A Promising Monolithic Catalyst for Advanced VOCs Oxidation by Graphene-Doped α-MnO2 Loaded on Cordierite Honeycomb
Abstract
:1. Introduction
2. Results and Discussions
2.1. Catalyst Characterization
2.2. Catalyst Performance Analysis
2.2.1. Evaluation of Catalytic Activity
2.2.2. Evaluation of Catalyst Applicability
2.2.3. Discussion on Application Potentials
3. Materials and Methodologies
3.1. Materials
3.2. Monolithic Catalyst Preparation
- (1)
- Cordierite pretreatment
- (2)
- Preparation of monolithic catalysts
3.3. Catalyst Characterization Method
3.4. Catalyst Performance Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Q.; Zheng, Y.; Song, C.; Liu, Q.; Ji, N.; Ma, D.; Lu, X. Novel monolithic catalysts derived from in-situ decoration of Co3O4 and hierarchical Co3O4@MnOx on Ni foam for VOC oxidation. Appl. Catal. B Environ. 2020, 265, 118552. [Google Scholar]
- He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chem. Rev. 2019, 119, 4471–4568. [Google Scholar]
- Fu, K.X.; Su, Y.; Yang, L.Z.; Ji, N.; Song, C.F.; Ma, D.G.; Lv, X.B.; Han, R.; Liu, Q.L. Pt loaded manganese oxide nanoarray-based monolithic catalysts for catalytic oxidation of acetone. Chem. Eng. J. 2022, 432, 134397. [Google Scholar]
- Guo, Y.; Ren, Z.; Xiao, W.; Liu, C.; Sharma, H.; Gao, H.; Mhadeshwar, A.; Gao, P.X. Robust 3-D configurated metal oxide nano-array based monolithic catalysts with ultrahigh materials usage efficiency and catalytic performance tunability. Nano Energy 2013, 2, 873–881. [Google Scholar]
- Guo, Y.; Wen, M.; Li, G.; An, T. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: A critical review. Appl. Catal. B Environ. 2021, 281, 119447. [Google Scholar] [CrossRef]
- Chen, Z.; Li, J.; Yang, P.; Cheng, Z.; Li, J.; Zuo, S. Ce-modified mesoporous γ-Al2O3 supported Pd-Pt nanoparticle catalysts and their structure-function relationship in complete benzene oxidation. Chem. Eng. J. 2019, 356, 255–261. [Google Scholar]
- Ge, Y.; Fu, K.; Zhao, Q.; Ji, N.; Song, C.; Ma, D.; Liu, Q. Performance study of modified Pt catalysts for the complete oxidation of acetone. Chem. Eng. Sci. 2019, 206, 499–506. [Google Scholar]
- Lu, L.; Tian, H.; He, J.H.; Yang, Q.W. Graphene-MnO2 Hybrid Nanostructure as a New Catalyst for Formaldehyde Oxidation. J. Phys. Chem. C 2016, 120, 23660–23668. [Google Scholar]
- Fan, J.; Ren, Q.; Mo, S.; Sun, Y.; Fu, M.; Wu, J.; Chen, L.; Chen, P.; Ye, D. Transient in-situ DRIFTS Investigation of Catalytic Oxidation of Toluene over α-, γ- and β-MnO2. ChemCatChem 2020, 12, 1046–1054. [Google Scholar]
- Yang, W.; Su, Z.a.; Xu, Z.; Yang, W.; Peng, Y.; Li, J. Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: Oxygen vacancies and reaction intermediates. Appl. Catal. B Environ. 2020, 260, 118150. [Google Scholar]
- Jia, J.; Zhang, P.; Chen, L. Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Appl. Catal. B Environ. 2016, 189, 210–218. [Google Scholar] [CrossRef]
- Min, X.; Guo, M.; Li, K.; Gu, J.-n.; Hu, X.; Jia, J.; Sun, T. Boosting the VOCs purification over high-performance α-MnO2 separated from spent lithium-ion battery: Synergistic effect of metal doping and acid treatment. Sep. Purif. Technol. 2022, 295, 121316. [Google Scholar]
