Evidence of Enhanced Molecular Oxygen Activity Induced by the Synergistic Effect of Oxygen Vacancies and Ag Nanoparticles in Ag3PO4
Abstract
1. Introduction
2. Result and Discussion
2.1. Characterizations of Photocatalysts
2.2. Excitation and Separation of Charges
2.3. Performances of Catalysts
2.4. Products of the MOA
2.5. Mechanisms of Photocatalytic MOA Enhancement
3. Materials and Methods
3.1. Catalysts Preparation Process
3.2. The Performance of Catalysts
4. Conclusions
- ➢
- An enhanced photocatalytic degradation of cylindrospermopsin by Ag3PO4 with Ag0 and OVs.
- ➢
- Synergistic effects of oxygen vacancies and silver nanoparticles boost molecular oxygen activation.
- ➢
- Improved charge separation and ROS generation for efficient environmental remediation.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scarlett, K.R.; Kim, S.; Lovin, L.M.; Chatterjee, S.; Scott, J.T.; Brooks, B.W. Global scanning of cylindrospermopsin: Critical review and analysis of aquatic occurrence, bioaccumulation, toxicity and health hazards. Sci. Total Environ. 2020, 738, 139807. [Google Scholar] [CrossRef] [PubMed]
- Abbas, T.; Kajjumba, G.W.; Ejjada, M.; Masrura, S.U.; Marti, E.J.; Khan, E.; Jones-Lepp, T.L. Recent advancements in the removal of cyanotoxins from water using conventional and modified adsorbents—A contemporary review. Water 2020, 12, 2756. [Google Scholar] [CrossRef]
- Schneider, M.; Bláha, L. Advanced oxidation processes for the removal of cyanobacterial toxins from drinking water. Envrion. Sci. Eur. 2020, 32, 94. [Google Scholar] [CrossRef]
- Peng, Q.; Yu, J.; Pang, Y.; Deng, L.; Tang, J.; Wang, J.; Wu, N.; Tang, L. Prospects of advanced oxidation processes for high-salinity coking wastewater treatment: A strategy to support sustainable management. Resour. Conserv. Recycl. 2025, 212, 107880. [Google Scholar] [CrossRef]
- Loeb, S.K.; Alvarez, P.J.J.; Brame, J.A.; Cates, E.L.; Choi, W.; Crittenden, J.; Dionysiou, D.D.; Li, Q.; Li-Puma, G.; Quan, X.; et al. The technology horizon for photocatalytic water treatment: Sunrise or sunset? Environ. Sci. Technol. 2019, 53, 2937–2947. [Google Scholar] [CrossRef]
- Zhang, W.; Bian, Z.; Peng, Y.; Tang, H.; Wang, H. Dual-function oxygen vacancy of BiOBr intensifies pollutant adsorption and molecular oxygen activation to remove tetracycline hydrochloride. Chem. Eng. J. 2023, 451, 138731. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Jin, X.; Bohan, A.; Nan, B.; Li, L.; Zhang, L.; Shi, J. Cyclable CuI-Ov-Mn sites accelerate O2 activation to enhance photo-driven catalytic oxidation performance. Appl. Catal. B Environ. Energy 2024, 353, 124110. [Google Scholar] [CrossRef]
- Shang, H.; Li, M.; Li, H.; Huang, S.; Mao, C.; Ai, Z.; Zhang, L. Oxygen vacancies promoted the selective photocatalytic removal of NO with blue TiO2 via simultaneous molecular oxygen activation and photogenerated hole annihilation. Environ. Sci. Technol. 2019, 53, 6444–6453. [Google Scholar] [CrossRef]
- Boukhvalov, D.W.; Politano, G.G.; D’Olimpio, G.; Politano, A. 2D semiconductor nanostructures for solar-driven photocatalysis: Unveiling challenges and prospects in air purification, sustainable energy harvesting, and water treatment. Adv. Sustain. Syst. 2024, 8, 2400018. [Google Scholar] [CrossRef]
- Xu, C.J.; Wang, J.Y.; Wang, D.S.; Qi, H.; Wang, L.B.; Cheng, R.Q.; Ta, N.; Shi, J.H.; Zhang, W.Y.; Chen, J.P.; et al. Defect-engineered CuxO/CeO2 catalysts: Enhanced low-temperature CO preferential oxidation through dual-promotion of CO adsorption and O2 activation. Mol. Catal. 2025, 581, 115148. [Google Scholar] [CrossRef]
