Oxygen Vacancy-Driven Improvement of NH3-SCR Performance over α-MnO2: Mechanistic Insights
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phase and Oxygen Vacancy Analysis
2.2. Catalytic Performance Evaluation
2.3. Surface Physical and Chemical Properties Analysis
2.4. Oxygen Vacancy Formation Energy and Adsorption Energy Calculation
2.5. Surface Reaction Pathways Analysis
3. Experimental
3.1. Preparation of Catalyst
3.2. Catalyst Characterization
3.3. Catalyst Activity Tests
3.4. Density Functional Theory (DFT) Calculations
4. Reaction Mechanism over Catalysts
5. Conclusions
- Oxygen vacancies play a crucial role in the surface properties and catalytic performance of α-MnO2. Compared to the α-MnO2-AIR catalyst, the oxygen vacancy-rich α-MnO2-N2 catalyst exhibits stronger acidity, enhanced redox properties, and significantly improved NH3 and NO adsorption and activation capabilities. The presence of oxygen vacancies facilitates NH3 adsorption on both Lewis and Brønsted acid sites and promotes the formation of -NH2 intermediates via hydrogen abstraction. Additionally, oxygen vacancies enhance the adsorption and oxidation of NO, leading to the formation of nitrate intermediates that subsequently react with adsorbed NH3 to yield N2 and H2O. These synergistic effects lead to a significant improvement in low- and medium-temperature NOx conversion efficiency.
- The NH3-SCR reaction over α-MnO2 follows a dual-pathway mechanism involving both E-R and L-H routes. In situ DRIFTS analyses revealed that the α-MnO2-N2 exhibits stronger and more sustained formation of key intermediates, including L-NH3, B-NH4+, and nitrate species, indicating a stronger ability to activate and convert reactants via both mechanisms. Notably, NO preferentially reacted with surface-adsorbed NH3 species before being chemisorbed, following the E-R mechanism. Conversely, when NO was pre-adsorbed, its subsequent reaction with NH3 followed a typical L-H pathway, in which bridging and monodentate nitrates played a key role. Oxygen vacancies were found to be essential in both cases for promoting NO oxidation, intermediate formation, and final N2 generation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Forzatti, P.; Nova, I.; Tronconi, E.; Kustov, A.; Thøgersen, J.R. Effect of operating variables on the enhanced SCR reaction over a commercial V2O5–WO3/TiO2 catalyst for stationary applications. Catal. Today 2012, 184, 153–159. [Google Scholar] [CrossRef]
- Guo, M.; Fu, Z.; Ma, D.; Ji, N.; Song, C.; Liu, Q. A Short Review of Treatment Methods of Marine Diesel Engine Exhaust Gases. Procedia Eng. 2015, 121, 938–943. [Google Scholar] [CrossRef]
- Chen, W.; Zou, R.; Wang, X. Toward an Atomic-Level Understanding of the Catalytic Mechanism of Selective Catalytic Reduction of NOx with NH3. ACS Catal. 2022, 12, 14347–14375. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, J.; Tian, S.; Zhao, Y.; Long, L.; Yao, X. Mechanistic insights into the influence of preparation methods and Fe3+ doping on the low-temperature performance of MnCeOx catalyst for NH3-SCR reaction. Sep. Purif. Technol. 2024, 347, 127519. [Google Scholar] [CrossRef]
- Aguilar-Romero, M.; Camposeco, R.; Castillo, S.; Marín, J.; Rodríguez-González, V.; García-Serrano, L.A.; Mejía-Centeno, I. Acidity, surface species, and catalytic activity study on V2O5-WO3/TiO2 nanotube catalysts for selective NO reduction by NH3. Fuel 2017, 198, 123–133. [Google Scholar] [CrossRef]
- Xu, J.; Chen, G.; Guo, F.; Xie, J. Development of wide-temperature vanadium-based catalysts for selective catalytic reducing of NOx with ammonia: Review. Chem. Eng. J. 2018, 353, 507–518. [Google Scholar] [CrossRef]