- Liu, W.; Xiang, W.; Guan, N.; Cui, R.; Cheng, H.; Chen, X.; Song, Z.; Zhang, X.; Zhang, Y. Enhanced catalytic performance for toluene purification over Co3O4/MnO2 catalyst through the construction of different Co3O4-MnO2 interface. Sep. Purif. Technol. 2021, 278, 119590. [Google Scholar]
- Dong, Y.; Sun, J.; Shen, Y.; Wang, Z.; Wang, W.; Song, Z.; Zhao, X.; Mao, Y. 3D snowflake graphene modified α-MnO2 Catalyst: Enhancing the Low-Temperature catalytic activity for VOCs degradation. Chem. Eng. J. 2023, 473, 145130. [Google Scholar]
- Tang, L.; Zhao, Z.; Li, K.X.; Yu, X.H.; Wei, Y.C.; Liu, J.; Peng, Y.; Li, Y.Z.; Chen, Y.S. Highly Active Monolith Catalysts of LaKCoO3 Perovskite-type Complex Oxide on Alumina-washcoated Diesel Particulate Filter and the Catalytic Performances for the Combustion of Soot. Catal. Today 2020, 339, 159–173. [Google Scholar] [CrossRef]
- Tang, W.X.; Lu, X.X.; Liu, F.Y.; Du, S.C.; Weng, J.F.; Hoang, S.; Wang, S.B.; Nam, C.Y.; Gao, P.X. Ceria-based nanoflake arrays integrated on 3D cordierite honeycombs for efficient low-temperature diesel oxidation catalyst. Appl. Catal. B Environ. 2019, 245, 623–634. [Google Scholar]
- Bao, L.; Wu, D.F. Effect of Acid Treatment on the Catalytic Activity and Mechanical Stability of SmMnO3/Cordierite Monolithic Catalysts. Chemistryselect 2021, 6, 7845–7854. [Google Scholar]
- Wu, D.; Zhang, Q.; Gao, R. Mechanical stability of ZSM-5 zeolite washcoated cordierite monoliths. Chem. Eng. Res. Des. 2021, 168, 426–434. [Google Scholar]
- Diaz, C.C.; Yeste, M.P.; Vidal, H.; Gatica, J.M.; Cadus, L.E.; Morales, M.R. In situ generation of Mn1-xCex system on cordierite monolithic supports for combustion of n-hexane. Effects on activity and stability. Fuel 2020, 262, 116564. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, Z.; Zhou, Y.; Zhu, Q.; Pan, Z.; Lu, H. A facile route for spraying preparation of Pt/TiO2 monolithic catalysts toward VOCs combustion. Appl. Catal. A Gen. 2018, 566, 190–199. [Google Scholar] [CrossRef]
- Xue, T.; Li, R.; Gao, Y.; Wang, Q. Iron mesh-supported vertically aligned Co-Fe layered double oxide as a novel monolithic catalyst for catalytic oxidation of toluene. Chem. Eng. J. 2020, 384, 123284. [Google Scholar]
- Soltan, W.B.; Sun, J.; Wang, W.; Peng, J.; Zhang, Y.; Wang, T.; Chang, Y.; Ding, L.; Cao, Z.; Wang, W.; et al. Modiffcation of Fe on hydrophobic ZSM-5 zeolite: Optimization of adsorption and catalytic performance for decomposition of VOCs at low-temperature. Sep. Purif. Technol. 2024, 333, 125908. [Google Scholar]
- Li, Y.F.; Liao, Q.Y.; Ling, W.Z.; Ye, F.; Liu, F.F.; Zhang, X.P.; He, J.J.; Cheng, G. Pd/d-MnO2 nanoflower arrays cordierite monolithic catalyst toward toluene and o-xylene combustion. Front. Chem. 2022, 10, 978428. [Google Scholar]
- Wu, P.; Jin, X.; Qiu, Y.; Ye, D. Recent Progress of Thermocatalytic and Photo/Thermocatalytic Oxidation for VOCs Purification over Manganese-based Oxide Catalysts. Environ. Sci. Technol. 2021, 55, 4268–4286. [Google Scholar] [PubMed]
