Recent Progress in Catalytically Driven Advanced Oxidation Processes for Wastewater Treatment
Abstract
1. Introduction
2. Research Progress on Major AOPs
2.1. Fenton Advanced Oxidation Process
2.1.1. Heterogeneous Fenton Process
2.1.2. Photo-Fenton Process
2.1.3. Electro-Fenton Process
2.1.4. Photoelectro-Fenton Process
2.1.5. Heterogeneous Electro-Fenton Process
2.2. Ozone-Based Advanced Oxidation Processes
2.2.1. Ozonation and UV Radiation
2.2.2. O3/H2O2 Process
2.2.3. Catalytic Ozonation
Homogeneous Catalytic Ozonation
Heterogeneous Catalytic Ozonation
2.3. Persulfate-Based Advanced Oxidation Processes
2.3.1. Thermal Activation
2.3.2. Ultraviolet Activation
2.3.3. Ultrasonic Activation
2.3.4. Electrochemical Activation
2.3.5. Alkali Activation
2.4. Photocatalytic-Based Advanced Oxidation Process
2.5. Electrochemical-Based Advanced Oxidation Process
2.6. Sonochemical-Based Advanced Oxidation Process
3. Challenges and Perspectives
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Advanced oxidation processes | AOPs |
Pharmaceuticals and personal care products | PPCPs |
Endocrine-disrupting chemicals | EDCs |
Perfluorinated compounds | PFCs |
Reactive oxygen species | ROS |
Oxygen vacancies | OVs |
Chemical oxygen demand | COD |
Total organic carbon | TOC |
Volatile organic compounds | VOCs |
Boron-doped diamond | BDD |
Dissolved organic carbon | DOC |
Solar Photoelectro-Fenton | SPEF |
Photoelectro-Fenton Process | PEF |
Biochemical oxygen demand | BOD |
Aniline aerofloat | AAF |
Peroxymonosulfate | PMS |
Peroxydisulfate | PDS |
Tetrabromobisphenol A | TBBPA |
Electro-Fenton Process | EFP |
Cathodic Electro-Fenton process | EF-H2O2 |
Sacrificial anode Electro-Fenton process | EF-Feox |
Fe2+ recycling Electro-Fenton process | EF-Fere |
Combined cathodic and Fe2+ recycling Electro-Fenton process | EF-H2O2-Fere |
Clofibric acid | CA |
The Ultraviolet activation persulfate advanced oxidation process | UV/PS AOP |
The alkali-activated persulfate advanced oxidation process | AAPS-AOP |
References
- Kato, S.; Kansha, Y. Comprehensive review of industrial wastewater treatment techniques. Environ. Sci. Pollut. Res. 2024, 31, 51064–51097. [Google Scholar] [CrossRef] [PubMed]
- Kaswan, V.; Kaur, H. A comparative study of advanced oxidation processes for wastewater treatment. Water Pract. Technol. 2023, 18, 1233–1254. [Google Scholar] [CrossRef]
- Laizer, A.G.K.; Bidu, J.M.; Selemani, J.R.; Njau, K.N. Improving biological treatment of textile wastewater. Water Pract. Technol. 2022, 17, 456–468. [Google Scholar] [CrossRef]
- Preethi; Shanmugavel, S.P.; Kumar, G.; Yogalakshmi, K.N.; Gunasekaran, M.; Banu, J.R. Recent progress in mineralization of emerging contaminants by advanced oxidation process: A review. Environ. Pollut. 2024, 341, 122842. [Google Scholar] [CrossRef]
- Kanaujiya, D.K.; Paul, T.; Sinharoy, A.; Pakshirajan, K. Biological treatment processes for the removal of organic micropollutants from wastewater: A review. Curr. Pollut. Rep. 2019, 5, 112–128. [Google Scholar] [CrossRef]
- Nguyen, P.Y.; Carvalho, G.; Reis, M.A.M.; Oehmen, A. A review of the biotransformations of priority pharmaceuticals in biological wastewater treatment processes. Water Res. 2021, 188, 116446. [Google Scholar] [CrossRef]
- Rodriguez-Narvaez, O.M.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R. Treatment technologies for emerging contaminants in water: A review. Chem. Eng. J. 2017, 323, 361–380. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ. 2015, 532, 112–126. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, H.; Wei, K.; Liu, L.; Sun, M.; Zhou, M. Comprehensive analysis of research trends and prospects in electrochemical advanced oxidation processes (EAOPs) for wastewater treatment. Chemosphere 2023, 341, 140083. [Google Scholar] [CrossRef]
- Liu, S.; Lai, C.; Zhou, X.; Zhang, C.; Chen, L.; Yan, H.; Qin, L.; Huang, D.; Ye, H.; Chen, W.; et al. Peroxydisulfate activation by sulfur-doped ordered mesoporous carbon: Insight into the intrinsic relationship between defects and 1O2 generation. Water Res. 2022, 221, 118797. [Google Scholar] [CrossRef]
- Yang, S.; Sun, S.; Xie, Z.; Dong, Y.; Zhou, P.; Zhang, J.; Xiong, Z.; He, C.-S.; Mu, Y.; Lai, B. Comprehensive insight into the common organic radicals in advanced oxidation processes for water decontamination. Environ. Sci. Technol. 2024, 58, 19571–19583. [Google Scholar] [CrossRef]
- Wang, J.; Zhuan, R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci. Total Environ. 2020, 701, 135023. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, L.; Malato, S.; Antakyali, D.; Beretsou, V.G.; Đolić, M.B.; Gernjak, W.; Heath, E.; Ivancev-Tumbas, I.; Karaolia, P.; Lado Ribeiro, A.R.; et al. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci. Total Environ. 2019, 655, 986–1008. [Google Scholar] [CrossRef]
- Maniakova, G.; Rizzo, L. Pharmaceuticals degradation and pathogens inactivation in municipal wastewater: A comparison among UVC photo-Fenton with chelating agents, UVC/H2O2 and ozonation. J. Environ. Chem. Eng. 2023, 11, 111356. [Google Scholar] [CrossRef]
- Mohammed, S.; Prathish, K.P.; Jeeva, A.; Shukla, S. Integrated Fenton-like and ozonation based advanced oxidation processes for treatment of real-time textile effluent containing azo reactive dyes. Chemosphere 2024, 349, 140766. [Google Scholar] [CrossRef]
- Rayaroth, M.P.; Aravindakumar, C.T.; Shah, N.S.; Boczkaj, G. Advanced oxidation processes (AOPs) based wastewater treatment–unexpected nitration side reactions–a serious environmental issue: A review. Chem. Eng. J. 2022, 430, 133002. [Google Scholar] [CrossRef]
- Zhang, M.-H.; Dong, H.; Zhao, L.; Wang, D.-X.; Meng, D. A review on Fenton process for organic wastewater treatment based on optimization perspective. Sci. Total Environ. 2019, 670, 110–121. [Google Scholar] [CrossRef]
