Interfacial Engineering of S-Scheme WO3/In2S3 Heterojunction for Efficient Solar-Driven CO2 Photoreduction
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Catalysts
3.2.1. Fabrication of WO3 Nanosheets (WO3 NSs)
3.2.2. Construction of WO3/In2S3 Heterojunctions
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, Z.; Xing, X.; Qi, Q.; Li, H.; Han, D.; Song, X.; Tang, X.; Ng, H.; Huo, P. Regulation CN reduction of CO2 products selectivity by adjusting the number of V sites and mechanism exploration. Fuel 2025, 388, 134509. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Perumal, S.; Wang, Y.; Ko, H.; Hwang, Y.; Wang, H.; Yang, T.; Zhao, S.; Kim, Y.D.; et al. Enhancing photocatalytic CO2 reduction to butanol by facet-dependent interfacial engineering of CeO2/Cu2O. Appl. Catal. B. Environ. Energy 2025, 368, 125122. [Google Scholar] [CrossRef]
- Wang, X.; Pan, Y.; Wang, X.; Guo, Y.; Ni, C.; Wu, J.; Hao, C. High performance hybrid supercapacitors assembled with multi-cavity nickel cobalt sulfide hollow microspheres as cathode and porous typha-derived carbon as anode. Ind. Crops Prod. 2022, 189, 115863. [Google Scholar] [CrossRef]
- Yang, W.; Gao, M.; Zhang, Y.; Dai, Y.; Peng, W.; Ji, S.; Ji, Y. Self -driven photoelectrochemical sensor based on Z-type perovskite heterojunction for profenofos detection in milk and cabbage. J. Food Compos. Anal. 2024, 136, 106738. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, T.; Li, Y.; Zhang., J.; Du, Y. Construction of core-shell ZnS@In2S3 rhombic dodecahedron Z-scheme heterojunction structure: Enhanced photocatalytic activity and mechanism insight. Chem. Eng. J. 2021, 423, 130138. [Google Scholar] [CrossRef]
- Huang, L.; Mo, S.; Zhao, X.; Zhou, J.; Zhou, X.; Zhang, Y.; Fan, Y.; Xie, Q.; Li, B.; Li, J. Constructing Co and Zn atomic pairs incore-shell Co3S4/NC@ZnS/NC derived from MOF-on-MOF nanostructures for enhanced photocatalytic CO2 reduction to C2H4. Appl. Catal. B Environ. Energy 2024, 352, 124019. [Google Scholar] [CrossRef]
- Zhang, T.; Li, T.; Gao, M.; Lu, W.; Chen, Z.; Ong, W.L.; Wong, A.S.W.; Yang, L.; Kawi, S.; Ho, G.W. Ligand mediated assembly of CdS colloids in 3D porous metal–organic framework derived scaffold with multi-sites heterojunctions for efficient CO2 photoreduction. Adv. Energy Mater. 2024, 14, 2400388. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, Y.; Qian, L.; Yin, Y.; Yuan, Z.; Dai, Y.; Zhang, T.; Yang, D.; Qiu, F. Lamellar Ti3C2 MXene composite decorated with platinum-doped MoS2 nanosheets as electrochemical sensing functional platform for highly sensitive analysis of organophosphorus pesticides. Food. Chem. 2024, 459, 140379. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-Scheme Heterojunction Photocatalyst. Chem 2020, 6, 1543–1559. [Google Scholar] [CrossRef]
- Khan, K.; Tang, Y.; Cheng, P.; Song, Y.; Li, X.; Lou, J.; Iqbal, B.; Zhao, X.; Hameed, R.; Li, G.; et al. Effects of degradable and non-degradable microplastics and oxytetracycline co-exposure on soil N2O and CO2 emissions. Appl. Soil Ecol. 2024, 197, 105331. [Google Scholar] [CrossRef]
- Hu, Y.; Yu, C.; Wang, S.; Wang, Q.; Reinhard, M.; Zhang, G.; Zhan, F.; Wang, H.; Skoien, D.; Kroll, T.; et al. Identifying a highly efficient molecular photocatalytic CO2 reduction system via descriptor-based high-throughput screening. Nat. Catal. 2025, 8, 126–136. [Google Scholar] [CrossRef]