- Zou, Y.; Li, X.; Zhao, Y.Q.; Liu, X.L.; Xie, S.H.; Liu, F.D.; Zhu, T.Y. Boosting oxygen activation via defect engineering to regulate co oxidation pathway over Pt/TiO2 catalysts. ACS Catal. 2025, 15, 6346–6360. [Google Scholar] [CrossRef]
- Zheng, F.; Lu, J.Y.; Zheng, H.X.; Xu, Q.; Jin, Y.J. Acid-etched defect engineering in spinel CoMn2O4: Synergizing oxygen and cation vacancies to unlock high NH3-SCR performance. J. Environ. Manag. 2025, 382, 125392. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.J.; Sun, K.L.; Wan, J.; Ma, Y.A.; Wang, Y.; Liu, L.; Zhu, B.C.; Fu, F. Dual-site oxygen activation for enhanced photocatalytic aerobic oxidation by S-scheme Ni2P/Bi3O4Br-OVs heterojunction. Chem. Eng. J. 2023, 452, 139425. [Google Scholar] [CrossRef]
- Fattakhova-Rohlfing, D.; Zaleska, A.; Bein, T. Three-dimensional titanium dioxide nanomaterials. Chem. Rev. 2014, 114, 9487–9558. [Google Scholar] [CrossRef]
- Wang, X.Y.; Xue, S.K.; Huang, M.R.; Lin, W.; Hou, Y.D.; Yu, Z.Y.; Anpo, M.; Yu, J.C.; Zhang, J.S.; Wang, X.C. Pressure-Induced Engineering of Surface Oxygen Vacancies on Metal Oxides for Heterogeneous Photocatalysis. J. Am. Chem. Soc. 2025, 147, 4945–4951. [Google Scholar] [CrossRef]
- Yu, Z.Z.; Yu, D.X.; Wang, X.Y.; Huang, M.R.; Hou, Y.D.; Lin, W.; Anpo, M.; Yu, J.C.; Zhang, J.S.; Wang, X.C. Photoinduced formation of oxygen vacancies on Mo-Incorporated WO3 for direct oxidation of benzene to phenol by air. J. Am. Chem. Soc. 2025, 147, 13885–13892. [Google Scholar] [CrossRef]
- Hazari, N.; Melvin, P.R.; Beromi, M.M. Well-defined nickel and palladium precatalysts for cross-coupling. Nat. Rev. Chem. 2017, 1, 0025. [Google Scholar] [CrossRef]
- Li, H.; Jiang, F.; Drdova, S.; Shang, H.; Zhang, L.; Wang, J. Dual-function surface hydrogen bonds enable robust O2 activation for deep photocatalytic toluene oxidation. Catal. Sci. Technol. 2021, 11, 319–331. [Google Scholar] [CrossRef]
- Vatti, S.K.; Gupta, S.; Raj, R.P.; Selvam, P. Periodic mesoporous titania with anatase and bronze phases—The new generation photocatalyst: Synthesis, characterisation, and application in environmental remediation. New J. Chem. 2020, 44, 16269–16284. [Google Scholar] [CrossRef]
- Jin, X.; Lv, C.; Zhou, X.; Zhang, C.; Meng, Q.; Liu, Y.; Chen, G. Molecular adsorption promotes carrier migration: Key step for molecular oxygen activation of defective Bi4O5I2. Appl. Catal. B Environ. 2018, 226, 53–60. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, H.; Wang, C.; Guan, R.; Duan, R.; Fang, Y.; Hu, X. Activation of molecular oxygen in selectively photocatalytic organic conversion upon defective TiO2 nanosheets with boosted separation of charge carriers. Appl. Catal. B Environ. 2020, 262, 118258. [Google Scholar] [CrossRef]
- Liu, D.J.; Zhang, C.Y.; Shi, J.W.; Li, L.B.; Liu, W.; Liu, M.C.; Su, J.Z.; Liu, J.; Guo, L.J. Constructing asymmetric dual active sites of Ag single atoms and nitrogen defects on carbon nitride for enhanced photocatalytic H2O2 production. J. Mater. Sci. Technol. 2025, 223, 56–65. [Google Scholar] [CrossRef]
- Xu, D.; Li, G.; Dong, Y.; Wang, Q.; Zhang, J.; Yang, T.; Pang, S.; Zhang, G.; Lv, L.; Xia, Y.; et al. Photocatalytic O2 activation enhancement and algae inactivation mechanism of BiO2−x/Bi3NbO7 van der Waals heterojunction. Appl. Catal. B Environ. 2022, 312, 121402. [Google Scholar] [CrossRef]
- Yang, Z.F.; Xia, X.N.; Shao, L.H.; Wang, L.L.; Liu, Y.T. Efficient photocatalytic degradation of tetracycline under visible light by Z-scheme Ag3PO4/mixed-valence MIL-88A(Fe) heterojunctions: Mechanism insight, degradation pathways and DFT calculation. Chem. Eng. J. 2021, 410, 128454. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Li, N.; Li, J.; He, J.; Xu, S.; Zhu, Y.; Yao, L.; Lai, Y.; Zhu, R. Ag3PO4-anchored La2Ti2O7 nanorod as a Z-Scheme heterostructure composite with boosted photogenerated carrier separation and enhanced photocatalytic performance under natural sunlight. Environ. Pollut. 2023, 323, 121322. [Google Scholar] [CrossRef]