- Behrouzeh, M.; Abbasi, M.; Osfouri, S.; Dianat, M.J. Treatment of DMSO and DMAC wastewaters of various industries by employing Fenton process: Process performance and kinetics study. J. Environ. Chem. Eng. 2020, 8, 103597. [Google Scholar] [CrossRef]
- Guo, Q.; Zhu, W.; Yang, D.; Wang, X.; Li, Y.; Gong, C.; Yan, J.; Zhai, J.; Gao, X.; Luo, Y. A green solar photo-Fenton process for the degradation of carbamazepine using natural pyrite and organic acid with in-situ generated H2O2. Sci. Total Environ. 2021, 784, 147187. [Google Scholar] [CrossRef]
- Clarizia, L.; Russo, D.; Di Somma, I.; Marotta, R.; Andreozzi, R. Homogeneous photo-Fenton processes at near neutral pH: A review. Appl. Catal. B 2017, 209, 358–371. [Google Scholar] [CrossRef]
- Thomas, N.; Dionysiou, D.D.; Pillai, S.C. Heterogeneous Fenton catalysts: A review of recent advances. J. Hazard. Mater. 2021, 404, 124082. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, R.; Xi, Y.; Zhu, J.; Zhu, G.; He, H. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review. Appl. Catal. B 2019, 255, 117739. [Google Scholar] [CrossRef]
- Pramod, L.; Gandhimathi, R.; Lavanya, A.; Ramesh, S.T.; Nidheesh, P.V. Heterogeneous Fenton process coupled with microfiltration for the treatment of water with higher arsenic content. Chem. Eng. Commun. 2019, 207, 1646–1657. [Google Scholar] [CrossRef]
- Zhang, N.; Tsang, E.P.; Chen, J.; Fang, Z.; Zhao, D. Critical role of oxygen vacancies in heterogeneous Fenton oxidation over ceria-based catalysts. J. Colloid Interface Sci. 2020, 558, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, H.; Mozaffari, S.; Mousavi, S.H.; Aghabarari, B.; Abu-Zahra, N. Decolorization of wastewater by heterogeneous Fenton reaction using MnO2-Fe3O4/CuO hybrid catalysts. J. Environ. Chem. Eng. 2021, 9, 105091. [Google Scholar] [CrossRef]
- Pinedo-Hernández, S.; Sánchez-Mendieta, V.; Solache-Ríos, M.; Gutiérrez-Segura, E. Degradation of brilliant blue by heterogeneous Fenton and UV-Fenton processes. Water Air Soil Pollut. 2022, 233, 264. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, Y.; Shi, W.; Ruan, W.; Xie, L. Advanced treatment of pharmaceutical wastewater with foam fractionation coupled with heterogeneous Fenton. J. Water Process. Eng. 2023, 54, 104052. [Google Scholar] [CrossRef]
- Li, T.; Zhang, X.; Zhou, Y.; Yang, J.; Cheng, F.; Fang, D.; Liang, J.; Li, J.; Zhou, L. Enhanced dewatering extent of sludge by Fe3O4-driven heterogeneous Fenton. Waste Manag. 2024, 174, 666–673. [Google Scholar] [CrossRef]
- Zhou, H.; Li, M.; Chen, L.; Cheng, H.; Li, D.; Tang, C.; Yuan, J.; Xu, F. Degradation of TCH by Fe3O4/B4C catalyzed heterogeneous Fenton oxidation. J. Alloys Compd. 2024, 995, 174787. [Google Scholar] [CrossRef]
- Machado, F.; Teixeira, A.C.S.C.; Ruotolo, L.A.M. Critical review of Fenton and photo-Fenton wastewater treatment processes over the last two decades. Int. J. Environ. Sci. Technol. 2023, 20, 13995–14032. [Google Scholar] [CrossRef]
- Safa, S.; Mehrasbi, M.R. Investigating the photo-Fenton process for treating soil washing wastewater. J. Environ. Health Sci. Eng. 2019, 17, 779–787. [Google Scholar] [CrossRef]
- Poblete, R.; Cortes, E.; Maldonado, M.I. Fenton and solar photo-Fenton processes in the depuration of wastewater resulting from production of grape juice. A factorial design. J. Chem. Technol. Biotechnol. 2020, 95, 1329–1336. [Google Scholar] [CrossRef]
- Gou, Y.; Peng, L.; Xu, H.; Li, S.; Liu, C.; Wu, X.; Song, S.; Yang, C.; Song, K.; Xu, Y. Insights into the degradation mechanisms and pathways of cephalexin during homogeneous and heterogeneous photo-Fenton processes. Chemosphere 2021, 285, 131417. [Google Scholar] [CrossRef] [PubMed]
- Bousalah, D.; Zazoua, H.; Boudjemaa, A.; Benmounah, A.; Bachari, K. Degradation of Indigotine food dye by Fenton and photo-Fenton processes. Int. J. Environ. Anal. Chem. 2020, 102, 4609–4622. [Google Scholar] [CrossRef]
- Parra-Enciso, C.; Avila, B.S.; Rubio-Clemente, A.; Peñuela, G.A. Degradation of carbamazepine by the photo-Fenton process. Approach towards the elucidation of degradation by-products. J. Photochem. Photobiol. A Chem. 2023, 442, 114801. [Google Scholar] [CrossRef]
- da Silva, L.R.; Araujo, T.J.R.; da Fonseca, M.T.S.; Santos, N.C.; Gomes, G.E.; Gomes, J.P.; de Araujo, G.T.; Rocha, A.P.T. Application of photo-Fenton oxidative process followed by adsorption in dairy effluents treatment. J. Water Process. Eng. 2024, 68, 106365. [Google Scholar] [CrossRef]
- Tian, L.; Wang, L.; Wei, S.; Zhang, L.; Dong, D.; Guo, Z. Enhanced degradation of enoxacin using ferrihydrite-catalyzed heterogeneous photo-Fenton process. Environ. Res. 2024, 251, 118650. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Ganiyu, S.O.; Martínez-Huitle, C.A.; Mousset, E.; Olvera-Vargas, H.; Trellu, C.; Zhou, M.; Oturan, M.A. Recent advances in electro-Fenton process and its emerging applications. Crit. Rev. Environ. Sci. Technol. 2022, 53, 887–913. [Google Scholar] [CrossRef]
- Ya, V.; Chen, Y.-H.; Chou, Y.-H.; Martin, N.; Choo, K.-H.; Mameda, N.; Noophan, P.; Li, C.-W. Complete Cu removal through Fe(II) mediated decoupling of CuEDTA complexes from simulated industrial wastewater with simultaneous precipitation. Environ. Technol. Innov. 2021, 23, 101726. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Jiang, J.; Tang, L.; Liang, Y.; Xue, S.-G. Recent progress in electrocatalytic selectivity in heterogeneous electro-Fenton processes. J. Mater. Chem. A 2023, 11, 7387–7408. [Google Scholar] [CrossRef]
- Klidi, N.; Proietto, F.; Vicari, F.; Galia, A.; Ammar, S.; Gadri, A.; Scialdone, O. Electrochemical treatment of paper mill wastewater by electro-Fenton process. J. Electroanal. Chem. 2019, 841, 166–171. [Google Scholar] [CrossRef]