- Zeng, P.; Liu, H.; Jia, H.; Cai, J.; Deng, X.; Peng, T. In-situ synthesis of single-atom CoN clusters-decorated TiO2 for highly efficient charge separation and CO2 photoreduction. Appl. Catal. B Environ. 2024, 340, 123268. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, T.; Wen, J.; Liu, X. Flower-like Bi2S3–In2S3 heterojunction for efficient solar light induced photoreduction of Cr (VI). Chem 2021, 278, 130422. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wei, Y.; Ma, C.; Jiang, H.; Gao, M.; Zhang, S.; Liu, W.; Huo, P.; Wang, H.; Wang, L. Multichannel electron transmission and fluorescence resonance energy transfer in In2S3/Au/rGO Composite for CO2 Photoreduction. ACS Appl. Mater. Interfaces 2021, 13, 11755–11764. [Google Scholar] [CrossRef]
- Xu, A.; Zhang, Y.; Fan, H.; Liu, X.; Wang, F.; Qu, X.; Yang, L.; Li, X.; Cao, J.; Wei, M. WO3 Nanosheet/ZnIn2S4 S-Scheme Heterojunctions for Enhanced CO2 Photoreduction. ACS Appl. Nano Mater. 2024, 7, 3488–3498. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, X.; Zhang, Z.; Zhang, L.; Liao, J.; Zhang, X.; Ge, C.; Zhou, W. Lead-free perovskite Cs3Bi2Br9 quantum dots (QDs)/ultra-thin W18O49 nanobelts S-scheme heterojunction toward optimized photocatalytic CO2 reduction coupled with toluene oxidation. Chem. Eng. J. 2025, 505, 159635. [Google Scholar] [CrossRef]
- Ebri, G.; Alhashmi, E.; Baghdadi, Y.; Daboczi, M.; Eslava, S.; Hellgardt, K. Simultaneous photocatalytic CO2 reduction and C-C coupling of benzyl alcohol under high pressure and supercritical conditions. Chem. Eng. J. 2025, 505, 158356. [Google Scholar] [CrossRef]
- Gouda, A.; Hannouche, K.; Mohan, A.; Mao, C.; Nikbin, E.; Carrière, A.; Ye, J.; Howe, J.Y.; Sain, M.; Hmadeh, M.; et al. In-situ restructuring of Ni-based metal organic frameworks for photocatalytic CO2 hydrogenation. Nat. Commun. 2025, 16, 695. [Google Scholar] [CrossRef]
- Yang, R.; Li, Q.; Ma, Z.; Liu, S.; Tian, D.; Li, D.; Jiang, D. Improving charge separation in poly (heptazine imide) via synergy of covalent S-scheme heterojunction and Schottky junction for efficient photocatalytic CO2 reduction. Chem. Eng. J. 2025, 506, 160043. [Google Scholar] [CrossRef]
- Ji, Q.; Yu, X.; Chen, L.; Naa, O.; Zhou, C. Facile preparation of sugarcane bagasse-derived carbon supported MoS2 nanosheets for hydrogen evolution reaction. Ind. Crops Prod. 2021, 172, 114064. [Google Scholar] [CrossRef]
- Chen, Q.; Jiang, J.; Wu, Y.; Fang, J.; Lu, N.; Wang, G.; Mao, J. Enhancing local CO2 availability via amorphous Bi2O3 enable efficient and stable photocatalytic C2H6 production. Chem. Eng. J. 2025, 504, 158854. [Google Scholar] [CrossRef]
- Zhang, H.; Yohannes, A.; Zhao, H.; Li, Z.; Xiao, Y.; Cheng, X.; Wang, H.; Li, Z.; Siahrostami, S.; Kibria, M.G.; et al. Photocatalytic asymmetric C-C coupling for CO2 reduction on dynamically reconstructed Ruδ+-O/Ru0-O sites. Nat. Commun. 2025, 16, 534. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, W.; Deng, Y.; Zhang, Z.; Wang, H.; Wu, Y. Directed Inward Migration of S-Vacancy in Bi2S3 QDs for Selective Photocatalytic CO2 to CH3OH. Nat. Commun. 2025, 12, e2406925. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Ding, D.; Shi, Y.; Wang, K.; Wang, Q.; Chen, X.; Shen, H.; Zhang, T.; Yang, Y.; Xia, J.; et al. Hydrogen-Bonded organic framework Containing stacked Cu2+ for photocatalytic reduction of CO2 to C2H4. Chem. Eng. J. 2025, 503, 158501. [Google Scholar] [CrossRef]