- Jankowska, A.; Kokowska, N.; Fidowicz, K.; Rutkowska, M.; Kowalczyk, A.; Mozgawa, W.; Brunarska, I.; Chmielarz, L. Catalytic Performance of Ti-MCM-22 Modified with Transition Metals (Cu, Fe, Mn) as NH3-SCR Catalysts. Catalysts 2025, 15, 60. [Google Scholar] [CrossRef]
- Liebau, M.; Suprun, W.; Kasprick, M.; Gläser, R. Transition Metal Oxides Supported on TiO2 as Catalysts for the Low-Temperature Selective Catalytic Reduction of NOx by NH3. Catalysts 2025, 15, 22. [Google Scholar] [CrossRef]
- Shan, W.; Song, H. Catalysts for the selective catalytic reduction of NOx with NH3 at low temperature. Catal. Sci. Technol. 2015, 5, 4280–4288. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, B.; Wu, B.; Liu, B.; Zhang, S. Effect of samarium on the N2 selectivity of SmxMn0.3−xTi catalysts during selective catalytic reduction of NOx with NH3. Int. J. Min. Met. Mater. 2023, 30, 642–652. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Yu, P.Y.; Mao, S.S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xiang, Z.; Wu, J.; He, P.; Qi, Y.; Chen, S.; Lu, Y.; Xie, R.; Liu, Z.; He, C. Research progress on the construction of oxygen vacancy defects and application in photocatalytic oxidation of elemental mercury. Fuel 2024, 355, 129440. [Google Scholar] [CrossRef]
- Cong, Q.; Chen, L.; Wang, X.; Ma, H.; Zhao, J.; Li, S.; Hou, Y.; Li, W. Promotional effect of nitrogen-doping on a ceria unary oxide catalyst with rich oxygen vacancies for selective catalytic reduction of NO with NH3. Chem. Eng. J. 2020, 379, 122302. [Google Scholar] [CrossRef]
- Sun, P.; Han, S.; Liu, J.; Zhang, J.; Yang, S.; Wang, F.; Liu, W.; Yin, S.; Ning, Z.; Cao, W. Introducing oxygen vacancies in TiO2 lattice through trivalent iron to enhance the photocatalytic removal of indoor NO. Int. J. Min. Met. Mater. 2023, 30, 2025–2035. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Huang, B.; Ma, Y.; Liu, Y.; Qin, X.; Zhang, X.; Dai, Y. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. Acs Appl. Mater. Inter. 2012, 4, 4024–4030. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, H.; Hu, E.; Zhu, T.; Zhou, C.; Huang, Y.; Ling, M.; Gao, X.; Lin, Z. Boosting oxygen evolution activity of NiFe-LDH using oxygen vacancies and morphological engineering. J. Mater. Chem. A 2021, 9, 23697–23702. [Google Scholar] [CrossRef]
- Wu, L.; Wang, Z.; Liu, J.; Liu, C.; Li, X.; Zhang, Y.; Wang, W.; Ma, J.; Sun, Z. Selective ozone catalyzation modulated by surface and bulk oxygen vacancies over MnO2 for superior water purification. Appl. Catal. B-Environ. 2024, 343, 123526. [Google Scholar] [CrossRef]
- Yang, R.; Peng, S.; Lan, B.; Sun, M.; Zhou, Z.; Sun, C.; Gao, Z.; Xing, G.; Yu, L. Oxygen Defect Engineering of β-MnO2 Catalysts via Phase Transformation for Selective Catalytic Reduction of NO. Small 2021, 17, 2102408. [Google Scholar] [CrossRef]
- Cheng, Y.; Song, W.; Liu, J.; Zheng, H.; Zhao, Z.; Xu, C.; Wei, Y.; Hensen, E.J.M. Simultaneous NOx and Particulate Matter Removal from Diesel Exhaust by Hierarchical Fe-Doped Ce–Zr Oxide. ACS Catal. 2017, 7, 3883–3892. [Google Scholar] [CrossRef]
- Li, F.; Shi, C.; Wang, X.; Cui, G.; Wang, D.; Chen, L. The important role of oxygen defect for NO gas-sensing behavior of α-Fe2O3 (0 0 1) surface: Predicted by density functional theory. Comput. Mater. Sci. 2018, 146, 1–8. [Google Scholar] [CrossRef]
