Self-Supported Tailoring of Nickel Sulfide/CuCo Nanosheets into Hierarchical Heterostructures for Boosting Urea Oxidation Reaction
Abstract
1. Introduction
2. Results
3. Materials and Method
3.1. Chemicals and Materials Required
3.2. Self-Supported Hydrothermal Synthesis of Ni3S2 on Ni Foam (NS)
3.3. Electrodeposition of CuCo on NS (NSCC)
3.4. Preparation of Pt/C Catalytic Ink on NF
3.5. Physical Characterization
3.6. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grubler, A.; Wilson, C.; Bento, N.; Boza-Kiss, B.; Krey, V.; McCollum, D.L.; Rao, N.D.; Riahi, K.; Rogelj, J.; De Stercke, S.; et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Nat. Energy 2018, 3, 515–527. [Google Scholar] [CrossRef]
- Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.A. Sustainable Hydrogen Production. Science 2004, 305, 972–974. [Google Scholar] [CrossRef]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef]
- Xiao, X.; Yang, L.; Sun, W.; Chen, Y.; Yu, H.; Li, K.; Jia, B.; Zhang, L.; Ma, T. Electrocatalytic Water Splitting: From Harsh and Mild Conditions to Natural Seawater. Small 2022, 18, 2105830. [Google Scholar] [CrossRef]
- You, B.; Tang, M.T.; Tsai, C.; Abild-Pedersen, F.; Zheng, X.; Li, H. Enhancing Electrocatalytic Water Splitting by Strain Engineering. Adv. Mater. 2019, 31, 1807001. [Google Scholar] [CrossRef] [PubMed]
- Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934. [Google Scholar] [CrossRef]
- Zhai, P.; Wang, C.; Zhao, Y.; Zhang, Y.; Gao, J.; Sun, L.; Hou, J. Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density. Nat. Commun. 2023, 14, 1873. [Google Scholar] [CrossRef]
- Zhang, K.; Zou, R. Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges. Small 2021, 17, 2100129. [Google Scholar] [CrossRef]
- Liu, X.; Han, Y.; Guo, Y.; Zhao, X.; Pan, D.; Li, K.; Wen, Z. Electrochemical Hydrogen Generation by Oxygen Evolution Reaction-Alternative Anodic Oxidation Reactions. Adv. Energy Sustain. Res. 2022, 3, 2200005. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, B. Recent Advances in Electrochemical Hydrogen Production from Water Assisted by Alternative Oxidation Reactions. ChemElectroChem 2019, 6, 3214–3226. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Direct And Mediated Anodic Oxidation of Organic Pollutants. Chem. Rev. 2009, 109, 6541–6569. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, X.; Wen, X.; Zhou, Y.; Zhou, L.; Li, H.; Tao, L.; Li, Q.; Du, S.; Liu, T.; et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 2020, 12, 717–724. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, S.; Wang, P.; Jaroniec, M.; Zheng, Y.; Qiao, S.-Z. Urea catalytic oxidation for energy and environmental applications. Chem. Soc. Rev. 2024, 53, 1552–1591. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.J.; Wolfson, S.K.; Ahn, B.K.; Liu, C.C. Anodic Oxidation of Urea and an Electrochemical Approach to De-ureation. Nature 1973, 241, 471–472. [Google Scholar] [CrossRef] [PubMed]
- Zhan, G.; Hu, L.; Li, H.; Dai, J.; Zhao, L.; Zheng, Q.; Zou, X.; Shi, Y.; Wang, J.; Hou, W.; et al. Highly selective urea electrooxidation coupled with efficient hydrogen evolution. Nat. Commun. 2024, 15, 5918. [Google Scholar] [CrossRef]
- Cao, Z.; Zhou, T.; Ma, X.; Shen, Y.; Deng, Q.; Zhang, W.; Zhao, Y. Hydrogen Production from Urea Sewage on NiFe-Based Porous Electrocatalysts. ACS Sustain. Chem. Eng. 2020, 8, 11007–11015. [Google Scholar] [CrossRef]