- Sun, Y.; Lai, K.; Shi, X.; Li, N.; Gao, Y.; Ge, L. Regulating metal cation Cu vacancies on ZnIn2S4/Cu1.81S to achieve high selectivity for the photocatalytic reduction of CO2 to CH4. Appl. Catal. B Environ. Energy 2025, 365, 124907. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, H.; Yao, B.; Wang, Y. Hollow core-shell B-g-C3N4-x@Bi2S3/In2S3 dual S-scheme heterojunction photothermal nanoreactor: Boosting photothermal catalytic activity in confined space. Chem. Eng. J. 2024, 484, 149399. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, Y.; Shi, J.; Zhang, W.; Zhang, X.; Huang, X.; Zou, X.; Li, Z.; Wei, R. Facile synthesis of Au@Ag core-shell nanorod with bimetallic synergistic effect for SERS detection of thiabendazole in fruit juice. Food Chem. 2022, 370, 131276. [Google Scholar] [CrossRef]
- Gong, E.; Ali, S.; Hiragond, C.B.; Kim, H.S.; Powar, N.S.; Kim, D.; Kim, H.; In, S.-I. Solar fuels: Research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ. Sci. 2022, 15, 880–937. [Google Scholar] [CrossRef]
- Chen, X.; Cao, Y.; Li, F.; Tian, Y.; Song, H. Enzyme-assisted microbial electrosynthesis of Poly(3-hydroxybutyrate) via CO2 bio-reduction by engineered Ralstonia eutropha. ACS Catal. 2018, 8, 4429–4437. [Google Scholar] [CrossRef]
- Lu, N.; Jiang, X.; Zhu, Y.; Yu, L.; Du, S.; Huang, J.; Zhang, Z. Single-Atom-Layer Metallization of Plasmonic Semiconductor Surface for Selectively Enhancing IR-Driven Photocatalytic Reduction of CO2 into CH4. Adv. Mater. 2024, 37, e2413931. [Google Scholar] [CrossRef]
- Cai, W.; Qian, Z.; Hu, C.; Zheng, W.; Luo, L.; Zhao, Y. Systematic investigation of MoS2-metal sulfides [Metal = In, Sn, Cu, Cd] heterostructure via metal-sulfur bond for photocatalytic CO2 reduction. Chem. Eng. J. 2024, 479, 147718. [Google Scholar] [CrossRef]
- Wang, K.; Hu, Y.; Liu, X.; Li, J.; Liu, B. Visible-light-driven CO2 photoreduction over atomically strained indium sites in ambient air. Nat. Commun. 2025, 16, 2094. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chang, X.; Shi, Y.; Zhao, X. Synergistic effects of Cu7S4@Cu2O core-shell photocatalyst and S-scheme heterojunction in photocatalytic CO2 reduction. J. Alloys Compd. 2025, 1010, 177572. [Google Scholar] [CrossRef]
- Song, M.; Song, X.; Liu, X.; Zhou, W.; Huo, P. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method. Chin. J. Catal. 2023, 51, 180–192. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Shi, T.; Liang, Q.; Chen, Z. Hierarchical hollow-microsphere cadmium sulfide-carbon dots composites with enhancing charge transfer efficiency for photocatalytic CO2 reduction. J. Alloys Compd. 2023, 936, 168286. [Google Scholar] [CrossRef]
- Xiong, R.; Sun, Y.; Li, J.; Chen, K.; Liu, F.; Xiao, Y.; Cheng, B.; Lei, S. MgCr2O4/MgIn2S4 Spinel/Spinel S-Scheme Heterojunction: A Robust Catalyst for Photothermal-Assisted Photocatalytic CO2 Reduction. Inorg. Chem. 2024, 63, 19309–19321. [Google Scholar] [CrossRef]
