Study on Electrocatalytic Activity of Metal Oxides
Funding
Conflicts of Interest
List of Contributions
- Li, T.; Liu, W.; Xin, H.; Sha, Q.; Xu, H.; Kuang, Y.; Sun, X. Large-Scale and Simple Synthesis of NiFe(OH)x Electrode derived derived from Raney Ni Precursor for Efficient Alkaline Water Electrolyzer. Catalysts 2024, 14, 296. https://doi.org/10.3390/catal14050296.
- Jing, J.; Liu, W.; Li, T.; Ding, X.; Xu, W.; Ma, M.; Zhou, D.; Li, Y.; Sun, X. One-Step Synthesis of Ultrathin High-Entropy Layered Double Hydroxides for Ampere-Level Water Oxidation. Catalysts 2024, 14, 171. https://doi.org/10.3390/catal14030171.
- Sha, Q.; Shen, J.; Yang, G.; Li, T.; Liu, W.; Kuang, Y.; Sun, X. A Single-Atom Au Catalyst Boosts High-Efficiency Electrochemical Seawater Oxidation. Catalysts 2024, 14, 348. https://doi.org/10.3390/catal14060348.
- Wang, J.; Cao, Y.; Wei, M.; Xiang, P.; Ma, X.; Yuan, X.; Xiang, Y.; Cai, Z. Boosting the Hydrogen Evolution Performance of Ultrafine Ruthenium Electrocatalysts by a Hierarchical Phosphide Array Promoter. Catalysts 2024, 14, 491. https://doi.org/10.3390/catal14080491.
- Naz, I.; Tahira, A.; Mallah, A.B.; Mahar, I.A.; Hayat, A.; Shah, A.A.; Dawi, E.; AbdElKader, A.; Saleem, L.; Ibrahim, R.M.; et al. Utilization of Banana Juice Biomass Waste to Activate CuO/NiO Composites for Electrocatalytic Oxidation of Urea in Alkaline Media. Catalysts 2024, 14, 669. https://doi.org/10.3390/catal14100669.
References
- Xie, H.; Zhao, Z.; Liu, T.; Wu, Y.; Lan, C.; Jiang, W.; Zhu, L.; Wang, Y.; Yang, D.; Shao, Z. A membrane-based seawater electrolyser for hydrogen generation. Nature 2022, 612, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y.; Kenney, M.J.; Meng, Y.; Hung, W.-H.; Liu, Y.; Huang, J.E.; Prasanna, R.; Li, P.; Li, Y.; Wang, L.; et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. USA 2019, 116, 6624–6629. [Google Scholar] [CrossRef] [PubMed]
- Sha, Q.; Wang, S.; Yan, L.; Feng, Y.; Zhang, Z.; Li, S.; Guo, X.; Li, T.; Li, H.; Zhuang, Z.; et al. 10,000-h-stable intermittent alkaline seawater electrolysis. Nature 2025, 639, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Tom, G.; Schmid, S.P.; Baird, S.G.; Cao, Y.; Darvish, K.; Hao, H.; Lo, S.; Pablo-García, S.; Rajaonson, E.M.; Skreta, M.; et al. Self-driving laboratories for chemistry and materials science. Chem. Rev. 2024, 124, 9633–9732. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Morales, D.M.; Liu, M.; Xie, D.; Feng, P.; Lu, Y.; Risch, M.; Oschatz, M.; Petit, T. Metal-free carbon-nitrogen@carbon-type hybrid electrocatalysts for peroxide-producing oxygen reduction reaction. Carbon Future 2024, 1, 9200022. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Li, W.; Wang, L. Recent advances in elaborate interface regulation of BiVO4 photoanode for photoelectrochemical water splitting. Mater. Rep. Energy 2023, 3, 100232. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, C.; Zhang, Y.; Wang, L.; Fan, X.; Zou, L.; Cai, Z.; Jiang, J.; Zhou, S.; Zhang, B.; et al. Controllable thermochemical generation of active defects in the horizontal/vertical MoS2 for enhanced hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2304302. [Google Scholar] [CrossRef]
- Lin, L.; Su, P.; Han, Y.; Xu, Y.; Ni, Q.; Zhang, X.; Xiong, P.; Sun, Z.; Chen, X. Development of noble metal-free electrocatalysts towards acidic water oxidation: From fundamental understanding to state-of-the-art catalysts. eScience 2025, 5, 100264. [Google Scholar] [CrossRef]
- Wang, J.; Jamesh, M.I.; Gao, Q.; Han, B.; Sun, R.; Hsu, H.Y.; Zhou, C.; Cai, Z. Semimetallic hydroxide materials for electrochemical water oxidation. Sci. China Mater. 2024, 67, 1551–1558. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, W.; Li, J.; Yan, Q.; Chen, Z.; Zhou, X.; Li, J.; Gao, R.; Wu, Y.; Li, G.D. Recent development of non-iridium-based electrocatalysts for acidic oxygen evolution reaction. Carbon Neutralization 2024, 3, 1101–1130. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Zhang, J.; Gao, Q.; Han, B.; Sun, R.; Zhou, C.; Cai, Z. Glassy state hydroxide materials for oxygen evolution electrocatalysis. Small 2024, 20, 2312168. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Shi, X.; Feng, S.; Li, J.; Gao, X.; Wu, X.; Li, K.; Qi, A.; You, C.; Tian, X. Design of highly active and durable oxygen evolution catalyst with intrinsic chlorine inhibition property for seawater electrolysis. Nano Mater. Sci. 2024, 6, 413–418. [Google Scholar] [CrossRef]
- Zhang, Y.; Lei, Y.; Yan, Y.; Cai, W.; Huang, J.; Lai, Y.; Lin, Z. Enhancing hydrogen production capability from urine-containing sewage through optimization of urea oxidation pathways. App. Catal. B Environ. 2024, 353, 124064. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Cai, Z. Study on Electrocatalytic Activity of Metal Oxides. Catalysts 2025, 15, 507. https://doi.org/10.3390/catal15060507
Wu X, Cai Z. Study on Electrocatalytic Activity of Metal Oxides. Catalysts. 2025; 15(6):507. https://doi.org/10.3390/catal15060507
Chicago/Turabian StyleWu, Xiaochao, and Zhao Cai. 2025. "Study on Electrocatalytic Activity of Metal Oxides" Catalysts 15, no. 6: 507. https://doi.org/10.3390/catal15060507
APA StyleWu, X., & Cai, Z. (2025). Study on Electrocatalytic Activity of Metal Oxides. Catalysts, 15(6), 507. https://doi.org/10.3390/catal15060507