Precipitation of Struvite from Supernatants Separated from Enzymatically Disintegrated Digested Sewage Sludge
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of Supernatants
2.2. Precipitation of Struvite from Supernatants Separated from Non-Disintegrated Sewage Sludge
2.3. Crystallization Kinetics of Struvite from Supernatants Separated from Non-Disintegrated Sewage Sludge
2.4. Precipitation of Struvite from Supernatants Separated from Disintegrated Sewage Sludge with 1% Papain Enzyme
2.5. Precipitation of Struvite from Supernatants Separated from Disintegrated Sewage Sludge with 2% Papain Enzyme
2.6. Precipitation of Struvite from Supernatants Separated from Disintegrated Sewage Sludge with 3% Papain Enzyme
2.7. DSC/TGA Analysis
3. Materials and Methods
3.1. Materials
3.2. Precipitation of Struvite
3.3. Course of Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Daneshgar, S.; Cecconet, D.; Capsoni, D.; Capodaglio, A.G. Side-stream phosphorus recovery in activated sludge processes. Water 2022, 14, 1861. [Google Scholar] [CrossRef]
- Macherzyński, B.; Wszelaka-Rylik, M.; Włodarczyk-Makuła, M.; Osiak, M.; Pietrzak, A.; Bień, B.; Poniatowska, A. Comparative efficiency of phosphorus removal from supernatants by coagulation process. Desalin. Water Treat. 2023, 301, 209–215. [Google Scholar] [CrossRef]
- An, J.S.; Back, Y.J.; Kim, K.C.; Cha, R.; Jeong, T.Y.; Chung, H.K. Optimization for the removal of orthophosphate from aqueous solution by chemical precipitation using ferrous chloride. Environ. Technol. 2014, 35, 1668–1675. [Google Scholar] [CrossRef]
- Nejad, M.H.; Takdastan, A.; Jaafarzadeh, N.; Mogadam, M.A.; Mengelizadeh, N. Removal of orthophosphate from municipal wastewater using chemical precipitation process in Ahvaz wastewater treatment plant, Iran. Asian J. Chem. 2013, 25, 2565. [Google Scholar] [CrossRef]
- Pufahl, P.K.; Groat, L.A. Sedimentary and igneous phosphate deposits: Formation and exploration: An invited paper. Econ. Geol. 2017, 112, 483–516. [Google Scholar] [CrossRef]
- Scholz, R.W.; Wellmer, F.W. Approaching a dynamic view on the availability of mineral resources: What we may learn from the case of phosphorus? Global Environ. Change 2013, 23, 11–27. [Google Scholar] [CrossRef]
- Czajkowska, J.; Malarski, M.; Siwiec, T. Modelling of sediment precipitation containing struvite from aqueous solutions on the inner walls of steel pipelines. Arch. Environ. Prot. 2019, 45, 22–30. [Google Scholar] [CrossRef]
- Ma, B.; Wang, S.; Cao, S.; Miao, Y.; Jia, F.; Du, R.; Peng, Y. Biological nitrogen removal from sewage via anammox: Recent advances. Bioresour. Technol. 2016, 200, 981–990. [Google Scholar] [CrossRef]
- Bouropoulos, N.C.; Koutsoukos, P.G. Spontaneous precipitation of struvite from aqueous solutions. J. Cryst. Growth 2000, 213, 381–388. [Google Scholar] [CrossRef]
- Vineyard, D.; Karthikeyan, K.G.; Barak, P. BioWin modeling of CalPrex phosphorus recovery from wastewater predicts substantial nuisance struvite reduction. Environments 2024, 11, 48. [Google Scholar] [CrossRef]
- Siciliano, A.; Limonti, C.; Curcio, G.M.; Molinari, R. Advances in struvite precipitation technologies for nutrients removal and recovery from aqueous waste and wastewater. Sustainability 2020, 12, 7538. [Google Scholar] [CrossRef]
- Cañas, J.; Álvarez-Torrellas, S.; Hermana, B.; García, J. Phosphorus recovery from sewage sludge as struvite. Water 2023, 15, 2382. [Google Scholar] [CrossRef]
- Guan, Q.; Li, Y.; Zhong, Y.; Liu, W.; Zhang, J.; Yu, X.; Ou, R.; Zeng, G. A review of struvite crystallization for nutrient source recovery from wastewater. J. Environ. Manag. 2023, 344, 118383. [Google Scholar] [CrossRef]
- Le Corre, K.S.; Valsami-Jones, E.; Hobbs, P.; Parsons, S.A. Phosphorus recovery from wastewater by struvite crystallization: A review. Crit. Rev. Environ. Sci. Technol. 2009, 39, 433–477. [Google Scholar] [CrossRef]