- Dong, Y.; Sun, J.; Ma, X.; Wang, W.; Song, Z.; Zhao, X.; Mao, Y.; Li, W. Study on the synergy effect of MnOx and support on catalytic ozonation of toluene. Chemosphere 2022, 303, 134991. [Google Scholar]
- Soltan, W.B.; Sun, J.; Wang, W.; Song, Z.; Zhao, X.; Mao, Y.; Zhang, Z. Discovering the key role of MnO2 and CeO2 particles in the Fe2O3 catalysts for enhancing the catalytic oxidation of VOC: Synergistic effect of the lattice oxygen species and surface-adsorbed oxygen. Sci. Total Environ. 2022, 819, 152844. [Google Scholar] [CrossRef]
- Yang, S.; Qi, Z.; Wen, Y.; Wang, X.; Zhang, S.; Li, W.; Li, S. Generation of abundant oxygen vacancies in Fe doped δ-MnO2 by a facile interfacial synthesis strategy for highly efficient catalysis of VOCs oxidation. Chem. Eng. J. 2023, 452, 139657. [Google Scholar]
- Yang, R.; Han, P.; Fan, Y.; Guo, Z.; Zhao, Q.; Wang, Y.; Che, S.; Lin, S.; Zhu, R. The performance and reaction pathway of δ-MnO2/USY for catalytic oxidation of toluene in the presence of ozone at room temperature. Chemosphere 2020, 247, 125864. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Z.; Li, Y.; Leng, X.; Zhang, T.; Yuan, F.; Niu, X.; Zhu, Y. Synthesis of CeaMnOx hollow microsphere with hierarchical structure and its excellent catalytic performance for toluene combustion. Appl. Catal. B Environ. 2019, 245, 502–512. [Google Scholar]
- Mo, S.; Zhang, Q.; Li, J.; Sun, Y.; Ren, Q.; Zou, S.; Zhang, Q.; Lu, J.; Fu, M.; Mo, D.; et al. Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: Oxygen-Vacancy defect engineering and involved intermediates using in situ DRIFTS. Appl. Catal. B Environ. 2020, 264, 118464. [Google Scholar]
- Bi, F.; Zhang, X.; Chen, J.; Yang, Y.; Wang, Y. Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation. Appl. Catal. B Environ. 2020, 269, 118767. [Google Scholar]
- Wang, H.; Sun, S.; Nie, L.; Zhang, Z.; Li, W.; Hao, Z. A review of whole-process control of industrial volatile organic compounds in China. J. Environ. Sci. 2023, 123, 127–139. [Google Scholar]
- Zhu, J.; Zhang, W.; Qi, Q.; Zhang, H.; Zhang, Y.; Sun, D.; Liang, P. Catalytic oxidation of toluene, ethyl acetate and chlorobenzene over Ag/MnO2-cordierite molded catalyst. Sci. Rep. 2019, 9, 12162. [Google Scholar]
- Zhao, H.; Wang, H.; Qu, Z. Synergistic effects in Mn-Co mixed oxide supported on cordierite honeycomb for catalytic deep oxidation of VOCs. J. Environ. Sci. 2022, 112, 231–243. [Google Scholar]
- Lv, X.; Zhang, T.; Cao, J.; Wang, Y.; Liu, F.; Yin, L. Effect of different coatings on the structure and performance of three-dimensional ordered macropores La0.7Ce0.3CoO3 catalysts. Environ. Sci. Pollut. Res. 2022, 29, 85202–85210. [Google Scholar]
- Lv, C.; Chen, H.; Hu, M.; Ai, T.; Fu, H. Nano-oxides washcoat for enhanced catalytic oxidation activity toward the perovskite-based monolithic catalyst. Environ. Sci. Pollut. Res. 2021, 28, 37142–37157. [Google Scholar]
- Zang, M.; Zhao, C.; Wang, Y.; Liu, X.; Cheng, Y.; Chen, S. Low temperature catalytic combustion of toluene over three-dimensionally ordered La0.8Ce0.2MnO3/cordierite catalysts. Appl. Surf. Sci. 2019, 483, 355–362. [Google Scholar]