- Sun, H.; Li, L.; Chen, Y.; Kim, H.; Xu, X.; Guan, D.; Hu, Z.; Zhang, L.; Shao, Z.; Jung, W. Boosting ethanol oxidation by NiOOH-CuO nano-heterostructure for energy-saving hydrogen production and biomass upgrading. Appl. Catal. B Environ. 2023, 325, 122388. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Wang, H.; Tian, Y.; Yan, Y.; Xue, Q.; He, T.; Liu, H.; Wang, C.; Chen, Y.; Xia, B.Y. Anodic Hydrazine Oxidation Assists Energy-Efficient Hydrogen Evolution over a Bifunctional Cobalt Perselenide Nanosheet Electrode. Angew. Chem. Int. Ed. 2018, 57, 7649–7653. [Google Scholar] [CrossRef]
- Song, Y.; Huang, J.; Tang, C.; Wang, T.; Liu, Y.; He, X.; Xie, C.; Chen, G.; Deng, C.; He, Z. Improved Urea Oxidation Performance via Interface Electron Redistributions of the NiFe(OH)x/MnO2/NF p-p Heterojunction. Small 2024, 20, 2403612. [Google Scholar] [CrossRef]
- Qiu, Y.; Dai, X.; Wang, Y.; Ji, X.; Ma, Z.; Liu, S. The polyoxometalates mediated preparation of phosphate-modified NiMoO4−x with abundant O-vacancies for H2 production via urea electrolysis. J. Colloid Interface Sci. 2023, 629, 297–309. [Google Scholar] [CrossRef]
- Zhu, B.; Liang, Z.; Zou, R. Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction. Small 2020, 16, 1906133. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Guo, X.; Zhang, Z.; Song, M.; Jiao, T.; Zhu, Y.; Wang, J.; Liu, X. Interface Engineering of MoS2 for Electrocatalytic Performance Optimization for Hydrogen Generation via Urea Electrolysis. ACS Sustain. Chem. Eng. 2019, 7, 16577–16584. [Google Scholar] [CrossRef]
- Hu, X.; Zhu, J.; Li, J.; Wu, Q. Urea Electrooxidation: Current Development and Understanding of Ni-Based Catalysts. ChemElectroChem 2020, 7, 3211–3228. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, D.; Chen, L.; Chen, S.; Wan, H.; Chen, G.; Zhang, N.; Liu, X.; Ma, R. Collaborative optimization of thermodynamic and kinetic for Ni-based hydroxides in electrocatalytic urea oxidation reaction. Appl. Catal. B Environ. 2024, 340, 123214. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, C.; Wang, Y.; Wang, K. Advanced nickel-based catalysts for urea oxidation reaction: Challenges and developments. Catalysts 2022, 12, 337. [Google Scholar] [CrossRef]
- Zemtsova, V.M.; Oshchepkov, A.G.; Savinova, E.R. Unveiling the Role of Iron in the Nickel-Catalyzed Urea Oxidation Reaction. ACS Catal. 2023, 13, 13466–13473. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, Y.; Wen, Y.; Li, S.; Cui, C.; Ni, F.; Liu, Y.; Lin, H.; Li, Y.; Peng, H.; et al. Regulating the Local Charge Distribution of Ni Active Sites for the Urea Oxidation Reaction. Angew. Chem. Int. Ed. 2021, 60, 10577–10582. [Google Scholar] [CrossRef]
- Geng, S.-K.; Zheng, Y.; Li, S.-Q.; Su, H.; Zhao, X.; Hu, J.; Shu, H.-B.; Jaroniec, M.; Chen, P.; Liu, Q.-H.; et al. Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy 2021, 6, 904–912. [Google Scholar] [CrossRef]
- Zhang, Y.; Nie, K.; Yi, L.; Li, B.; Yuan, Y.; Liu, Z.; Huang, W. Recent Advances in Engineering of 2D Materials-Based Heterostructures for Electrochemical Energy Conversion. Adv. Sci. 2023, 10, 2302301. [Google Scholar] [CrossRef]
- Chandra Majhi, K.; Chen, H.; Batool, A.; Zhu, Q.; Jin, Y.; Liu, S.; Sit, P.H.-L.; Chun-Ho Lam, J. In-tandem Electrochemical Reduction of Nitrate to Ammonia on Ultrathin-Sheet-Assembled Iron-Nickel Alloy Nanoflowers. Angew. Chem. Int. Ed. 2025, 64, e202500167. [Google Scholar] [CrossRef]
