]
- De Oliveira, T.K.R.; Rosset, M.; Perez-Lopez, O.W. Ethanol Dehydration to Diethyl Ether over Cu-Fe/ZSM-5 Catalysts. Catal. Commun. 2018, 104, 32–36. [Google Scholar] [CrossRef]
- Bi, J.; Liu, M.; Song, C.; Wang, X.; Guo, X. C2–C4 Light Olefins from Bioethanol Catalyzed by Ce-Modified Nanocrystalline HZSM-5 Zeolite Catalysts. Appl. Catal. B Environ. 2011, 107, 68–76. [Google Scholar] [CrossRef]
- Sukkatorn, P.; Watcharamaisakul, S.; Junpirom, S. Ethanol Dehydration to Diethyl Ether Over Cu Suz-4 Zeolite and Fe Suz-4 Zeolite. 2024. Available online: https://ssrn.com/abstract=5017277 (accessed on 19 August 2025).
- Bai, T.; Li, X.; Ding, L.; Wang, J.; Xiao, Y.-S.; Cao, B. Direct Conversion of Ethanol to Propylene over Zn-Modified HBeta Zeolite: Influence of Zinc Precursors. Catalysts 2024, 14, 276. [Google Scholar] [CrossRef]
- Costa, R.D.S.; Cavalcante, R.M.; Silva, M.A.P.D. Effects of Adding Metals to Beta Zeolite on Ethanol Conversion to Hydrocarbons. Catal. Today 2025, 445, 115048. [Google Scholar] [CrossRef]
- Anekwe, I.M.S.; Oboirien, B.; Isa, Y.M. Catalytic Conversion of Bioethanol over Cobalt and Nickel-doped HZSM -5 Zeolite Catalysts. Biofuels Bioprod. Bioref. 2024, 18, 686–700. [Google Scholar] [CrossRef]
- Gayubo, A.G.; Alonso, A.; Valle, B.; Aguayo, A.T.; Olazar, M.; Bilbao, J. Hydrothermal Stability of HZSM-5 Catalysts Modified with Ni for the Transformation of Bioethanol into Hydrocarbons. Fuel 2010, 89, 3365–3372. [Google Scholar] [CrossRef]
- Wu, L.; Li, X.; Yuan, Z.; Chen, Y. Fabrication and Characterization of Titanate Nanotube Supported ZSM-5 Zeolite Composite Catalyst for Ethanol Dehydration to Ethylene. Bull. Korean Chem. Soc. 2014, 35, 525–530. [Google Scholar] [CrossRef]
- Knozinger, H.; Kohne, R. The Dehydration of Alcohols over Alumina: I. The Reaction Scheme. J. Catal. 1966, 5, 264–270. [Google Scholar] [CrossRef]
- Knözinger, H. Dehydration of Alcohols on Aluminum Oxide. Angew. Chem. Int. Ed. Engl. 1968, 7, 791–805. [Google Scholar] [CrossRef]
- Báfero, G.B.; Rodrigues, M.V.; Munsignatti, E.C.O.; Pastore, H.O. Low Temperature Ethanol Dehydration Performed by MOR Catalysts Obtained from 2D–3D Transformation. Catal. Today 2022, 394–396, 458–466. [Google Scholar] [CrossRef]
- Ouayloul, L.; Agirrezabal-Telleria, I.; Arias, P.L.; Dumeignil, F.; Doukkali, M.E. Tuning the Acid Nature of the ZSM-5 Surface for Selective Production of Ethylene from Ethanol at Low Temperatures. Energy Fuels 2024, 38, 4492–4503. [Google Scholar] [CrossRef]
- Iadrat, P.; Horii, N.; Atithep, T.; Wattanakit, C. Effect of Pore Connectivity of Pore-Opened Hierarchical MOR Zeolites on Catalytic Behaviors and Coke Formation in Ethanol Dehydration. ACS Appl. Mater. Interfaces 2021, 13, 8294–8305. [Google Scholar] [CrossRef]
- Van der Borght, K.; Galvita, V.V.; Marin, G.B. Ethanol to Higher Hydrocarbons over Ni, Ga, Fe-Modified ZSM-5: Effect of Metal Content. Appl. Catal. A Gen. 2015, 492, 117–126. [Google Scholar] [CrossRef]
- Kadam, S.A.; Shamzhy, M.V. IR Operando Study of Ethanol Dehydration over MFI Zeolite. Catal. Today 2018, 304, 51–57. [Google Scholar] [CrossRef]
