ZIF-L/PBA-Derived Self-Supporting Ni-Doped CoFeP Electrocatalysts for Bifunctional Water Splitting
Abstract
1. Introduction
2. Results and Discussion
2.1. Catalyst Synthesis and Characterization
2.2. Hydrogen Evolution Reaction Performance
2.3. Oxygen Evolution Reaction Performance
2.4. Overall Water Splitting Performance
3. Experimental Section
3.1. Materials and Chemicals
3.2. Sample Synthesis
3.2.1. Synthesis of Ni-Doped Co-MOF Precursor (CoNix-ZIF-L)
3.2.2. Synthesis of CoFeNix-PBA
3.2.3. Synthesis of CoFeNixP
3.3. Material Characterization
3.4. Electrochemical Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, M.; Zhang, C.H.; Li, N.W.; Luan, D.; Yu, L.; Wen, X.; Lou, X.W. Design and Synthesis of Hollow Nanostructures for Electrochemical Water Splitting. Adv. Sci. 2022, 9, 2105135. [Google Scholar] [CrossRef] [PubMed]
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Norskov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Luan, X.; Xiao, Z.; Xiao, W.; Xu, G.; Li, Z.; Wu, Z.; Wang, L. Ultrafast Microwave Synthesis of Ru-Doped MoP with Abundant P Vacancies as the Electrocatalyst for Hydrogen Generation in a Wide pH Range. Inorg. Chem. 2023, 62, 9687–9694. [Google Scholar] [CrossRef]
- Wang, T.; Xie, H.; Chen, M.; D’Aloia, A.; Cho, J.; Wu, G.; Li, Q. Precious Metal-Free Approach to Hydrogen Electrocatalysis for Energy Conversion: From Mechanism Understanding to Catalyst Design. Nano Energy 2017, 42, 69–89. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, A.; Bi, Z.; Wang, X.; Liu, X.; Kong, Q.; Zhang, W.; Mai, L.; Hu, G. MOF-on-MOF-Derived Ultrafine Fe2P-Co2P Heterostructures for High-Efficiency and Durable Anion Exchange Membrane Water Electrolyzers. ACS Nano 2023, 17, 24070–24079. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yan, Y.; He, T.; Zhan, K.; Yang, J.; Zhao, B.; Qi, K.; Xia, B.Y. Supercritical CO2-Assisted Synthesis of NiFe2O4/Vertically Aligned Carbon Nanotube Arrays Hybrid as a Bifunctional Electro catalyst for Efficient Overall Water Splitting. Carbon 2019, 145, 201–208. [Google Scholar] [CrossRef]
- He, Q.; Han, L.; Tao, K. Oxygen vacancy modulated Fe-doped Co3O4 hollow nanosheet arrays for efficient oxygen evolution reaction. Chem. Commun. 2024, 60, 1116. [Google Scholar] [CrossRef]
- Ding, J.; Fan, T.; Shen, K.; Li, Y. Electrochemical synthesis of amorphous metal hydroxide microarrays with rich defects from MOFs for efficient electrocatalytic water oxidation. Appl. Catal. B-Environ. 2021, 292, 120174. [Google Scholar] [CrossRef]
- Shen, K.; Tang, Y.; Zhou, Q.; Zhang, Y.; Ge, W.; Shai, X.; Deng, S.; Yang, P.; Deng, S.; Wang, J. Metal-organic framework-derived S-NiFe PBA coupled with NiFe layered double hydroxides as Mott-Schottky electrocatalysts for efficient alkaline oxygen evolution reaction. Chem. Eng. J. 2023, 471, 144827. [Google Scholar] [CrossRef]
- Soltani, M.; Amin, H.M.A.; Cebe, A.; Ayata, S.; Baltruschat, H. Metal-Supported Perovskite as an Efficient Bifunctional Electrocatalyst for Oxygen Reduction and Evolution: Substrate Effect. J. Electrochem. Soc. 2021, 168, 034504. [Google Scholar] [CrossRef]
- Amin, H.M.A.; Zan, L.; Baltruschat, H. Boosting the bifunctional catalytic activity of Co3O4 on silver and nickel substrates for the alkaline oxygen evolution and reduction reactions. Surf. Interfaces 2024, 54, 105218. [Google Scholar] [CrossRef]