- Daneshgar, S.; Vanrolleghem, P.A.; Vaneeckhaute, C.; Buttafava, A.; Capodaglio, A.G. Optimization of P compounds recovery from aerobic sludge by chemical modeling and response surface methodology combination. Sci. Total Environ. 2019, 668, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, F.; Cavinato, C. Smart approaches to food waste final disposal. Int. J. Environ. Res. Public Health 2019, 16, 2860. [Google Scholar] [CrossRef] [PubMed]
- Jóźwiak, T.; Kowalkowska, A.; Filipkowska, U.; Struk-Sokołowska, J.; Bolozan, L.; Gache, L.; Ilie, M. Recovery of phosphorus as soluble phosphates from aqueous solutions using chitosan hydrogel sorbents. Sci. Rep. 2021, 11, 16766. [Google Scholar] [CrossRef] [PubMed]
- Park, N.; Chang, H.; Jang, Y.; Lim, H.; Jung, J.; Kim, W. Prediction of adequate pH and Mg2+ dosage using an empirical MgO solubility model for struvite crystallization. Environ. Technol. Innov. 2021, 21, 101347. [Google Scholar] [CrossRef]
- Mavhungu, A.; Masindi, V.; Foteinis, S.; Mbaya, R.; Tekere, M.; Kortidis, I.; Chatzisymeon, E. Advocating circular economy in wastewater treatment: Struvite formation and drinking water reclamation from real municipal effluents. J. Environ. Chem. Eng. 2020, 8, 103957. [Google Scholar] [CrossRef]
- Romano, R.T.; Zhang, R.; Teter, S.; McGarvey, J.A. The effect of enzyme addition on anaerobic digestion of Jose Tall Wheat Grass. Bioresour. Technol. 2009, 100, 4564–4571. [Google Scholar] [CrossRef]
- Elsamadony, M. Enrich waste activated sludge digestibility via natural enzyme supplementation. E3S Web Conf. EDP Sci. 2019, 83, 01012. [Google Scholar] [CrossRef]
- Neumann, P.; Pesante, S.; Venegas, M.; Vidal, G. Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Rev. Environ. Sci. Biotechnol. 2016, 15, 173–211. [Google Scholar] [CrossRef]
- Junior, I.V.; de Almeida, R.; Cammarota, M.C. A review of sludge pretreatment methods and co-digestion to boost biogas production and energy self-sufficiency in wastewater treatment plants. J. Water Process Eng. 2021, 40, 101857. [Google Scholar] [CrossRef]
- Myszograj, S.; Płuciennik-Koropczuk, E. Thermal disintegration of sewage sludge as a method of improving the biogas potential. Energies 2023, 16, 559. [Google Scholar] [CrossRef]
- Barjenbruch, M.; Kopplow, O. Enzymatic, mechanical and thermal pre-treatment of surplus sludge. Adv. Environ. Res. 2003, 7, 715–720. [Google Scholar] [CrossRef]
- Macherzyński, B. Effects of Enzymatic Disintegration on the Decomposition of Organic Compounds During Methane Fermentation of Sewage Sludge. Catalysts 2025, 15, 75. [Google Scholar] [CrossRef]
- Macherzyński, B.; Popowska-Nowak, E.; Włodarczyk-Makuła, M.; Bień, B.; Wszelaka-Rylik, M. Intensification of Energy Production in the Anaerobic Digestion Process of Sewage Sludge Using Enzymatic Disintegration. Energies 2025, 18, 11. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Pulse electric field technology for wastewater and biomass residues’ improved valorization. Processes 2021, 9, 736. [Google Scholar] [CrossRef]
- Montusiewicz, A. Impact bioaugmentation on nutrient release in anaerobic digestion of sewage sludge. Proc. ECOpole 2015, 9, 269–277. [Google Scholar] [CrossRef]
- Randolph, A.D.; Larson, M.A. Theory of Particulate Processes; Academic Press: New York, NY, USA, 1988. [Google Scholar]
- Hulburt, H.M.; Katz, S. Some problems in particle technology: A statistical mechanical formulation. Chem. Eng. Sci. 1964, 19, 555–574. [Google Scholar] [CrossRef]
- Prasher, C.L. Crushing & Grinding Process Handbook; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Stanclik, A. Precipitation and Crystallization of Struvite from Aqueous Solutions Similar in Chemical Composition to Municipal and Industrial Sewage. (Wytrącanie i Krystalizacja Struwitu z Roztworów Wodnych Zbliżonych Składem Chemicznym do Ścieków Komunalnych i Przemysłowych). Retrieved from Atlas Zasobów Otwartej Nauki. July 2024. Available online: https://zasobynauki.pl/zasoby/wytracanie-i-krystalizacja-struwitu-z-roztworow-wodnych-zblizonych-skladem-chemicznym-do-sciekow-kom,78497 (accessed on 1 July 2024).