- Yan, C.; Xu, M.; Li, J.; Wang, H.; Huo, P. Fabricated ZnIn2S4/Cu2S S-scheme heterojunction with snowflake structure for boosting photocatalytic CO2 reduction in gas–solid reactor. Fuel 2024, 378, 132921. [Google Scholar] [CrossRef]
- Cai, J.; Li, X.; Su, B.; Guo, B.; Lin, X.; Xing, W.; Lu, X.F.; Wang, S. Rational design and fabrication of S-scheme NiTiO3/CdS heterostructures for photocatalytic CO2 reduction. J. Mater. Sci. Technol. 2025, 234, 82–89. [Google Scholar] [CrossRef]
- Chai, Y.; Kong, Y.; Lin, M.; Lin, W.; Shen, J.; Long, J.; Yuan, R.; Dai, W.; Wang, X.; Zhang, Z. Metal to non-metal sites of metallic sulfides switching products from CO to CH4 for photocatalytic CO2 reduction. Nat. Commun. 2023, 14, 6168. [Google Scholar] [CrossRef]
- Nasir, M.; Sheng, B.; Zhao, Y.; Ye, H.; Song, J.; Li, J.; Wang, P.; Wang, T.; Wang, X.; Huang, Z.; et al. An integrated photocatalytic redox architecture for simultaneous overall conversion of CO2 and H2O toward CH4 and H2O2. Sci. Bull. 2024, 70, 373–382. [Google Scholar] [CrossRef]
- Vertepov, A.; Fedorova, A.; Batkin, A.; Knotko, A.; Maslakov, K.; Doljenko, V.; Vasiliev, A.; Kapustin, G.; Shatalova, T.; Sorokina, N.; et al. CO2 hydrogenation to methanol on CuO-ZnO/SiO2 and CuO-ZnO/CeO2− SiO2 catalysts synthesized with β-Cyclodextrin template. Catalysts 2023, 13, 1231. [Google Scholar] [CrossRef]
- Zhang, F.; Xiong, J.; Yu, X.; Wang, L.; Wu, T.; Yu, Z.; Tang, M.; Liu, H.; Chao, Y.; Zhu, W. Coral reef-like CdS/g-C3N5 heterojunction with enhanced CO2 adsorption for efficient photocatalytic CO2 reduction. Catalysts 2025, 15, 94. [Google Scholar] [CrossRef]
- Vattikuti, S.; Sudhani, H.; Habila, M.; Rosaiah, P.; Shim, J. SnO2 quantum dot-decorated g-C3N4 ultrathin nanosheets: A dual-function photocatalyst for pollutant degradation and hydrogen evolution. Catalysts 2024, 14, 824. [Google Scholar] [CrossRef]
- Pei, J.; Li, H.; Yu, D.; Zhang, D. g-C3N4-based heterojunction for enhanced photocatalytic performance: A review of fabrications, applications, and perspectives. Catalysts 2024, 14, 825. [Google Scholar] [CrossRef]
- Fang, J.; Wang, M.; Yang, X.; Sun, Q.; Yu, L. Design and preparation of ZnIn2S4/g-C3N4 Z-scheme heterojunction for enhanced photocatalytic CO2 reduction. Catalysts 2025, 15, 95. [Google Scholar] [CrossRef]
- Wang, X.; Yao, X.; Bai, H.; Zhang, Z. Oxygen vacancy-rich 2D GO/BiOCl composite materials for enhanced photocatalytic performance and semiconductor energy band theory research. Environ. Res. 2022, 212, 113442. [Google Scholar] [CrossRef]
- Wu, Q.; Liang, J.; Huang, Y.; Cao, R. Thermo-, electro-, and photocatalytic CO2 conversion to value-added products over porous metal/covalent organic frameworks. Acc. Chem. Res. 2022, 55, 2978–2997. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, J.; Yin, Q.; Zhang, C.; Zeng, Y.; Xu, S.; Liang, Q.; Zhou, M.; Li, Z. Reinforcing the efficiency of photocatalytic CO2 conversion with H2O vapor through the integration of photothermal Cu/C@Bi/C supported on 3D g-C3N4 under full-spectrum solar irradiation. J. Energy Chem. 2024, 12, 113008. [Google Scholar] [CrossRef]
- Sun, J.; Zhai, N.; Miao, J.; Sun, H. Can Green Finance Effectively Promote the Carbon Emission Reduction in “Local-Neighborhood” Areas? Empirical Evidence from China. Environ. Sci. Pollut. 2022, 12, 10. [Google Scholar]