- Lee, L.; Jeong, Q.; Hwang, Y.J.; An, B.; Lee, H.; Jeong, H.; Kim, G.; Park, Y.; Kim, M.; Ha, D. Basics, developments, and strategies of transition metal phosphides toward electrocatalytic water splitting: Beyond noble metal catalysts. J. Mater. Chem. A 2024, 12, 28574–28594. [Google Scholar] [CrossRef]
- Hu, E.; Ning, J.; Zhao, D.; Xu, C.; Lin, Y.; Zhong, Y.; Zhang, Z.; Wang, Y.; Hu, Y. A Room-Temperature Postsynthetic Ligand Exchange Strategy to Construct Mesoporous Fe-Doped CoP Hollow Triangle Plate Arrays for Efficient Electrocatalytic Water Splitting. Small 2018, 14, 1704233. [Google Scholar] [CrossRef]
- Wang, L.; He, W.; Yin, D.; Xie, Y.; Zhang, H.; Ma, Q.; Yu, W.; Yang, Y.; Dong, X. Achieving efficient urea electrolysis by spatial confinement effect and heterostructure. Chem. Eng. J. 2023, 463, 142254. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, Q.; Du, X.; Zhang, X. Mn-doped nickel-copper phosphides as oxygen evolution reaction electrocatalyst in alkaline seawater solution. Int. J. Hydrogen Energ. 2024, 69, 895–904. [Google Scholar] [CrossRef]
- Arunkumar, P.; Gayathri, S.; Han, J.H. Impact of an Incompatible Atomic Nickel-Incorporated Metal−Organic Framework on Phase Evolution and Electrocatalytic Activity of Ni-Doped Cobalt Phosphide for the Hydrogen Evolution Reaction. ACS Appl. Energy Mater. 2022, 5, 2975–2992. [Google Scholar] [CrossRef]
- Huang, J.; Li, J.; Liu, R.; Wang, R.; Luo, Z.; Zou, P.; Zhu, X.; Liao, Q. Oxygen evolution reaction enhancement enabled by a Ni-doped cobalt-based phosphate electrode with hierarchical pore structures. Int. J. Hydrogen Energ. 2024, 64, 724–732. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, Y.; Ma, T.; Yang, C.; Peng, Y.; Zhou, Z.; Zhou, M.; Li, S.; Wang, Y.; Cheng, C. Designing MOF Nano-architectures for Electrochemical Water Splitting. Adv. Mater. 2021, 33, 2006042. [Google Scholar] [CrossRef]
- Afshan, M.; Sachdeva, P.K.; Rani, D.; Das, S.; Pahuja, M.; Siddiqui, S.A.; Rani, S.; Ghosh, R.; Chaudhary, N.; Jyoti; et al. Porous Carbon Template Decorated with MOF Driven Bimetallic Phosphide: A Suitable Heterostructure for the Production of Uninterrupted Green Hydrogen via Renewable Energy Storage Device. Small 2023, 230, 4399. [Google Scholar] [CrossRef]
- Yang, H.; Liu, J.; Chen, Z.; Wang, R.; Fei, B.; Liu, H.; Guo, Y.; Wu, R. Unconventional bi-vacancies activating inert Prussian blue analogues nanocubes for efficient hydrogen evolution. Chem. Eng. J. 2021, 420, 127671. [Google Scholar] [CrossRef]
- Song, X.; Song, S.; Wang, D.; Zhang, H. Prussian Blue Analogs and Their Derived Nanomaterials for Electrochemical Energy Storage and Electrocatalysis. Small Methods 2021, 5, 2001000. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Guan, B.; Xia, B.; Lou, X.W. Designed Formation of Co3O4/NiCo2O4 Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties. J. Am. Chem. Soc. 2015, 137, 5590–5595. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Ma, X.; Gao, Y.; Cao, Y.; Hu, H.; Liu, W.; Zhang, Q.; Huang, Q.; Song, M.; Chen, K.; et al. Domain-limited anchoring of nano-Co2P on carbon cloth fibers by in-situ carbonization as a high-stability self-supporting electrode for hydrogen evolution reaction. J. Alloy Compd. 2025, 1026, 180450. [Google Scholar] [CrossRef]