- Shen, X.; Xiao, F.; Zhao, H.; Chen, Y.; Fang, C.; Xiao, R.; Chu, W.; Zhao, G. In Situ-formed PdFe nanoalloy and carbon defects in cathode for synergic reduction–oxidation of chlorinated pollutants in electro-Fenton process. Environ. Sci. Technol. 2020, 54, 4564–4572. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, Z.; Ge, M.; Liu, B.; Chen, S.; Zhang, D.; Gao, L. Converting lignin into long-chain fatty acids with the electro-Fenton reaction. GCB Bioenergy 2021, 13, 1290–1302. [Google Scholar] [CrossRef]
- Guo, M.; Lu, M.; Zhao, H.; Lin, F.; He, F.; Zhang, J.; Wang, S.; Dong, P.; Zhao, C. Efficient electro-Fenton catalysis by self-supported CFP@CoFe2O4 electrode. J. Hazard. Mater. 2022, 423, 127033. [Google Scholar] [CrossRef]
- Arias, A.N.; Girón-Navarro, R.; Linares-Hernández, I.; Martínez-Miranda, V.; Teutli-Sequeira, E.A.; Lobato, J.; Rodrigo, M.A. Removal of VOCs using electro-Fenton assisted absorption process. J. Environ. Chem. Eng. 2023, 11, 110041. [Google Scholar] [CrossRef]
- Jia, X.; Wang, C.; Zhao, X.; Li, Y.; He, H.; Wu, J.; Yang, Y. Levofloxacin degradation in electro-Fenton system with FeMn@ GF composite electrode. J. Environ. Chem. Eng. 2024, 12, 114625. [Google Scholar] [CrossRef]
- Vigil-Castillo, H.H.; Ruiz-Ruiz, E.J.; López-Velázquez, K.; Hinojosa-Reyes, L.; Gaspar-Ramírez, O.; Guzmán-Mar, J.L. Assessment of photo electro-Fenton and solar photo electro-Fenton processes for the efficient degradation of asulam herbicide. Chemosphere 2023, 338, 139585. [Google Scholar] [CrossRef]
- Brillas, E.; Peralta-Hernandez, J.M. The recent development of innovative photoelectro-Fenton processes for the effective and cost-effective remediation of organic pollutants in waters. Chemosphere 2024, 366, 143465. [Google Scholar] [CrossRef]
- Titchou, F.E.; Zazou, H.; Afanga, H.; Gaayda, J.E.; Ait Akbour, R.; Nidheesh, P.V.; Hamdani, M. An overview on the elimination of organic contaminants from aqueous systems using electrochemical advanced oxidation processes. J. Water Process. Eng. 2021, 41, 102040. [Google Scholar] [CrossRef]
- Ou, B.; Wang, J.; Wu, Y.; Zhao, S.; Wang, Z. Degradation of aniline by photoelectro-Fenton process using g-C3N4 based cathode. J. Electroanal. Chem. 2019, 848, 113273. [Google Scholar] [CrossRef]
- Thiam, A.; Salazar, R.; Brillas, E.; Sirés, I. In-situ dosage of Fe2+ catalyst using natural pyrite for thiamphenicol mineralization by photoelectro-Fenton process. J. Environ. Manag. 2020, 270, 110835. [Google Scholar] [CrossRef]
- Bury, N.A.; Mumford, K.A.; Stevens, G.W. The electro-Fenton regeneration of granular activated carbons: Degradation of organic contaminants and the relationship to the carbon surface. J. Hazard. Mater. 2021, 416, 125792. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Su, P.; Fu, W.; Zhang, Q.; Zhou, M. Heterogeneous photoelectro-Fenton catalyzed by FeCu@PC for efficient degradation of sulfamethazine. Electrochim. Acta 2022, 412, 140122. [Google Scholar] [CrossRef]
- Cardoso, R.; da Silva, T.F.; Cavalheri, P.S.; Machado, B.S.; Nazario, C.E.D.; Machulek Junior, A.; Sirés, I.; Gozzi, F.; de Oliveira, S.C. Effective degradation of phenacetin in wastewater by (photo)electro-Fenton processes: Investigation of variables, acute toxicity, and intermediates. J. Environ. Chem. Eng. 2024, 12, 112704. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, M.; Xiao, F.; Postole, G.; Zhao, H.; Zhao, G. Recent advances and trends of heterogeneous electro-Fenton process for wastewater treatment-review. Chin. Chem. Lett. 2022, 33, 653–662. [Google Scholar] [CrossRef]
- Zhong, D.; Zhang, J.; Huang, J.; Ma, W.; Li, K.; Li, J.; Zhang, S.; Li, Z. Accelerated electron transfer process via MOF-derived FeCo/C for enhanced degradation of antibiotic contaminants towards heterogeneous electro-Fenton system. Chemosphere 2023, 335, 138994. [Google Scholar] [CrossRef]
- Luo, T.; Feng, H.; Tang, L.; Lu, Y.; Tang, W.; Chen, S.; Yu, J.; Xie, Q.; Ouyang, X.; Chen, Z. Efficient degradation of tetracycline by heterogeneous electro-Fenton process using Cu-doped Fe@Fe2O3: Mechanism and degradation pathway. Chem. Eng. J. 2020, 382, 122970. [Google Scholar] [CrossRef]
- Campos, S.; Salazar, R.; Arancibia-Miranda, N.; Rubio, M.A.; Aranda, M.; García, A.; Sepúlveda, P.; Espinoza, L.C. Nafcillin degradation by heterogeneous electro-Fenton process using Fe, Cu and Fe/Cu nanoparticles. Chemosphere 2020, 247, 125813. [Google Scholar] [CrossRef]
- Wang, X.; Cao, P.; Zhao, K.; Chen, S.; Yu, H.; Quan, X. Flow-through heterogeneous electro-Fenton system based on the absorbent cotton derived bulk electrode for refractory organic pollutants treatment. Sep. Purif. Technol. 2021, 276, 119266. [Google Scholar] [CrossRef]
- Zhao, B.; Gong, J.; Song, B.; Sang, F.; Zhou, C.; Zhang, C.; Cao, W.; Niu, Q.; Chen, Z. Effects of activated carbon, biochar, and carbon nanotubes on the heterogeneous Fenton oxidation catalyzed by pyrite for ciprofloxacin degradation. Chemosphere 2022, 308, 136427. [Google Scholar] [CrossRef]
- Camcıoğlu, Ş.; Özyurt, B.; Oturan, N.; Portehault, D.; Trellu, C.; Oturan, M.A. Heterogeneous electro-Fenton treatment of chemotherapeutic drug busulfan using magnetic nanocomposites as catalyst. Chemosphere 2023, 341, 140129. [Google Scholar] [CrossRef]
- Li, P.; Yin, Z.; Chi, C.; Wang, Y.; Wang, Y.; Liu, H.; Lv, Y.; Jiang, N.; Wu, S. Treatment of membrane-concentrated landfill leachate by heterogeneous chemical and electrical Fenton processes with Iron-loaded granular activated carbon catalysts. J. Environ. Chem. Eng. 2024, 12, 112337. [Google Scholar] [CrossRef]
- Ikehata, K.; El-Din, M.G. Degradation of recalcitrant surfactants in wastewater by ozonation and advanced oxidation processes: A review. Ozone Sci. Eng. 2004, 26, 327–343. [Google Scholar] [CrossRef]