- Zhu, A.; Zhou, Y.; Wang, Y.; Zhu, Q.; Liu, H.; Zhang, Z.; Lu, H. Catalytic combustion of VOCs on Pt/CuMnCe and Pt/CeY honeycomb monolithic catalysts. J. Rare Earths 2018, 36, 1272–1277. [Google Scholar]
Catalyst | Surface Area (m2/g) | Average Pore Size (nm) | Total Pore Volume (cm3/g) | Mesoporous Pore Volume (cm3/g) |
---|---|---|---|---|
Cordierite | 12 | 5.6 | 0.017 | 0.015 |
2-4GM/COR | 5 | 6.2 | 0.008 | 0.006 |
3-4GM/COR | 7 | 6.8 | 0.011 | 0.010 |
4-4GM/COR | 8 | 6.9 | 0.013 | 0.011 |
4GM micron particle | 112 | 7.4 | 0.210 | 0.180 |
Catalyst | Mn 2p | O 1s | ||||
---|---|---|---|---|---|---|
Mn3+, % | Mn4+, % | Mn3+/Mn4+ | Olatt, % | Oabs, % | Ofunc, % | |
4GM micron particle | 68.56 | 31.44 | 2.18 | 43.85 | 52.83 | 3.32 |
2-4GM/COR | 48.04 | 51.96 | 0.92 | 4.74 | 57.35 | 37.91 |
3-4GM/COR | 58.68 | 41.42 | 1.42 | 5.23 | 69.33 | 25.44 |
4-4GM/COR | 66.40 | 33.60 | 1.98 | 5.54 | 60.12 | 34.34 |
Monolithic Catalyst | T90 (°C) | WHSV/GHSV h−1/ mL/(gh) | Concentration (ppm) | Loading Method | Application Potential Analysis | Ref. |
---|---|---|---|---|---|---|
4-4GM/COR | 200 | 6000 h−1 | 300 | Ball-milling assisted impregnation method | Low material cost; No precious metal; Easy preparation | This work |
0.07Pd/δ-MnO2-NFA | 219 | 10,000 h−1 | 250 | A low-temperature hydrothermal route | Pd; High cost | [32] |
Ag/MnO2-COR | 275 | 10,000 h−1 | 1000 | Wet impregnation method with aluminum sol binder | Ag; High cost | [33] |
Co0.67Mn0.33/COR | 220 | 45,000 mL/(g·h) | 500 | Ultrasonic impregnation | Precious Co; High cost | [34] |
La0.7Ce0.3CoO3/Ce0.75Zr0.25O2-Al2O3/COR | 218 | 6000 mL/(g·h) | 1000 | Coating method with PMMA binder | Precious Co, La, Ce; High cost; Complex preparation | [35] |
LaCoO3/ZrO2/ COR | 216 | - | 1000 | Coating method with PVA binder | Precious Co, La; High cost | [36] |
La0.8Ce0.2MnO3/COR | 217 | 6000 h−1 | 500 | Coating method with PMMA binder | Precious La, Ce; High cost | [37] |
Pt/CuMnCe/CH | 260 | 5000 h−1 | 2000 | Immersion method | Precious Pt, Cu, Ce; High cost | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Zhao, Y.; Sun, J.; Shen, Y.; Zhao, X.; Wang, W.; Song, Z.; Mao, Y. A Promising Monolithic Catalyst for Advanced VOCs Oxidation by Graphene-Doped α-MnO2 Loaded on Cordierite Honeycomb. Catalysts 2025, 15, 321. https://doi.org/10.3390/catal15040321
Dong Y, Zhao Y, Sun J, Shen Y, Zhao X, Wang W, Song Z, Mao Y. A Promising Monolithic Catalyst for Advanced VOCs Oxidation by Graphene-Doped α-MnO2 Loaded on Cordierite Honeycomb. Catalysts. 2025; 15(4):321. https://doi.org/10.3390/catal15040321
Chicago/Turabian StyleDong, Yilin, Yiyang Zhao, Jing Sun, Yafang Shen, Xiqiang Zhao, Wenlong Wang, Zhanlong Song, and Yanpeng Mao. 2025. "A Promising Monolithic Catalyst for Advanced VOCs Oxidation by Graphene-Doped α-MnO2 Loaded on Cordierite Honeycomb" Catalysts 15, no. 4: 321. https://doi.org/10.3390/catal15040321
APA StyleDong, Y., Zhao, Y., Sun, J., Shen, Y., Zhao, X., Wang, W., Song, Z., & Mao, Y. (2025). A Promising Monolithic Catalyst for Advanced VOCs Oxidation by Graphene-Doped α-MnO2 Loaded on Cordierite Honeycomb. Catalysts, 15(4), 321. https://doi.org/10.3390/catal15040321