- Xie, C.; Zhu, B.; Sun, Y.; Li, F.; Song, W. Understanding the roles of copper dopant and oxygen vacancy in promoting nitrogen oxides removal over iron-based catalyst surface: A collaborative experimental and first-principles study. J. Colloid Interface Sci. 2022, 612, 584–597. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhang, K.; Wu, L.; Wang, Q.; Shang, D.; Zhong, Q. Ti3+ doped V2O5/TiO2 catalyst for efficient selective catalytic reduction of NOx with NH3. J. Colloid Interface Sci. 2021, 581, 76–83. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Fan, Y.; Zhao, C.; Dai, W.; Yang, L.; Zhou, L.; Zou, J.; Luo, X. Unraveling the high catalytic activity of single atom Mo-doped TiO2 toward NH3-SCR: Synergetic roles of Mo as acid sites and oxygen vacancies as oxidation sites. Chem. Eng. J. 2023, 465, 142759. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, L.; Huang, L.; Zhang, J.; Gao, R.; Zhang, D. Rational design of high-performance DeNO x catalysts based on MnxCo3–xO4 nanocages derived from metal–organic frameworks. ACS Catal. 2014, 4, 1753–1763. [Google Scholar] [CrossRef]
- Deng, C.; Huang, Q.; Zhu, X.; Hu, Q.; Su, W.; Qian, J.; Dong, L.; Li, B.; Fan, M.; Liang, C. The influence of Mn-doped CeO2 on the activity of CuO/CeO2 in CO oxidation and NO+CO model reaction. Appl. Surf. Sci. 2016, 389, 1033–1049. [Google Scholar] [CrossRef]
- Hu, H.; Cai, S.; Li, H.; Huang, L.; Shi, L.; Zhang, D. Mechanistic Aspects of deNOx Processing over TiO2 Supported Co–Mn Oxide Catalysts: Structure–Activity Relationships and In Situ DRIFTs Analysis. ACS Catal. 2015, 5, 6069–6077. [Google Scholar] [CrossRef]
- Yang, W.; Su, Z.; Xu, Z.; Yang, W.; Peng, Y.; Li, J. Comparative study of α-, β-, γ-and δ-MnO2 on toluene oxidation: Oxygen vacancies and reaction intermediates. Appl. Catal. B-Environ. 2020, 260, 118150. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, W.; Zhao, H.; Wang, M.; Ge, B.; Shao, X.; Li, W. Controlling oxygen vacancies through gas-assisted hydrothermal method and improving the capacitive properties of MnO2 nanowires. Appl. Surf. Sci. 2019, 491, 24–31. [Google Scholar] [CrossRef]
- Ji, J.; Lu, X.; Chen, C.; He, M.; Huang, H. Potassium-modulated δ-MnO2 as robust catalysts for formaldehyde oxidation at room temperature. Appl. Catal. B-Environ. 2020, 260, 118210. [Google Scholar] [CrossRef]
- Sui, S.; Zhang, P.; Zhang, H.; Cao, R. Low-temperature catalytic degradation of the odorous pollutant hexanal by γ-MnOOH: The effect of Mn vacancies. Chinese J. Catal. 2019, 40, 1525–1533. [Google Scholar] [CrossRef]
- Fang, G.; Zhu, C.; Chen, M.; Zhou, J.; Tang, B.; Cao, X.; Zheng, X.; Pan, A.; Liang, S. Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 2019, 29, 1808375. [Google Scholar] [CrossRef]
- Hu, X.; Shi, Q.; Zhang, H.; Wang, P.; Zhan, S.; Li, Y. NH3-SCR performance improvement over Mo modified Mo(x)-MnOx nanorods at low temperatures. Catal. Today 2017, 297, 17–26. [Google Scholar] [CrossRef]
- Wang, C.; Sun, L.; Cao, Q.; Hu, B.; Huang, Z.; Tang, X. Surface structure sensitivity of manganese oxides for low-temperature selective catalytic reduction of NO with NH3. Appl. Catal. B-Environ. 2011, 101, 598–605. [Google Scholar] [CrossRef]
- Fang, N.; Guo, J.; Shu, S.; Luo, H.; Chu, Y.; Li, J. Enhancement of low-temperature activity and sulfur resistance of Fe0.3Mn0.5Zr0.2 catalyst for NO removal by NH3-SCR. Chem. Eng. J. 2017, 325, 114–123. [Google Scholar] [CrossRef]
- Wang, X.; Ma, H.; Li, B.; Wang, Y.; Zhang, S.; Li, W.; Li, S. A superior cerium-tungsten bimetal oxide catalyst with flower-like structure for selective catalytic reduction of NOx by NH3. Chem. Eng. J. 2022, 435, 134892. [Google Scholar] [CrossRef]
- Fang, X.; Liu, Y.; Cheng, Y.; Cen, W. Mechanism of Ce-modified birnessite-MnO2 in promoting SO2 poisoning resistance for low-temperature NH3-SCR. ACS Catal. 2021, 11, 4125–4135. [Google Scholar] [CrossRef]