- Han, H.; Jiang, S.; Zhao, Q.; Jiang, T. Photocatalytic Performance and Degradation Pathways of Z-Scheme BiO2−X-Ag3PO4 Photocatalysts with Oxygen-Deficient Structures. Chemistryselect 2023, 8, e202300957. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, S.; Geng, M.; Sun, M.; Zhang, J.; Zhou, A.; Yin, G. Combination of alkali treatment and Ag3PO4 loading effectively improves the photocatalytic activity of TiO2 nanoflowers. New J. Chem. 2024, 48, 6789–6795. [Google Scholar] [CrossRef]
- Xiao, Y.W.; Li, H.Y.; Yao, B.; Xiao, K.; Wang, Y.D. Hollow g-C3N4@Ag3PO4 core-shell nanoreactor loaded with Au nanoparticles: Boosting photothermal catalysis in confined space. Small 2024, 20, 2308032. [Google Scholar] [CrossRef]
- Anbuvannan, M.; Vinosel, V.M.; Dhatshanamurthi, P.; Rajesh, S.; Ramesh, M.; Kannadasan, N. Investigation of pure TiO2 and BaO-loaded TiO2 nanocomposites with enhanced photocatalytic activities. J. Nanopart. Res. 2025, 27, 49. [Google Scholar] [CrossRef]
- Yan, T.; Guan, W.; Xiao, Y.; Tian, J.; Qiao, Z.; Zhai, H.; Li, W.; You, J. Effect of thermal annealing on the microstructures and photocatalytic performance of silver orthophosphate: The synergistic mechanism of Ag vacancies and metallic Ag. Appl. Surf. Sci. 2017, 391, 592–600. [Google Scholar] [CrossRef]
- Sasikumar, K.; Theanmozhi, M.; Devaraji, P.; Gopinath, C.S.; Saravanakumar, B.; Michael, R.J.V. Influence of natural carbon template on Ag-ZnO nanocomposites for enhanced supercapacitor, photocatalytic hydrogen production and antifungal activity. Mater. Sci. Semicond. Process. 2025, 193, 109523. [Google Scholar] [CrossRef]
- Hao, L.; Huang, H.; Zhang, Y.; Ma, T. Oxygen vacant semiconductor photocatalysts. Adv. Funct. Mater. 2021, 31, 2100919. [Google Scholar] [CrossRef]
- Luo, S.; Chen, J.; Huang, Z.; Liu, C.; Fang, M. Controllable synthesis of titania-supported bismuth oxyiodide heterostructured nanofibers with highly exposed (1 1 0) bismuth oxyiodide facets for enhanced photocatalytic activity. ChemCatChem 2016, 8, 3780–3789. [Google Scholar] [CrossRef]
- Wang, F.; Yang, H.; Zhang, Y.C. Enhanced photocatalytic performance of CuBi2O4 particles decorated with Ag nanowires. Mater. Sci. Semicond. Process. 2018, 73, 58–66. [Google Scholar] [CrossRef]
- Zheng, C.; Yang, H.; Cui, Z.; Zhang, H.; Wang, X. A novel Bi4Ti3O12/Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance. Nanoscale Res. Lett. 2017, 12, 608. [Google Scholar] [CrossRef]
- Bui, D.P.; Pham, M.T.; Tran, H.H.; Nguyen, T.D.; Cao, T.M.; Pham, V.V. Revisiting the key optical and electrical characteristics in reporting the photocatalysis of semiconductors. ACS Omega 2021, 6, 27379–27386. [Google Scholar] [CrossRef]
- Ma, Z.; Yi, Z.; Sun, J.; Wu, K. Electronic and photocatalytic properties of Ag3PC4VI (C = O, S, Se): A systemic hybrid DFT study. J. Phys. Chem. C 2012, 116, 25074–25080. [Google Scholar] [CrossRef]
- Jiang, L.B.; Yuan, X.Z.; Zeng, G.M.; Wu, Z.B.; Liang, J.; Chen, X.H.; Leng, L.J.; Wang, H.; Wang, H. Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant. Appl. Catal. B Environ. 2018, 221, 715–725. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, S.H.; Yang, C.P.; Chen, M.; Li, X. Preparation of size-controlled silver phosphate catalysts and their enhanced photocatalysis performance via synergetic effect with MWCNTs and PANI. Appl. Catal. B Environ. 2019, 245, 71–86. [Google Scholar] [CrossRef]