- Ji, Z.; Liu, J.; Deng, Y.; Zhang, S.; Zhang, Z.; Du, P.; Zhao, Y.; Lu, X. Accurate synergy effect of Ni–Sn dual active sites enhances electrocatalytic oxidation of urea for hydrogen evolution in alkaline medium. J. Mater. Chem. A 2020, 8, 14680–14689. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, L.; Li, J.; Tian, X.; Wu, X.; Feng, L. High valence state of Ni and Mo synergism in NiS2-MoS2 hetero-nanorods catalyst with layered surface structure for urea electrocatalysis. J. Energy Chem. 2022, 66, 483–492. [Google Scholar] [CrossRef]
- Zhuo, X.; Jiang, W.; Yu, T.; Qian, G.; Chen, J.; Yang, H.; Yin, S. Crystalline—Amorphous Ni3S2–NiMoO4 Heterostructure for Durable Urea Electrolysis-Assisted Hydrogen Production at High Current Density. ACS Appl. Mater. Interfaces 2022, 14, 46481–46490. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Liu, S.; Zhu, W.; Ye, G.; Wang, J.; He, Z. An electrodeposited MoS2-MoO3−x/Ni3S2 heterostructure electrocatalyst for efficient alkaline hydrogen evolution. Chem. Eng. J. 2022, 428, 131055. [Google Scholar] [CrossRef]
- Jia, X.; Kang, H.; Yang, X.; Li, Y.; Cui, K.; Wu, X.; Qin, W.; Wu, G. Amorphous Ni(Ⅲ)-based sulfides as bifunctional water and urea oxidation anode electrocatalysts for hydrogen generation from urea-containing water. Appl. Catal. B Environ. 2022, 312, 121389. [Google Scholar] [CrossRef]
- Sagayaraj, P.J.J.; Sekar, K. Crystalline/amorphous nickel sulfide interface for high current density in alkaline HER: Surface and volume confinement matters! Chem. Commun. 2024, 60, 6817–6820. [Google Scholar] [CrossRef] [PubMed]
- Sagayaraj, P.J.J.; S, K.; Oyama, K.; Okibe, N.; Kim, H.-i.; Sekar, K. Extending the accessibility of catalytic active sites through l-cysteine assisted sulfidation for promoting the hydrogen evolution reaction. Energy Adv. 2025, 4, 296–303. [Google Scholar] [CrossRef]
- Sengeni, A.; Noda, S. Prior oxidation of Ni substrates increases the number of active sites in Ni3S2 obtained by sulfidation and enhances its multifunctional electrocatalytic activity. J. Mater. Chem. A 2024, 12, 5793–5804. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Liao, Y.; Wu, C.; Yan, Y.; Xie, H.; Chen, Y. Heterostructured Ni3S2–Ni3P/NF as a Bifunctional Catalyst for Overall Urea–Water Electrolysis for Hydrogen Generation. ACS Appl. Mater. Interfaces 2021, 13, 26948–26959. [Google Scholar] [CrossRef]
- Yan, X.; Hu, Q.-T.; Wang, G.; Zhang, W.-D.; Liu, J.; Li, T.; Gu, Z.-G. NiCo layered double hydroxide/hydroxide nanosheet heterostructures for highly efficient electro-oxidation of urea. Int. J. Hydrogen Energy 2020, 45, 19206–19213. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Y.; Yao, B.; Meng, T.; Xu, Y.; Jiao, D.; Xing, Z.; Yang, X. Microdynamic modulation through Pt–O–Ni proton and electron “superhighway” for pH-universal hydrogen evolution. J. Energy Chem. 2025, 101, 808–815. [Google Scholar] [CrossRef]
- Yang, G.; Yang, T.; Wang, Z.; Wang, K.; Zhang, M.; Lund, P.D.; Yun, S. Targeted doping induces interfacial orientation for constructing surface-functionalized Schottky junctions to coordinate redox reactions in water electrolysis. Adv. Powder Mater. 2024, 3, 100224. [Google Scholar] [CrossRef]
- Wei, X.; Liu, Y.; Zhu, X.; Bo, S.; Xiao, L.; Chen, C.; Nga, T.T.T.; He, Y.; Qiu, M.; Xie, C.; et al. Dynamic Reconstitution Between Copper Single Atoms and Clusters for Electrocatalytic Urea Synthesis. Adv. Mater. 2023, 35, 2300020. [Google Scholar] [CrossRef] [PubMed]