- Jamali, G.A.; Devrajani, S.K.; Memon, S.A.; Qureshi, S.S.; Anbuchezhiyan, G.; Mubarak, N.M.; Shamshuddin, S.Z.M.; Siddiqui, M.T.H. Holistic insight mechanism of ozone-based oxidation process for wastewater treatment. Chemosphere 2024, 359, 142303. [Google Scholar] [CrossRef] [PubMed]
- Das, P.P.; Dhara, S.; Samanta, N.S.; Purkait, M.K. Advancements on ozonation process for wastewater treatment: A comprehensive review. Chem. Eng. Process. 2024, 202, 109852. [Google Scholar] [CrossRef]
- Rekhate, C.V.; Srivastava, J.K. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater–a review. Chem. Eng. J. Adv. 2020, 3, 10031. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Yi, P.; Zhang, H. Degradation of clofibric acid by UV, O3 and UV/O3 processes: Performance comparison and degradation pathways. J. Hazard. Mater. 2019, 379, 120771. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, Y.; Xue, J.; Liu, B.; He, G.; Jia, W.; Liu, B.; Jia, R. Degradation performance and conversion mechanisms of MNZ by advanced oxidation systems with O3: Comparison of O3, O3/UV, O3/H2O2 and UV-H2O2/O3 systems. J. Water Process. Eng. 2024, 68, 106536. [Google Scholar] [CrossRef]
- Dadban Shahamat, Y.; Masihpour, M.; Borghei, P.; Hoda Rahmati, S. Removal of azo red-60 dye by advanced oxidation process O3/UV from textile wastewaters using box-behnken design. Inorg. Chem. Commun. 2022, 143, 109785. [Google Scholar] [CrossRef]
- Liu, H.; Gao, Y.; Wang, J.; Ma, D.; Wang, Y.; Gao, B.; Yue, Q.; Xu, X. The application of UV/O3 process on ciprofloxacin wastewater containing high salinity: Performance and its degradation mechanism. Chemosphere 2021, 276, 130220. [Google Scholar] [CrossRef]
- Mehmood, C.T.; Lu, C.; Maqbool, T.; Xiao, Y.; Zhong, Z. Molecular transformations of dissolved organic matter during UV/O3-assisted membrane filtration of UASB-treated real textile wastewater. Chemosphere 2022, 307, 136101. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Gao, Y.; Yue, Q.; Gao, B.; Liu, B.; Guo, K.; Xu, X. Pilot-scale advanced treatment of actual high-salt textile wastewater by a UV/O3 pressurization process: Evaluation of removal kinetics and reverse osmosis desalination process. Sci. Total Environ. 2023, 857, 159725. [Google Scholar] [CrossRef]
- Pratiwi, W.Z.; Hadiyanto, H.; Widayat, W.; Baihaqi, R.A. Response surface optimization of ciprofloxacin degradation using UV/O3 oxidation process. Results Eng. 2024, 24, 103299. [Google Scholar] [CrossRef]
- Piras, F.; Santoro, O.; Pastore, T.; Pio, I.; De Dominicis, E.; Gritti, E.; Caricato, R.; Lionetto, M.G.; Mele, G.; Santoro, D. Controlling micropollutants in tertiary municipal wastewater by O3/H2O2, granular biofiltration and UV254/H2O2 for potable reuse applications. Chemosphere 2020, 239, 124635. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Huang, Y.; Wen, P.; Li, Q. Transformation mechanisms of refractory organic matter in mature landfill leachate treated using an Fe0-participated O3/H2O2 process. Chemosphere 2021, 263, 128198. [Google Scholar] [CrossRef] [PubMed]
- Gomes de Aragão Belé, T.; Neves, T.F.; Cristale, J.; Prediger, P.; Constapel, M.; Dantas, R.F. Oxidation of microplastics by O3 and O3/H2O2: Surface modification and adsorption capacity. J. Water Process. Eng. 2021, 41, 102072. [Google Scholar] [CrossRef]
- Pastor, M.A.S.; Botelho Junior, A.B.; Espinosa, D.C.R.; Tenório, J.A.S.; Baltazar, M.D.P.G. Application of advanced oxidation process using ozonation assisted with hydrogen peroxide for organic compounds removal from Bayer liquor. Ozone Sci. Eng. 2021, 44, 291–301. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, S.; He, X.; Yang, Y.; Yang, X.; Van Hulle, S.W.H. Comparison of macro and micro-pollutants abatement from biotreated landfill leachate by single ozonation, O3/H2O2, and catalytic ozonation processes. Chem. Eng. J. 2023, 452, 139503. [Google Scholar] [CrossRef]
- Wulansarie, R.; Fardhyanti, D.S.; Ardhiansyah, H.; Nuroddin, H.; Salsabila, C.A.; Alifiananda, T. Combination of adsorption using activated carbon and advanced oxidation processes (AOPs) using O3/H2O2 in decreasing BOD of tofu liquid waste. Earth Environ. Sci. 2024, 1381, 012041. [Google Scholar] [CrossRef]
- El-taliawy, H.; Casas, M.E.; Bester, K. Removal of ozonation products of pharmaceuticals in laboratory moving bed biofilm reactors (MBBRs). J. Hazard. Mater. 2018, 347, 288–298. [Google Scholar] [CrossRef]
- Wen, Y.; Yuan, Z.; Qu, J.; Wang, C.; Wang, A. Evaluation of ultraviolet light and hydrogen peroxide enhanced ozone oxidation treatment for the production of cellulose nanofibrils. ACS Sustain. Chem. Eng. 2020, 8, 2688–2697. [Google Scholar] [CrossRef]
- Bilińska, M.; Bilińska, L.; Gmurek, M. Homogeneous and heterogeneous catalytic ozonation of textile wastewater: Application and mechanism. Catalysts 2022, 13, 6. [Google Scholar] [CrossRef]
- Fu, P.; Wang, L.; Li, G.; Hou, Z.; Ma, Y. Homogenous catalytic ozonation of aniline aerofloat collector by coexisted transition metallic ions in flotation wastewaters. J. Environ. Chem. Eng. 2020, 8, 103714. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J. Catalytic ozonation of sulfamethoxazole over Fe3O4/Co3O4 composites. Chemosphere 2019, 234, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, Y.; Zhu, W.; Zan, X.; Zhang, L.; Liu, Y. Effective oxidative degradation of coal gasification wastewater by ozonation: A process study. Chemosphere 2020, 255, 126963. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, Z.; Hu, D.; Chen, C.; Zhang, Y.; He, S.; Wang, J. Catalytic ozonation of norfloxacin using Co3O4/C composite derived from ZIF-67 as catalyst. Chemosphere 2021, 265, 129047. [Google Scholar] [CrossRef] [PubMed]