- Ochoa, A.; Bilbao, J.; Gayubo, A.G.; Castaño, P. Coke Formation and Deactivation during Catalytic Reforming of Biomass and Waste Pyrolysis Products: A Review. Renew. Sustain. Energy Rev. 2020, 119, 109600. [Google Scholar] [CrossRef]
- Styskalik, A.; Vykoukal, V.; Fusaro, L.; Aprile, C.; Debecker, D.P. Mildly Acidic Aluminosilicate Catalysts for Stable Performance in Ethanol Dehydration. Appl. Catal. B Environ. 2020, 271, 118926. [Google Scholar] [CrossRef]
- Montero, C.; Ochoa, A.; Castaño, P.; Bilbao, J.; Gayubo, A.G. Monitoring Ni0 and Coke Evolution during the Deactivation of a Ni/La2O3–αAl2O3 Catalyst in Ethanol Steam Reforming in a Fluidized Bed. J. Catal. 2015, 331, 181–192. [Google Scholar] [CrossRef]
- Machado, N.; Calsavara, V.; Astrath, N.; Matsuda, C.; Paesanojunior, A.; Baesso, M. Obtaining Hydrocarbons from Ethanol over Iron-Modified ZSM-5 Zeolites. Fuel 2005, 84, 2064–2070. [Google Scholar] [CrossRef]
- Anekwe, I.M.S.; Chetty, M.; Khotseng, L.; Kiambi, S.L.; Maharaj, L.; Oboirien, B.; Isa, Y.M. Stability, Deactivation and Regeneration Study of a Newly Developed HZSM-5 and Ni-Doped HZSM-5 Zeolite Catalysts for Ethanol-to-Hydrocarbon Conversion. Catal. Commun. 2024, 186, 106802. [Google Scholar] [CrossRef]
- Demuner, R.B.; Soares Santos Maia, J.G.; Secchi, A.R.; Melo, P.A.; Do Carmo, R.W.; Gusmão, G.S. Modeling of Catalyst Deactivation in Bioethanol Dehydration Reactor. Ind. Eng. Chem. Res. 2019, 58, 2717–2726. [Google Scholar] [CrossRef]
- Anekwe, I.M.S.; Oboirien, B.; Isa, Y.M. Effects of Transition Metal Doping on the Properties and Catalytic Performance of ZSM-5 Zeolite Catalyst on Ethanol-to-Hydrocarbons Conversion. Fuel Commun. 2024, 18, 100101. [Google Scholar] [CrossRef]
- Daligaux, V.; Richard, R.; Manero, M.-H. Deactivation and Regeneration of Zeolite Catalysts Used in Pyrolysis of Plastic Wastes—A Process and Analytical Review. Catalysts 2021, 11, 770. [Google Scholar] [CrossRef]
- Meng, X.; Xiao, F.-S. Green Routes for Synthesis of Zeolites. Chem. Rev. 2014, 114, 1521–1543. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, X.; Qi, G.; Guo, Q.; Pan, S.; Meng, X.; Xu, J.; Deng, F.; Fan, F.; Feng, Z.; et al. Sustainable Synthesis of Zeolites without Addition of Both Organotemplates and Solvents. J. Am. Chem. Soc. 2014, 136, 4019–4025. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Zhang, S.; Gao, H.; Wen, D. Metal-Modified Zeolites for Catalytic Dehydration of Bioethanol to Ethylene: Mechanisms, Preparation, and Performance. Catalysts 2025, 15, 791. https://doi.org/10.3390/catal15080791
Ma H, Zhang S, Gao H, Wen D. Metal-Modified Zeolites for Catalytic Dehydration of Bioethanol to Ethylene: Mechanisms, Preparation, and Performance. Catalysts. 2025; 15(8):791. https://doi.org/10.3390/catal15080791
Chicago/Turabian StyleMa, Hailong, Shiwen Zhang, Hui Gao, and Dongsheng Wen. 2025. "Metal-Modified Zeolites for Catalytic Dehydration of Bioethanol to Ethylene: Mechanisms, Preparation, and Performance" Catalysts 15, no. 8: 791. https://doi.org/10.3390/catal15080791
APA StyleMa, H., Zhang, S., Gao, H., & Wen, D. (2025). Metal-Modified Zeolites for Catalytic Dehydration of Bioethanol to Ethylene: Mechanisms, Preparation, and Performance. Catalysts, 15(8), 791. https://doi.org/10.3390/catal15080791