- He, B.; Xu, C.; Tang, Y.; Qian, Y.; Liu, H.; Hao, Q.; Su, Z. Facile fabrication of a hierarchical NiCoFeP hollow nanoprism for efficient oxygen evolution in the Zn–air battery. J. Mater. Chem. A 2019, 7, 24964–24972. [Google Scholar] [CrossRef]
- Gu, J.; Wei, Y.; Li, Y.; Wei, T.; Jin, Z. Ultrasensitive determination of quercetin using electrochemical sensor based on nickel doping zinc-based zeolite imidazole frame with a four-point star morphology. J. Appl. Electrochem. 2025, 55, 163–175. [Google Scholar] [CrossRef]
- Zhao, A.; Peng, J.; Mao, W.; Wang, Q.; Zhu, Y.; Peng, N. Fe-Co PBA/rGO interface strategy enabling fast Al3+ intercalation for stable aqueous Al-ion batteries. Chem. Eng. J. 2024, 493, 152790. [Google Scholar] [CrossRef]
- Diao, F.; Rykær Kraglund, M.; Cao, H.; Yan, X.; Liu, P.; Engelbrekt, C.; Xiao, X. Moderate heat treatment of CoFe prussian blue analogues for enhanced oxygen evolution reaction performance. J. Energy Chem. 2023, 78, 476–486. [Google Scholar] [CrossRef]
- Amin, H.M.A.; Bondue, C.J.; Eswara, S.; Kaiser, U.; Baltruschat, H. Bifunctional Catalyst for Oxygen Reduction and Evolution: Spectroscopic, Microscopic and Electrochemical Characterization. Electrocatalysis 2017, 8, 540–553. [Google Scholar] [CrossRef]
- Guo, M.; Song, S.; Zhang, S.; Yan, Y.; Zhan, K.; Yang, J.; Zhao, B. Fe-Doped Ni−Co Phosphide Nanoplates with Planar Defects as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Sustain. Chem. Eng. 2020, 8, 7436–7444. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, X.; Mi, L.; Jiu, C.; Zhang, J.; Cui, S.; Feng, X.; Cao, Y.; Shen, C. High-Performance Flexible Freestanding Anode with Hierarchical 3D Carbon-Networks/Fe7S8/Graphene for Applicable Sodium-Ion Batteries. Adv. Mater. 2019, 31, 1806664. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Y.; Xiao, X.; Shan, Y.; Bai, Y.; Xue, H.G.; Pang, H.; Tian, Z.; Xu, Q. In Situ Anchoring Polymetallic Phosphide Nanoparticles within Porous Prussian Blue Analogue Nanocages for Boosting Oxygen Evolution Catalysis. Nano Lett. 2021, 21, 3016–3025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Dong, W.; Zhang, Y.; Song, X.; Jiang, H. Precisely anchoring Ni-doped cobalt phosphide nanoparticles on phosphatized carbon nitride for efficient photocatalytic water splitting. Chem. Eng. J. 2023, 472, 144898. [Google Scholar] [CrossRef]
- Jiang, B.; Wan, Z.; Kang, Y.; Guo, Y.; Henzie, J.; Na, J.; Li, H.; Wang, S.; Bando, Y.; Sakka, Y.; et al. Auto-programmed synthesis of metallic aerogels: Core-shell Cu@Fe@Ni aerogels for efficient oxygen evolution reaction. Nano Energy 2021, 81, 105644. [Google Scholar] [CrossRef]
- Kim, D.; Park, S.; Yan, B.; Hong, H.; Cho, Y.; Kang, J.; Qin, X.; Yoo, T.; Piao, Y. Synthesis of Remarkably Thin Co–Fe Phosphide/Carbon Nanosheet for Enhanced Oxygen Evolution Reaction Electrocatalysis Driven by Readily Generated Active Oxyhydroxide. ACS Appl. Energy Mater. 2022, 5, 2400–2411. [Google Scholar] [CrossRef]