- Wu, Q.; Zhong, Y.; Chen, R.; Ling, G.; Wang, X. Cu-Ag-C@Ni3S4 with core shell structure and rose derived carbon electrode materials: An environmentally friendly supercapacitor with high energy and power density. Food Chem. 2024, 222, 119676. [Google Scholar] [CrossRef]
- Chen, J.; Jia, Y.; Zhao, H.; Wu, D.; Du, Y. Ternary Heterojunction ZnS-ZnIn2S4-In2S3 Efficiently Catalyzes Triethylamine to Enhance Electrochemiluminescence Imaging Signals. Adv. Funct. Mater. 2024, 35, 2420714. [Google Scholar] [CrossRef]
- Hanye, C.; Shengjie, G.; Guocheng, H.; Qiaoshan, C.; Yanxin, G. Built-in electric field mediated S-scheme charge migration in COF/In2S3 heterojunction for boosting H2O2 photosynthesis and sterilization. Appl. Catal. B Environ. 2024, 343, 123545. [Google Scholar]
Sample | Light Source | Sacrificial Agent | Evolution Rate μmol/g (4 h) | Ref. |
---|---|---|---|---|
MoS2/In2S3 | 300 W Xe-lamp (Beijing Zhongjiao Jinyuan CEL-HXF300, Beijing, China) | Without | CO: 40.36 | [31] |
Atomic strain In2S3 | 300 W Xe-lamp (Chengdu Lihang PLS-SXE300D), AM 1.5 G filter, Chengdu, China | Without | CO: 20.64 | [32] |
Cu7S4@Cu2O | 300 W Xe Arc lamp (Beijing Bofeilai, Beijing, China) | Without | CO: 24.76 | [33] |
ZnIn2S4/MOF-808 | OFR Xe-lamp (Beijing Education Au-light, Beijing, China) | Without | CO: 32.84 | [34] |
CDs/CdS | 300 W Xe-lamp, AM 1.5 G filter. (Xi’an TopTION Instrument Co., Ltd., Xi’an, China) | Triethanolamine | CO: 48.16 | [35] |
MgCr2O4/MgIn2S4 | 300 W Xe-lamp (Chengdu Lihang PLS-SXE 300+, Chengdu, China) | Without | CO: 32.12 | [36] |
ZnIn2S4/Cu2S | 300 W Xe-lamp (Beijing China Education Au-light, Beijing, China) | Without | CO: 13.35/CH4: 34.81 | [37] |
NiTiO3/CdS | 300 W Xe-lamp (Beijing China Education Au-light, Beijing, China) | Triethanolamine | CO: 20.8 | [38] |
CuInSnS4 | 300 W Xe-lamp, 420 nm cut-off wavelength filter (Beijing China Education Au-light, Beijing, China) | Without | CH4: 23.32 | [39] |
WO3/In2S3 | 300W Xe-lamp (Beijing China Education Au-light, Beijing, China) | Without | CO: 55.2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xu, A.; Lang, J.; Zuo, B.; Yu, Z.; Cui, K.; Li, X.; Zhang, K.; Li, X.; Wei, M.; et al. Interfacial Engineering of S-Scheme WO3/In2S3 Heterojunction for Efficient Solar-Driven CO2 Photoreduction. Catalysts 2025, 15, 460. https://doi.org/10.3390/catal15050460
Wang Y, Xu A, Lang J, Zuo B, Yu Z, Cui K, Li X, Zhang K, Li X, Wei M, et al. Interfacial Engineering of S-Scheme WO3/In2S3 Heterojunction for Efficient Solar-Driven CO2 Photoreduction. Catalysts. 2025; 15(5):460. https://doi.org/10.3390/catal15050460
Chicago/Turabian StyleWang, Yameng, Ao Xu, Jihui Lang, Bin Zuo, Zihan Yu, Keyu Cui, Xuefei Li, Kewei Zhang, Xin Li, Maobin Wei, and et al. 2025. "Interfacial Engineering of S-Scheme WO3/In2S3 Heterojunction for Efficient Solar-Driven CO2 Photoreduction" Catalysts 15, no. 5: 460. https://doi.org/10.3390/catal15050460
APA StyleWang, Y., Xu, A., Lang, J., Zuo, B., Yu, Z., Cui, K., Li, X., Zhang, K., Li, X., Wei, M., & Cao, J. (2025). Interfacial Engineering of S-Scheme WO3/In2S3 Heterojunction for Efficient Solar-Driven CO2 Photoreduction. Catalysts, 15(5), 460. https://doi.org/10.3390/catal15050460