- Yang, J.; Ren, S.; Su, Z.; Yao, L.; Cao, J.; Jiang, L.; Hu, G.; Kong, M.; Yang, J.; Liu, Q. In situ IR comparative study on N2O formation pathways over different valence states manganese oxides catalysts during NH3–SCR of NO. Chem. Eng. J. 2020, 397, 125446. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, Z.; Zhang, X.; Fan, Y.; Wang, X.; Liu, D.; Li, X.; Gong, X.; Guo, W.; Ren, H. Selective Catalytic Reduction of NO by NH3 and SOx Poisoning Mechanisms on Mn3O4 Catalysts: A Density Functional Investigation. Catalysts 2025, 15, 241. [Google Scholar] [CrossRef]
- Li, Y.; Hou, Y.; Zhang, Y.; Yang, Y.; Huang, Z. Confinement of MnOx@Fe2O3 core-shell catalyst with titania nanotubes: Enhanced N2 selectivity and SO2 tolerance in NH3-SCR process. J. Colloid Interface Sci. 2022, 608, 2224–2234. [Google Scholar] [CrossRef]
- Liu, H.; Fan, Z.; Sun, C.; Yu, S.; Feng, S.; Chen, W.; Chen, D.; Tang, C.; Gao, F.; Dong, L. Improved activity and significant SO2 tolerance of samarium modified CeO2-TiO2 catalyst for NO selective catalytic reduction with NH3. Appl. Catal. B-Environ. 2019, 244, 671–683. [Google Scholar] [CrossRef]
- Liu, F.; He, H.; Ding, Y.; Zhang, C. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3. Appl. Catal. B-Environ. 2009, 93, 194–204. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, S.; Li, J.; Ma, L. Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS. Appl. Catal. B-Environ. 2014, 144, 90–95. [Google Scholar] [CrossRef]
- Underwood, G.M.; Miller, T.M.; Grassian, V.H. Transmission FT-IR and Knudsen Cell Study of the Heterogeneous Reactivity of Gaseous Nitrogen Dioxide on Mineral Oxide Particles. J. Phys. Chem. A 1999, 103, 6184–6190. [Google Scholar] [CrossRef]
- GB/T 38219-2019; Testing standard of catalysts for flue gas denitration. China National Institute of Standardization: Beijing, China, 2019.
- Nguyen, M.-T.; Seriani, N.; Gebauer, R. Defective α-Fe2O3(0001): An ab Initio Study. ChemPhysChem 2014, 15, 2930–2935. [Google Scholar] [CrossRef]
- Shi, C.; Sun, L.; Qin, H.; Wang, X.; Li, L.; Hu, J. Adsorption properties of CO molecule on the orthorhombic structure LaMnO3 (010) surface. Comput. Mater. Sci. 2015, 98, 83–87. [Google Scholar] [CrossRef]
Catalyst | Surface Area(m2/g) | Pore Volume (cm3/g) | Average Pore (nm) |
---|---|---|---|
α-MnO2-N2 | 50.01 | 0.31 | 27.68 |
α-MnO2-AIR | 46.69 | 0.32 | 32.24 |
Sample | Relative Content (%) | ||||
---|---|---|---|---|---|
Oα | Oβ | Mn2+ | Mn3+ | Mn4+ | |
α-MnO2-N2 | 49.95 | 50.05 | 11.78 | 59.70 | 28.61 |
α-MnO2-AIR | 38.04 | 61.96 | 16.12 | 51.38 | 32.50 |
Sample | Weak Acid Area (a.u.) | Medium Acid Area (a.u.) | Strong Acid Area (a.u.) | Total Acid Area (a.u.) |
---|---|---|---|---|
α-MnO2-N2 | 561.46 | 547.70 | 2246.84 | 3356 |
α-MnO2-AIR | 451.03 | 346.70 | 2228.22 | 3025 |
Model | Vo Formation Energy/eV | NO Adsorption Energy/eV | NH3 Adsorption Energy/eV |
---|---|---|---|
MnO2 (211) | - | −1.52 | −107.92 |
Vo-MnO2 (211) | 1.62 | −1.65 | −109.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Dai, X.; Li, J. Oxygen Vacancy-Driven Improvement of NH3-SCR Performance over α-MnO2: Mechanistic Insights. Catalysts 2025, 15, 607. https://doi.org/10.3390/catal15070607
Wu H, Dai X, Li J. Oxygen Vacancy-Driven Improvement of NH3-SCR Performance over α-MnO2: Mechanistic Insights. Catalysts. 2025; 15(7):607. https://doi.org/10.3390/catal15070607
Chicago/Turabian StyleWu, Hangmi, Xiaoyu Dai, and Jiangling Li. 2025. "Oxygen Vacancy-Driven Improvement of NH3-SCR Performance over α-MnO2: Mechanistic Insights" Catalysts 15, no. 7: 607. https://doi.org/10.3390/catal15070607
APA StyleWu, H., Dai, X., & Li, J. (2025). Oxygen Vacancy-Driven Improvement of NH3-SCR Performance over α-MnO2: Mechanistic Insights. Catalysts, 15(7), 607. https://doi.org/10.3390/catal15070607