- Zhang, M.M.; Lai, C.; Li, B.S.; Xu, F.H.; Huang, D.L.; Liu, S.Y.; Qin, L.; Fu, Y.K.; Liu, X.G.; Yi, H.; et al. Unravelling the role of dual quantum dots cocatalyst in 0D/2D heterojunction photocatalyst for promoting photocatalytic organic pollutant degradation. Chem. Eng. J. 2020, 396, 125343. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, Y.T.; Li, Y.W.; Hou, Z.X.; Gao, B.Y.; Yue, Q.Y.; Li, Q. Oxygen vacancies-mediated CuO@N-doped carbon nanocomposites for non-radical-dominated photothermal catalytic degradation of contaminants. J. Clean. Prod. 2023, 389, 109523. [Google Scholar] [CrossRef]
- Xu, X.; Yang, N.; Wang, P.; Wang, S.Y.; Xiang, Y.G.; Zhang, X.H.; Ding, X.; Chen, H. Highly intensified molecular oxygen activation on Bi@Bi2MoO6 via a metallic Bi-coordinated facet-dependent effect. ACS Appl. Mater. Interfaces 2020, 12, 1867–1876. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, W.; Zhong, L.L.; Liu, D.M.; Cao, X.Z.; Cui, F.Y. Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation. Appl. Catal. B Environ. 2018, 220, 290–302. [Google Scholar] [CrossRef]
- Huang, J.; Li, D.; Li, R.; Chen, P.; Zhang, Q.; Liu, H.; Lv, W.; Liu, G.; Feng, Y. One-step synthesis of phosphorus/oxygen co-doped g-C3N4/anatase TiO2 Z-scheme photocatalyst for significantly enhanced visible-light photocatalysis degradation of enrofloxacin. J. Hazard. Mater. 2020, 386, 121634. [Google Scholar] [CrossRef]
- Wei, L.-Q.; Ye, B.-H. Cyclometalated Ir–Zr metal–organic frameworks as recyclable visible-light photocatalysts for sulfide oxidation into sulfoxide in water. ACS Appl. Mater. Interfaces 2019, 11, 41448–41457. [Google Scholar] [CrossRef]
- Jadaa, W.; Prakash, A.; Ray, A.K. Photocatalytic degradation of diazo dye over suspended and immobilized TiO2 catalyst in swirl flow reactor: Kinetic modeling. Processes 2021, 9, 1741. [Google Scholar] [CrossRef]
- Li, J.; Wu, X.Y.; Pan, W.F.; Zhang, G.K.; Chen, H. Vacancy-rich monolayer BiO2−x as a highly efficient UV, visible, and near-infrared responsive photocatalyst. Angew. Chem. 2018, 57, 491–495. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, L.; Liu, Y.; Hengchao, E.; Zhao, Z.; Chu, H.; Zhou, X.; Zhang, Y.; Zou, G. Novel synthesis of sulfur-doped Ag3PO4 photocatalyst for efficient degradation of cylindrospermopsin. Chem. Eng. J. 2025, 504, 158462. [Google Scholar] [CrossRef]
Samples | k (min−1) | R2 |
---|---|---|
APO | 0.20 | 0.99 |
APO-100 | 0.24 | 0.99 |
APO-200 | 0.41 | 0.99 |
APO-300 | 0.33 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Yi, F.; Zhou, L.; Xie, W.; Wang, Z.; Chu, H.; Zhou, X.; Zhang, Y. Evidence of Enhanced Molecular Oxygen Activity Induced by the Synergistic Effect of Oxygen Vacancies and Ag Nanoparticles in Ag3PO4. Catalysts 2025, 15, 527. https://doi.org/10.3390/catal15060527
Zhang X, Yi F, Zhou L, Xie W, Wang Z, Chu H, Zhou X, Zhang Y. Evidence of Enhanced Molecular Oxygen Activity Induced by the Synergistic Effect of Oxygen Vacancies and Ag Nanoparticles in Ag3PO4. Catalysts. 2025; 15(6):527. https://doi.org/10.3390/catal15060527
Chicago/Turabian StyleZhang, Xu, Futao Yi, Li Zhou, Weifeng Xie, Zhenqi Wang, Huaqiang Chu, Xuefei Zhou, and Yalei Zhang. 2025. "Evidence of Enhanced Molecular Oxygen Activity Induced by the Synergistic Effect of Oxygen Vacancies and Ag Nanoparticles in Ag3PO4" Catalysts 15, no. 6: 527. https://doi.org/10.3390/catal15060527
APA StyleZhang, X., Yi, F., Zhou, L., Xie, W., Wang, Z., Chu, H., Zhou, X., & Zhang, Y. (2025). Evidence of Enhanced Molecular Oxygen Activity Induced by the Synergistic Effect of Oxygen Vacancies and Ag Nanoparticles in Ag3PO4. Catalysts, 15(6), 527. https://doi.org/10.3390/catal15060527