- Guo, Y.; Yan, L.; Li, J.; Shi, Z.; Liu, Z.; Fan, L.; Cai, W. Zeolitic imidazolate framework induced CoFe-PBA/Carbides hollow cube toward robust bi-functional electrochemical oxygen reaction. Chem. Eng. J. 2023, 472, 144818. [Google Scholar] [CrossRef]
- Lv, J.; Liu, P.; Li, R.; Wang, L.; Zhang, K.; Zhou, P.; Huang, X.; Wang, G. Constructing accelerated charge transfer channels along V-Co-Fe via introduction of V into CoFe-layered double hydroxides for overall water splitting. Appl. Catal. B-Environ. 2021, 298, 120587. [Google Scholar] [CrossRef]
- Kandel, M.R.; Pan, U.N.; Dhakal, P.P.; Ghising, R.B.; Sidra, S.; Kim, D.H.; Kim, N.H.; Lee, J.H. Manganese-Doped Bimetallic (Co,Ni)2P Integrated CoP in N,S Co−Doped Carbon: Unveiling a Compatible Hybrid Electrocatalyst for Overall Water Splitting. Small 2024, 20, 2307241. [Google Scholar] [CrossRef]
- Xu, D.; Liu, S.; Zhang, M.; Xu, L.; Gao, H.; Yao, J. Manipulating the Dynamic Self-Reconstruction of CoP Electrocatalyst Driven by Charge Transport and Ion Leaching. Small 2023, 19, 2300201. [Google Scholar] [CrossRef]
- Farooq, K.; Murtaza, M.; Kiran, L.; Farooq, K.; Shah, W.A.; Waseem, A. Construction of an MXene/MIL Fe-53/ZIF-67 derived bifunctional electrocatalyst for efficient overall water splitting. Nanoscale Adv. 2025, 7, 1561. [Google Scholar] [CrossRef]
- Tang, D.; Ma, Y.; Liu, Y.; Wang, K.; Liu, Z.; Li, W.; Li, J. Amorphous three-dimensional porous Co3O4 nanowire network toward superior OER catalysis by lithium-induced. J. Alloys Compd. 2022, 893, 162287. [Google Scholar] [CrossRef]
- Zhao, Z.; Yu, M.; Liu, Y.; Zeng, T.; Ye, R.; Liu, Y.; Hu, J.; Li, A. Regulating Lattice Oxygen of Co3O4/CeO2 Heterojunction Nanonetworks for Enhanced Oxygen Evolution. Adv. Energy Sustain. Res. 2023, 4, 2300123. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, S.; Lin, J.; Hu, W.; Li, C.M. Synergic effect of Fe-doping and Ni3S2/MnS heterointerface to boost efficient oxygen evolution reaction. Electrochim. Acta 2022, 430, 141088. [Google Scholar] [CrossRef]
- Ma, Y.; Luo, S.; Wang, K.; Wang, Y.; Qiu, X.; Liu, M.; Liu, Y.; Li, W.; Li, J. Lithium-induced amorphization of Ni–Fe layered-double-hydroxide for highly efficient oxygen evolution. Electrochim. Acta 2021, 389, 138523. [Google Scholar] [CrossRef]
- Li, A.; Tang, X.; Cao, R.; Song, D.; Wang, F.; Yan, H.; Chen, H.; Wei, Z. Directed Surface Reconstruction of Fe Modified CO2VO4 Spinel Oxides for Water Oxidation Catalysts Experiencing Self-Terminating Surface Deterioration. Adv. Mater. 2024, 36, 2401818. [Google Scholar] [CrossRef]
- Fan, K.; Zou, H.; Ding, Y.; Dharanipragada, N.; Fan, L.; Inge, A.K.; Duan, L.; Zhang, B.; Sun, L. Sacrificial W Facilitates Self-Reconstruction with Abundant Active Sites for Water Oxidation. Small 2022, 18, 2107249. [Google Scholar] [CrossRef]
- Amin, H.M.A.; Attia, M.; Tetzlaff, D.; Apfel, U. Tailoring the Electrocatalytic Activity of Pentlandite FexNi9-XS8 Nanoparticles via Variation of the Fe: Ni Ratio for Enhanced Water Oxidation. ChemElectroChem 2021, 8, 3863–3874. [Google Scholar] [CrossRef]