- De la Cruz, I.J.; Rodríguez, S.J.L.; Fuentes, I.; Tiznado, H.; Vazquez-Arce, J.L.; Romero-Ibarra, I.; Guzmán, C.J.I.; Gutiérrez, H.M. Effect of crystalline phase of MnO2 on the degradation of Bisphenol A by catalytic ozonation. J. Environ. Chem. Eng. 2023, 11, 110753. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Z.; Dong, B.; Ge, S.; He, S. Effective degradation of quinoline by catalytic ozonation with MnCexOy catalysts: Performance and mechanism. Water Sci. Technol. 2024, 89, 823–837. [Google Scholar] [CrossRef]
- Wang, W.; Chen, M.; Wang, D.; Yan, M.; Liu, Z. Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: Catalytic mechanism and toxicity assessment of degradation intermediates. Sci. Total Environ. 2021, 772, 145522. [Google Scholar] [CrossRef]
- Li, N.; Wu, S.; Dai, H.; Cheng, Z.; Peng, W.; Yan, B.; Chen, G.; Wang, S.; Duan, X. Thermal activation of persulfates for organic wastewater purification: Heating modes, mechanism and influencing factors. Chem. Eng. J. 2022, 450, 137976. [Google Scholar] [CrossRef]
- Tian, K.; Hu, L.; Li, L.; Zheng, Q.; Xin, Y.; Zhang, G. Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment. Chin. Chem. Lett. 2022, 33, 4461–4477. [Google Scholar] [CrossRef]
- Zeng, Y.; Qiu, H.; Zeng, J.; Gao, Y.; Ding, Z.; Xie, Z.; Wang, C. Degradation of beneficiation reagent ester-105 by light, heat, and microwave activated persulfate. Water Air Soil Pollut. 2024, 235, 98. [Google Scholar] [CrossRef]
- Wang, Z.; Shao, Y.; Gao, N.; Lu, X.; An, N. Degradation kinetic of phthalate esters and the formation of brominated byproducts in heat-activated persulfate system. Chem. Eng. J. 2019, 359, 1086–1096. [Google Scholar] [CrossRef]
- Ren, T.-L.; Ma, X.-W.; Wu, X.-Q.; Yuan, L.; Lai, Y.-L.; Tong, Z.-H. Degradation of imidazolium ionic liquids in a thermally activated persulfate system. Chem. Eng. J. 2021, 412, 128624. [Google Scholar] [CrossRef]
- Qiu, R.; Zhang, P.; Feng, G.; Ni, X.; Miao, Z.; Wei, L.; Sun, H. Enhanced thermal activation of persulfate by coupling hydrogen peroxide for efficient degradation of pyrene. Chemosphere 2022, 303, 135057. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Liu, H.; Zou, M.; Tao, X.; Zhou, J.; Dang, Z.; Lu, G. Degradation efficiency and mechanism of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by thermally activated persulfate system. Chemosphere 2023, 325, 138396. [Google Scholar] [CrossRef]
- Lalas, K.; Arvaniti, O.S.; Panagopoulou, E.I.; Thomaidis, N.S.; Mantzavinos, D.; Frontistis, Z. Acesulfame degradation by thermally activated persulfate: Kinetics, transformation products and estimated toxicity. Chemosphere 2024, 352, 141260. [Google Scholar] [CrossRef]
- Gu, D.; Guo, C.; Hou, S.; Lv, J.; Zhang, Y.; Feng, Q.; Zhang, Y.; Xu, J. Kinetic and mechanistic investigation on the decomposition of ketamine by UV-254 nm activated persulfate. Chem. Eng. J. 2019, 370, 19–26. [Google Scholar] [CrossRef]
- Wang, B.; Fu, T.; An, B.; Liu, Y. UV light-assisted persulfate activation by Cu0-Cu2O for the degradation of sulfamerazine. Sep. Purif. Technol. 2020, 251, 117321. [Google Scholar] [CrossRef]
- Yan, B.; Xu, D.; Liu, Z.; Tang, J.; Huang, R.; Zhang, M.; Cui, F.; Shi, W.; Hu, C. Degradation of neurotoxin β-N-methylamino-L-alanine by UV254 activated persulfate: Kinetic model and reaction pathways. Chem. Eng. J. 2021, 404, 127041. [Google Scholar] [CrossRef]
- Lai, W.W.-P.; Lin, J.-C.; Li, M.-H. Degradation of benzothiazole by the UV/persulfate process: Degradation kinetics, mechanism and toxicity. J. Photochem. Photobiol. A Chem. 2023, 436, 114355. [Google Scholar] [CrossRef]
- Movahedian Attar, H.; Darvishmotevalli, M.; Moradnia, M. Degradation of 4-chlorophenol from aqueous solution using ultrasound/persulphate: Prediction by RSM. Int. J. Environ. Anal. Chem. 2020, 102, 6030–6040. [Google Scholar] [CrossRef]
- Wang, Q.; Cao, Y.; Zeng, H.; Liang, Y.; Ma, J.; Lu, X. Ultrasound-enhanced zero-valent copper activation of persulfate for the degradation of bisphenol AF. Chem. Eng. J. 2019, 378, 122143. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, H.; Leng, H.; You, H.; Jia, Y.; Wang, S. Ultrasonic role to activate persulfate/chlorite with foamed zero-valent-iron: Sonochemical applications and induced mechanisms. Ultrason. Sonochem. 2021, 78, 105750. [Google Scholar] [CrossRef] [PubMed]
- Pandya, K.; TS, A.S.; Kodgire, P.; Simon, S. Combined ultrasound cavitation and persulfate for the treatment of pharmaceutical wastewater. Water Sci. Technol. 2022, 86, 2157–2174. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, Y.; Zhou, Y. Ultrasonic enhancement of persulfate oxidation system governs emerging pollutants decontamination. Green Energy Environ. 2024, 9, 1666–1678. [Google Scholar] [CrossRef]
- Li, J.; Liang, Y.; Jin, P.; Zhao, B.; Zhang, Z.; He, X.; Tan, Z.; Wang, L.; Cheng, X. Heterogeneous metal-activated persulfate and electrochemically activated persulfate: A review. Catalysts 2022, 12, 1024. [Google Scholar] [CrossRef]
- Nashat, M.; Mossad, M.; El-Etriby, H.K.; Gar Alalm, M. Optimization of electrochemical activation of persulfate by BDD electrodes for rapid removal of sulfamethazine. Chemosphere 2022, 286, 131579. [Google Scholar] [CrossRef]
- Malakootian, M.; Ahmadian, M. Ciprofloxacin removal by electro-activated persulfate in aqueous solution using iron electrodes. Appl. Water Sci. 2019, 9, 140. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, W.; Yu, H.; Chen, S.; Quan, X. Electrochemical activation of peroxymonosulfate in cathodic micro-channels for effective degradation of organic pollutants in wastewater. J. Hazard. Mater. 2020, 398, 122879. [Google Scholar] [CrossRef]
- Gholami, M.; Abbasi Souraki, B.; Pendashteh, A. Electro-activated persulfate oxidation (EC/PS) for the treatment of real oilfield produced water: Optimization, developed numerical kinetic model, and comparison with thermal/EC/PS and EC systems. Process. Saf. Environ. Prot. 2021, 153, 384–402. [Google Scholar] [CrossRef]