- Hövelmann, J.; Stawski, T.M.; Besselink, R.; Freeman, H.M.; Dietmann, K.M.; Mayanna, S.; Pauw, B.R.; Benning, L.G. A template-free and low temperature method for the synthesis of mesoporous magnesium phosphate with uniform pore structure and high surface area. Nanoscale 2019, 11, 6939–6951. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, A.; de Sario, S.; Attanasio, A.; Di Capua, F.; Gorgoglione, A.; Fratino, U.; Mascolo, M.C.; Pirozzi, F.; Trancone, G.; Spasiano, D. Phosphorus recovery as struvite and hydroxyapatite from the liquid fraction of municipal sewage sludge with limited magnesium addition. J. Environ. Qual. 2023, 52, 584–595. [Google Scholar] [CrossRef] [PubMed]
- Trancone, G.; Spasiano, D.; Race, M.; Luongo, V.; Petrella, A.; Pirozzi, F.; Fratino, U.; Piccinni, A.F. A combined system for asbestos-cement waste degradation by dark fermentation and resulting supernatant valorization in anaerobic digestion. Chemosphere 2022, 300, 134500. [Google Scholar] [CrossRef] [PubMed]
Indicator | Stage I 0% | Stage II 1% | Stage III 2% | Stage IV 3% |
---|---|---|---|---|
Phosphates, mg PO43−/L | 27.2 | 47.7 | 78.4 | 92.4 |
Phosphorus, mg P−/L | 8.9 | 15.6 | 25.6 | 30.2 |
Ammonium nitrogen, mg N-NH4+/L | 685.8 | 667.7 | 660.0 | 655.5 |
COD, mgO2/L | 1800 | 1900 | 1900 | 2000 |
pH | t [s] | G [m/s] | B [1/(s·m3)] |
---|---|---|---|
9.0 | 900 | 2.07 × 10−8 | 3.7 × 107 |
9.0 | 3600 | 7.68 × 10−9 | 4.3 × 106 |
10.0 | 900 | 1.67 × 10−8 | 5.3 × 107 |
pH | t [s] | Mkexp [mg/L] | Mk [mg/L] | RE [%] |
---|---|---|---|---|
9.0 | 3600 | 359.3 | 336.3 | 6.4 |
7200 | 373.5 | 380.0 | 1.7 | |
10 | 3600 | 336.1 | 339.6 | 1.0 |
7200 | 356.5 | 418.0 | 17.2 | |
11 | 3600 | 347.8 | 342.7 | 1.5 |
7200 | 468.4 | 459.8 | 1.8 |
Temperature Range | Loss of Weight [%] | |
---|---|---|
Standard | Pure Struvite | |
30 °C do 150 °C | 49.22 | 46.89 |
Temperature Range | Amount of Papain [%] | Loss of Weight [%] | ||
---|---|---|---|---|
pH = 9 | pH = 10 | pH = 11 | ||
30 °C do 150 °C | 0 | ~30 | ~30 | ~35 |
30 °C do 150 °C | 1 | ~30 | ~30 | ~35 |
30 °C do 150 °C | 2 | ~40 | ~40 | 49.65 |
30 °C do 150 °C | 3 | 48.10 | 48.70 | 49.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macherzyński, B.; Wszelaka-Rylik, M.; Gierycz, P.; Kraj, A. Precipitation of Struvite from Supernatants Separated from Enzymatically Disintegrated Digested Sewage Sludge. Catalysts 2025, 15, 361. https://doi.org/10.3390/catal15040361
Macherzyński B, Wszelaka-Rylik M, Gierycz P, Kraj A. Precipitation of Struvite from Supernatants Separated from Enzymatically Disintegrated Digested Sewage Sludge. Catalysts. 2025; 15(4):361. https://doi.org/10.3390/catal15040361
Chicago/Turabian StyleMacherzyński, Bartłomiej, Małgorzata Wszelaka-Rylik, Paweł Gierycz, and Aleksandra Kraj. 2025. "Precipitation of Struvite from Supernatants Separated from Enzymatically Disintegrated Digested Sewage Sludge" Catalysts 15, no. 4: 361. https://doi.org/10.3390/catal15040361
APA StyleMacherzyński, B., Wszelaka-Rylik, M., Gierycz, P., & Kraj, A. (2025). Precipitation of Struvite from Supernatants Separated from Enzymatically Disintegrated Digested Sewage Sludge. Catalysts, 15(4), 361. https://doi.org/10.3390/catal15040361