- Sanghez de Luna, G.; Ho, P.H.; Sacco, A.; Hernández, S.; Velasco-Vélez, J.-J.; Ospitali, F.; Paglianti, A.; Albonetti, S.; Fornasari, G.; Benito, P. AgCu Bimetallic Electrocatalysts for the Reduction of Biomass-Derived Compounds. ACS Appl. Mater. Interfaces 2021, 13, 23675–23688. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.; Jeong, J.; Chae, Y.; Lee, W.H.; Ko, Y.-J.; Chae, K.H.; Oh, H.-s.; Lee, U.; Lee, D.K.; Min, B.K.; et al. Synergistic bimetallic CuPd oxide alloy electrocatalyst for ammonia production from the electrochemical nitrate reaction. J. Mater. Chem. A 2022, 10, 23760–23769. [Google Scholar] [CrossRef]
- Zhang, S.; Jin, M.; Xu, H.; Zhang, X.; Shi, T.; Ye, Y.; Lin, Y.; Zheng, L.; Wang, G.; Zhang, Y.; et al. An oxygen-coordinated cobalt single-atom electrocatalyst boosting urea and urea peroxide production. Energy Environ. Sci. 2024, 17, 1950–1960. [Google Scholar] [CrossRef]
- Shenoy, S.; Chuaicham, C.; Sasaki, K.; Park, S.; Nallal, M.; Park, K.H.; Sekar, K. Nitridation-free preparation of bimetallic oxide-nitride bifunctional electrocatalysts for overall water splitting. Chem. Commun. 2023, 59, 12451–12454. [Google Scholar] [CrossRef]
- Parvin, S.; Aransiola, E.; Ammar, M.; Lee, S.; Zhang, L.; Weber, J.; Baltrusaitis, J. Tailored Ni(OH)2/CuCo/Ni(OH)2 Composite Interfaces for Efficient and Durable Urea Oxidation Reaction. ACS Appl. Mater. Interfaces 2024, 16, 67715–67729. [Google Scholar] [CrossRef]
- Li, D.; Zhou, X.; Ruan, Q.; Liu, L.; Liu, J.; Wang, B.; Wang, Y.; Zhang, X.; Chen, R.; Ni, H.; et al. Suppression of Passivation on Nickel Hydroxide in Electrocatalytic Urea Oxidization. Adv. Funct. Mater. 2024, 34, 2313680. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Liu, T.; Chen, L.; Li, Y.; Wang, H.; Chen, X.; Gong, M.; Liu, Z.-P.; Yang, X. Deciphering and Suppressing Over-Oxidized Nitrogen in Nickel-Catalyzed Urea Electrolysis. Angew. Chem. Int. Ed. 2021, 60, 26656–26662. [Google Scholar] [CrossRef] [PubMed]
- Lazanas, A.C.; Prodromidis, M.I. Electrochemical Impedance Spectroscopy—A Tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sagayaraj, P.J.J.; Senthilkumar, A.; Lee, J.; Byeon, E.-K.; Kim, H.-i.; Shenoy, S.; Sekar, K. Self-Supported Tailoring of Nickel Sulfide/CuCo Nanosheets into Hierarchical Heterostructures for Boosting Urea Oxidation Reaction. Catalysts 2025, 15, 664. https://doi.org/10.3390/catal15070664
Sagayaraj PJJ, Senthilkumar A, Lee J, Byeon E-K, Kim H-i, Shenoy S, Sekar K. Self-Supported Tailoring of Nickel Sulfide/CuCo Nanosheets into Hierarchical Heterostructures for Boosting Urea Oxidation Reaction. Catalysts. 2025; 15(7):664. https://doi.org/10.3390/catal15070664
Chicago/Turabian StyleSagayaraj, Prince J. J., Aravind Senthilkumar, Juwon Lee, Eun-Kyeong Byeon, Hyoung-il Kim, Sulakshana Shenoy, and Karthikeyan Sekar. 2025. "Self-Supported Tailoring of Nickel Sulfide/CuCo Nanosheets into Hierarchical Heterostructures for Boosting Urea Oxidation Reaction" Catalysts 15, no. 7: 664. https://doi.org/10.3390/catal15070664
APA StyleSagayaraj, P. J. J., Senthilkumar, A., Lee, J., Byeon, E.-K., Kim, H.-i., Shenoy, S., & Sekar, K. (2025). Self-Supported Tailoring of Nickel Sulfide/CuCo Nanosheets into Hierarchical Heterostructures for Boosting Urea Oxidation Reaction. Catalysts, 15(7), 664. https://doi.org/10.3390/catal15070664