- Syam Babu, D.; Nidheesh, P.V. Treatment of arsenite contaminated water by electrochemically activated persulfate oxidation process. Sep. Purif. Technol. 2022, 282, 119999. [Google Scholar] [CrossRef]
- Li, Y.-T.; Du, W.-Y.; Chen, J.-L.; Zhang, J.-J.; Liu, X.-Y.; Liu, H.; Zhang, Y.-L.; Hu, Y.-Y. Removal of N-methyldiethanolamine in wastewater by using electro-activated persulfate: Mechanisms and applicability. J. Environ. Chem. Eng. 2022, 10, 108008. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Murshid, A.; Chanikya, P. Combination of electrochemically activated persulfate process and electro-coagulation for the treatment of municipal landfill leachate with low biodegradability. Chemosphere 2023, 338, 139449. [Google Scholar] [CrossRef] [PubMed]
- Yakamercan, E.; Aygün, A.; Simsek, H. Antibiotic ciprofloxacin removal from aqueous solutions by electrochemically activated persulfate process: Optimization, degradation pathways, and toxicology assessment. J. Environ. Sci. 2024, 143, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Nie, M.; Deng, Y.; Nie, S.; Yan, C.; Ding, M.; Dong, W.; Dai, Y.; Zhang, Y. Simultaneous removal of bisphenol A and phosphate from water by peroxymonosulfate combined with calcium hydroxide. Chem. Eng. J. 2019, 369, 35–45. [Google Scholar] [CrossRef]
- Dominguez, C.M.; Rodriguez, V.; Montero, E.; Romero, A.; Santos, A. Abatement of dichloromethane using persulfate activated by alkali: A kinetic study. Sep. Purif. Technol. 2020, 241, 116679. [Google Scholar] [CrossRef]
- Bolade, O.P.; Adeniyi, K.O.; Williams, A.B.; Benson, N.U. Remediation and optimization of petroleum hydrocarbons degradation in contaminated water using alkaline activated persulphate. J. Environ. Chem. Eng. 2021, 9, 105801. [Google Scholar] [CrossRef]
- Garcia-Cervilla, R.; Santos, A.; Romero, A.; Lorenzo, D. Abatement of chlorobenzenes in aqueous phase by persulfate activated by alkali enhanced by surfactant addition. J. Environ. Manag. 2022, 306, 114475. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, R.; Hu, Y.; Xu, W.; Zhu, N.-m.; Xie, H. Alkali-thermal activated persulfate treatment of tetrabromobisphenol A in soil: Parameter optimization, mechanism, degradation pathway and toxicity evaluation. Sci. Total Environ. 2023, 903, 166477. [Google Scholar] [CrossRef]
- Meijide, J.; Lama, G.; Pazos, M.; Sanromán, M.A.; Dunlop, P.S.M. Ultraviolet-based heterogeneous advanced oxidation processes as technologies to remove pharmaceuticals from wastewater: An overview. J. Environ. Chem. Eng. 2022, 10, 107630. [Google Scholar] [CrossRef]
- Liu, R.; Wu, L.; Liu, H.; Zhang, Y.; Ma, J.; Jiang, C.; Duan, T. High-efficiency photocatalytic degradation of tannic acid using TiO2 heterojunction catalysts. ACS Omega 2021, 6, 28538–28547. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Z.; Liu, D.; Gao, Z. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. 2017, 12, 143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, C.; Peng, X.; Yan, H.; Xu, D.; Lin, Y. Research progress on photocatalytic degradation of microplastics by graphitic carbon nitride. Res. Chem. Intermed. 2024, 50, 5137–5165. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. MXene-based photocatalysts in degradation of organic and pharmaceutical pollutants. Molecules 2022, 27, 6939. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. 2019, 31, 1901–1997. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Nuzhat, S.; Chowdhury, A.T.; Rafa, N.; Uddin, M.A.; Inayat, A.; Mahlia, T.M.I.; Ong, H.C.; Chia, W.Y.; et al. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard. Mater. 2021, 416, 125912. [Google Scholar] [CrossRef]
- Chinnasamy, C.; Perumal, N.; Choubey, A.; Rajendran, S. Recent advancements in MXene-based nanocomposites as photocatalysts for hazardous pollutant degradation–a review. Environ. Res. 2023, 233, 116459. [Google Scholar] [CrossRef]
- Mishra, S.; Srikanth, K.; Rao, T.R.; Kumar, P.; Samanta, S.K. Zinc ferrite-graphitic carbon nitride nanohybrid for photo-catalysis of the antibiotic ciprofloxacin. Catal. Sci. Technol. 2022, 12, 6518–6526. [Google Scholar] [CrossRef]
- Murugesan, P.; Moses, J.A.; Anandharamakrishnan, C. Photocatalytic disinfection efficiency of 2D structure graphitic carbon nitride-based nanocomposites: A review. J. Mater. Sci. 2019, 54, 12206–12235. [Google Scholar] [CrossRef]
- Fernandes, A.; Makoś, P.; Wang, Z.; Boczkaj, G. Synergistic effect of TiO2 photocatalytic advanced oxidation processes in the treatment of refinery effluents. Chem. Eng. J. 2020, 391, 123488. [Google Scholar] [CrossRef]
- Yu, F.; Tian, F.; Zou, H.; Ye, Z.; Peng, C.; Huang, J.; Zheng, Y.; Zhang, Y.; Yang, Y.; Wei, X.; et al. ZnO/biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue. J. Hazard. Mater. 2021, 415, 125511. [Google Scholar] [CrossRef]
- Amir, M.; Fazal, T.; Iqbal, J.; Din, A.A.; Ahmed, A.; Ali, A.; Razzaq, A.; Ali, Z.; Rehman, M.S.U.; Park, Y.-K. Integrated adsorptive and photocatalytic degradation of pharmaceutical micropollutant, ciprofloxacin employing biochar-ZnO composite photocatalysts. J. Ind. Eng. Chem. 2022, 115, 171–182. [Google Scholar] [CrossRef]
- Shahriyari Far, H.; Najafi, M.; Hasanzadeh, M.; Rahimi, R. Synthesis of MXene/metal-organic framework (MXOF) composite as an efficient photocatalyst for dye contaminant degradation. Inorg. Chem. Commun. 2023, 152, 110680. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, Y.-W.; Jin, Y.-F.; Jin, Z.; Xie, H.-S.; Cong, X.-S.; Teng, D.-G. Ni, Co-Embedded MOF-derived N-doped bimetallic porous carbon for adsorption–photocatalytic degradation of organic dyes and antibiotics. ACS Omega 2024, 9, 11356–11365. [Google Scholar] [CrossRef] [PubMed]