- Amin, H.M.A.; Apfel, U. Metal-Rich Chalcogenides as Sustainable Electrocatalysts for Oxygen Evolution and Reduction: State of the Art and Future Perspectives. Eur. J. Inorg. Chem. 2020, 28, 2679–2690. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, J.; Dai, L.; Qi, Y.; Liang, K.; Bao, J.; Ren, Y. Interface Engineering Overall Seawater Splitting of Self-Supporting CeOx@NiCo2O4 Arrays. Inorg. Chem. 2024, 63, 6016–6025. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhao, W.; Wang, L.; Gao, S.; Li, Z.; Hu, J.; Jiang, Q. Anion substitution induced vacancy regulating of cobalt sulfoselenide toward electrocatalytic overall water splitting. J. Colloid. Interf. Sci. 2023, 630, 580–590. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, M.; Tian, Y.; Zhao, G.; Huang, J.; Xu, X. In-situ growth of 3D hierarchical γ-FeOOH/Ni3S2 heterostructure as high performance electrocatalyst for overall water splitting. J. Colloid. Interf. Sci. 2023, 639, 24–32. [Google Scholar] [CrossRef]
- Huang, Y.; Tian, F.; Liu, Y.; Li, M.; Xu, S.; Yu, Y.; Li, J.; Yang, W.; Li, H. Mesoporous cobalt ferrite phosphides/reduced graphene oxide as highly effective electrocatalyst for overall water splitting. J. Colloid. Interf. Sci. 2022, 605, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.A.; Hunge, Y.M.; Kang, S.W. Highly efficient porous morphology of cobalt molybdenum sulfide for overall water splitting reaction. Electrochim. Acta 2022, 405, 139768. [Google Scholar] [CrossRef]
- Liu, G.; Wang, K.; Wang, L.; Wang, B.; Lin, Z.; Chen, X.; Hua, Y.; Zhu, W.; Li, H.; Xia, J. A Janus cobalt nanoparticles and molybdenum carbide decorated N-doped carbon for high-performance overall water splitting. J. Colloid. Interf. Sci. 2021, 583, 614–625. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Qiu, F.; Yuan, W.; Guo, M.; Lu, Z.H. Nitrogen-doped carbon-decorated yolk-shell CoP@FeCoP micro-polyhedra derived from MOF for efficient overall water splitting. Chem. Eng. J. 2021, 403, 126312. [Google Scholar] [CrossRef]
- Ibraheem, S.; Li, X.; Shah, S.S.A.; Najam, T.; Yasin, G.; Iqbal, R.; Hussain, S.; Ding, W.; Shahzad, F. Tellurium Triggered Formation of Te/Fe-NiOOH Nanocubes as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Appl. Mater. Interfaces 2021, 13, 10972–10978. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Ma, Z.; Wang, L.; Yu, K.; Wang, Z.; Wang, J.; Zhao, B. Ag engineered NiFe-LDH/NiFe2O4 Mott-Schottky heterojunction electrocatalyst for highly efficient oxygen evolution and urea oxidation reactions. J. Colloid. Interf. Sci. 2024, 665, 313–322. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Ni, H.; Yu, J.; Zhang, J.; Zhao, B. ZIF-L/PBA-Derived Self-Supporting Ni-Doped CoFeP Electrocatalysts for Bifunctional Water Splitting. Catalysts 2025, 15, 576. https://doi.org/10.3390/catal15060576
Wang L, Ni H, Yu J, Zhang J, Zhao B. ZIF-L/PBA-Derived Self-Supporting Ni-Doped CoFeP Electrocatalysts for Bifunctional Water Splitting. Catalysts. 2025; 15(6):576. https://doi.org/10.3390/catal15060576
Chicago/Turabian StyleWang, Lanqi, Hui Ni, Jianing Yu, Jingyuan Zhang, and Bin Zhao. 2025. "ZIF-L/PBA-Derived Self-Supporting Ni-Doped CoFeP Electrocatalysts for Bifunctional Water Splitting" Catalysts 15, no. 6: 576. https://doi.org/10.3390/catal15060576
APA StyleWang, L., Ni, H., Yu, J., Zhang, J., & Zhao, B. (2025). ZIF-L/PBA-Derived Self-Supporting Ni-Doped CoFeP Electrocatalysts for Bifunctional Water Splitting. Catalysts, 15(6), 576. https://doi.org/10.3390/catal15060576