- Moreira, F.C.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Appl. Catal. B 2017, 202, 217–261. [Google Scholar] [CrossRef]
- Rajasekhar, B.; Venkateshwaran, U.; Durairaj, N.; Divyapriya, G.; Nambi, I.M.; Joseph, A. Comprehensive treatment of urban wastewaters using electrochemical advanced oxidation process. J. Environ. Manag. 2020, 266, 110469. [Google Scholar] [CrossRef]
- da Silva, S.W.; do Prado, J.M.; Heberle, A.N.A.; Schneider, D.E.; Rodrigues, M.A.S.; Bernardes, A.M. Electrochemical advanced oxidation of Atenolol at Nb/BDD thin film anode. J. Electroanal. Chem. 2019, 844, 27–33. [Google Scholar] [CrossRef]
- Nurhayati, E.; Bagastyo, A.Y.; Hartatik, D.D.; Direstiyani, L.C. The enhancement of biodegradability index of mature landfill leachate by electrochemical oxidation process using boron-doped diamond and dimensionally stable anode. Res. Chem. Intermed. 2020, 46, 4811–4822. [Google Scholar] [CrossRef]
- Ren, S.; Wang, A.; Zhang, Y.; Song, Y.; Wen, Z.; Zhang, Z. Mechanism insights into H2O2 in situ generation and activation for ciprofloxacin degradation by electro-peroxidation using the ACF@RuO2/Ti cathode. Sep. Purif. Technol. 2024, 345, 127437. [Google Scholar] [CrossRef]
- Medrano-Rodríguez, F.; Picos-Benítez, A.; Brillas, E.; Bandala, E.R.; Pérez, T.; Peralta-Hernández, J.M. Electrochemical advanced oxidation discoloration and removal of three brown diazo dyes used in the tannery industry. J. Electroanal. Chem. 2020, 873, 114360. [Google Scholar] [CrossRef]
- Yu, F.; Tao, L.; Yang, Y.; Wang, S. Electrochemical catalytic mechanism of N-doped electrode for in-situ generation of OH in metal-free EAOPs to degrade organic pollutants. Sep. Purif. Technol. 2021, 277, 119432. [Google Scholar] [CrossRef]
- Feijoo, S.; Kamali, M.; Pham, Q.-K.; Assoumani, A.; Lestremau, F.; Cabooter, D.; Dewil, R. Electrochemical advanced oxidation of carbamazepine: Mechanism and optimal operating conditions. Chem. Eng. J. 2022, 446, 137114. [Google Scholar] [CrossRef]
- Fu, R.; Zhang, P.-S.; Jiang, Y.-X.; Sun, L.; Sun, X.-H. Wastewater treatment by anodic oxidation in electrochemical advanced oxidation process: Advance in mechanism, direct and indirect oxidation detection methods. Chemosphere 2023, 311, 136993. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, F.; Banhi, T.S.; Roy, H.; Dihan, M.R.; Islam, M.S.; Cai, Y.; Asiri, A.M.; Rahman, M.M.; Hasan, M.M.; Shenashen, M.A.; et al. Antibiotic-contaminated wastewater treatment and remediation by electrochemical advanced oxidation processes (EAOPs). Groundw. Sustain. Dev. 2024, 25, 101181. [Google Scholar] [CrossRef]
- Liu, P.; Wu, Z.; Abramova, A.V.; Cravotto, G. Sonochemical processes for the degradation of antibiotics in aqueous solutions: A review. Ultrason. Sonochem. 2021, 74, 105566. [Google Scholar] [CrossRef]
- Montoya-Rodríguez, D.M.; Serna-Galvis, E.A.; Ferraro, F.; Torres-Palma, R.A. Degradation of the emerging concern pollutant ampicillin in aqueous media by sonochemical advanced oxidation processes–parameters effect, removal of antimicrobial activity and pollutant treatment in hydrolyzed urine. J. Environ. Manag. 2020, 261, 110224. [Google Scholar] [CrossRef]
- Ghjair, A.Y.; Abbar, A.H. Applications of advanced oxidation processes (electro-Fenton and sono-electro-Fenton) for COD removal from hospital wastewater: Optimization using response surface methodology. Process Saf. Environ. Prot. 2023, 169, 481–492. [Google Scholar] [CrossRef]
- Al-Bsoul, A.; Al-Shannag, M.; Tawalbeh, M.; Al-Taani, A.A.; Lafi, W.K.; Al-Othman, A.; Alsheyab, M. Optimal conditions for olive mill wastewater treatment using ultrasound and advanced oxidation processes. Sci. Total Environ. 2020, 700, 134567. [Google Scholar] [CrossRef]
- Yadav, S.; Shrivastava, V.; Dixit, L.; Pritam, A. Ultrasonic cavitation tailored wastewater purification and desalination using thick sand of highly permeable deep aquifer. Colloids Surf. Physicochem. Eng. Asp. 2020, 585, 124107. [Google Scholar] [CrossRef]
- Mohamed Noor, M.H.; Mohd Azli, M.F.Z.; Ngadi, N.; Mohammed Inuwa, I.; Anako Opotu, L.; Mohamed, M. Optimization of sonication-assisted synthesis of magnetic Moringa oleifera as an efficient coagulant for palm oil wastewater treatment. Environ. Technol. Innov. 2022, 25, 102191. [Google Scholar] [CrossRef]
- Dey, A.; Korde, S.; Gogate, P.R.; Agarkoti, C. Sonochemical synthesis of Ce-TiO2 nanocatalyst and subsequent application for treatment of real textile industry effluent. Ultrason. Sonochem. 2023, 96, 106426. [Google Scholar] [CrossRef]
- Lakshmi, N.J.; Iyer, A.M.; Gogate, P.R. Treatment of wastewater containing ciprofloxacin using the hybrid treatment approach based on acoustic cavitation. Can. J. Chem. Eng. 2024, 102, 2403–2417. [Google Scholar] [CrossRef]
Tech. Type | Advantages | Disadvantages |
---|---|---|
Bio. Process | Low cost; Involves a relatively mild process; Without secondary pollution; Particularly suitable for large-scale treatment. | Slow and less effective on tough organics and toxins; Sensitive to water quality, temp, and pH; Needs lots of space, generates lots of sludge; Expensive to run. |
Phys. Chem. Process | High efficiency; Removes heavy metals and other pollutants; Diverse methods for different wastewater types. | High chemical use; Risk of secondary pollution; High operating costs; Limited on complex organics; May need post-treatment. |
AOPs | Breaks down tough pollutants efficiently; No secondary pollution; Fast, efficient, and controllable; Works well with other technologies. | High costs due to high oxidant use; Needs strict pretreatment; Challenging for low-concentration, high-flow wastewater. |
Classification | Advantages | Disadvantages |
---|---|---|
Heterogeneous Fenton Process | Reduces iron sludge, recyclable catalyst, wider pH applicability | Lower catalyst activity and stability, catalyst surface is prone to fouling |
Photo-Fenton Process | Enhances oxidation efficiency, operates over a wider pH range | Requires additional light source, limited light penetration depth |
Electro-Fenton Process | High controllability, no need for external H2O2 and Fe2+ addition | Consumes electrical energy, requires improved electrode material stability |
Photoelectro-Fenton Process | Efficient degradation of refractory organic matter, high controllability | Complex equipment, high cost |
Heterogeneous Electro-Fenton Process | Enhances catalyst stability and activity, reduces iron sludge | Requires optimization of catalyst–electrode synergy |
Parameter Type | Fenton-Based AOPs | Ozone-Based AOPs | Persulfate-Based AOPs | Photocatalytic AOPs | Electrochemical AOPs | Sonochemical AOPs |
---|---|---|---|---|---|---|
Cost | High | Medium to high | Medium | Low | High | Medium |
Degradation Efficiency | 50–90% | 70–95% | 60–90% | 60–95% | 60–90% | 50–85% |
TOC Removal | 30–70% | 50–85% | 35–75% | 40–80% | 30–70% | 20–60% |
Secondary Pollution Risk | High | Low to medium | Low | Low | Low | Low |
Energy Consumption (kWh/m3) | 0.1–0.5 | 0.5–1.5 | 0.4–1.2 | 0.2–0.8 | 0.3–1.0 | 1.0–2.0 |
pH Range | 2–4 | 6–9 | 3–10 | 4–10 | 3–11 | 4–10 |
Catalyst Stability | Medium | Medium | High | Low | Medium | Medium |
AOP Category | Strengths (S) | Weaknesses (W) | Opportunities (O) | Threats (T) |
---|---|---|---|---|
Fenton-based AOPs | • High oxidation capacity and destruction rates • Relative simplicity and low equipment cost • Effectiveness on diverse contaminants | • Strict acidic pH requirement (2–4) • Sludge generation and handling • Catalyst (Fe) loss/leaching • H2O2 consumption | • Development of heterogeneous catalysts (Fe@supports) • Integration with light/electro (Photo/Electro-Fenton) • Iron-free Fenton-like catalysts (e.g., using Cu, Mn) | • Regulatory pressure on sludge disposal • Competition from sulfate radical-based AOPs • Cost volatility of H2O2 |
Ozone-based AOPs | • Powerful direct oxidant (O3) • Disinfection capability • No chemical sludge/residuals (direct path) | • High energy input for O3 generation • Low O3 solubility and mass transfer limitations • Bromate (BrO3−) formation risk • Incomplete mineralization | • Catalytic ozonation (improving efficiency/selectivity) • Synergy with H2O2 (O3/H2O2–Peroxone) •Pre/post-treatment with biological processes | • Strict regulations on bromate • Operational complexity and safety concerns • Energy cost sensitivity |
Persulfate-based AOPs | • SO4·− radicals potent and persist longer than HO· • Multiple activation methods (heat, UV, transition metals, carbon) • Flexible operation contaminants | • Residual persulfate/SO42− in effluent • Potential toxic by-product formation • Catalyst dependency/cost • Cl−/HCO3− quenching effects | • Exploiting non-radical pathways (catalysis, E-transfer) • Waste-derived catalysts (e.g., biochar) • Novel activation methods (e.g., ultrasound) | • Regulatory uncertainty on persulfate residuals/by-products • Chemical cost (PS/PMS) • Scalability of activation methods |
Photocatalytic AOPs | • Potential for solar-driven operation • Ambient conditions • Minimal chemical consumption | • Low quantum yield/charge separation efficiency • Recombination losses and catalyst deactivation • Catalyst recovery/reuse challenge • Limited penetration depth | • Development of visible-light-responsive catalysts • Formation of heterojunctions/composites • Immobilization strategies (films, membranes) • Combined photoelectrocatalysis | • High cost of UV lamps (if used) • Weather dependency (solar) • Competition from PV-driven electrochemical AOPs |
Electrochemical AOPs | • High degree of process control/tunability • No chemical additions required • Potential for automation • Direct and indirect oxidation pathways | • High capital cost (electrodes, e.g., BDD) • Electrode fouling/passivation • High energy consumption • Low current efficiency in complex matrices | • Development of novel, stable, cost-effective electrodes • Integration with renewable energy • Simultaneous resource recovery (e.g., H2, metals) • Hybrid systems (e.g., Electro-Fenton, Electro-Persulfate) | • Rising electricity costs • Complexity of treatment optimization •Disposal/recycling of spent electrodes |
Sonochemical AOPs | • Synergistic effects with other AOPs • Enhanced mass transfer • No chemical additions required • Destroys volatile compounds | • Very high energy consumption (large volumes) • Limited reactor design/scalability • Inefficient radical yield • Noise pollution | • Optimization of reactor configuration/cavitation • Hybridization (e.g., Sono-Fenton, Sono-Persulfate) • Focused applications (sludge treatment, niche pollutants) consumption | • High operational costs • Scalability barriers • Noise and material erosion concerns • Limited commercial traction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, T.-H.; Zhang, Z.-Z.; Liu, Y.; Zou, L.-H. Recent Progress in Catalytically Driven Advanced Oxidation Processes for Wastewater Treatment. Catalysts 2025, 15, 761. https://doi.org/10.3390/catal15080761
Zheng T-H, Zhang Z-Z, Liu Y, Zou L-H. Recent Progress in Catalytically Driven Advanced Oxidation Processes for Wastewater Treatment. Catalysts. 2025; 15(8):761. https://doi.org/10.3390/catal15080761
Chicago/Turabian StyleZheng, Tian-Hua, Zhen-Zhong Zhang, Yue Liu, and Liang-Hua Zou. 2025. "Recent Progress in Catalytically Driven Advanced Oxidation Processes for Wastewater Treatment" Catalysts 15, no. 8: 761. https://doi.org/10.3390/catal15080761
APA StyleZheng, T.-H., Zhang, Z.-Z., Liu, Y., & Zou, L.-H. (2025). Recent Progress in Catalytically Driven Advanced Oxidation Processes for Wastewater Treatment. Catalysts, 15(8), 761. https://doi.org/10.3390/catal15080761