Investigating the Photocatalytic Properties of Reduced Graphene Oxide-Coated Zirconium Dioxide and Their Impact on Structural and Morphological Features
Abstract
:1. Introduction
2. Result and Discussion
Photocatalytic Performance
3. Experimental Work
3.1. Preparation Technique of ZrO2
3.1.1. Reduced Graphene Preparation from PET Water Bottle Waste
3.1.2. Synthesis ZrO2@%RGO
3.2. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, T.; Aniagor, C.O.; Ejimofor, M.I.; Menkiti, M.C.; Wakawa, Y.M.; Li, J.; Akbour, R.A.; Yap, P.-S.; Lau, S.Y.; Jeevanandam, J. Recent developments in the utilization of modified graphene oxide to adsorb dyes from water: A review. J. Ind. Eng. Chem. 2023, 117, 21–37. [Google Scholar] [CrossRef]
- Aboraia, A.M.; Almohammedi, A.; Alraddadi, S.; Taha, S.A.; Saad, M.; Sharaf, I.; Ismail, Y.A.M. Comparison study between as-synthesized ZnO and ZnO derived from ZiF-8 metalorganic framework in removing methylene blue. Mod. Phys. Lett. B 2024, 38, 2450221. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Khattab, T.A.; Abdelrahman, M.S.; Rehan, M. Textile dyeing industry: Environmental impacts and remediation. Environ. Sci. Pollut. Res. 2020, 27, 3803–3818. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Sharma, S.; Soni, V. Classification and impact of synthetic textile dyes on Aquatic Flora: A review. Reg. Stud. Mar. Sci. 2021, 45, 101802. [Google Scholar] [CrossRef]
- Elgarahy, A.M.; Elwakeel, K.Z.; Mohammad, S.H.; Elshoubaky, G.A. A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Clean. Eng. Technol. 2021, 4, 100209. [Google Scholar] [CrossRef]
- Ibrahim, I.A.; Rawindran, H.; Alam, M.M.; Leong, W.H.; Sahrin, N.T.; Ng, H.-S.; Chan, Y.J.; Abdelfattah, E.A.; Lim, J.W.; Aliyu, U.S.; et al. Mitigating persistent organic pollutants from marine plastics through enhanced recycling: A review. Environ. Res. 2023, 240, 117533. [Google Scholar] [CrossRef]
- Aboraia, A.M.; Al-omoush, M.; Solayman, M.; Saad, H.M.H.; Khabiri, G.; Saad, M.; Alsulaim, G.M.; Soldatov, A.V.; Ismail, Y.A.M.; Gomaa, H. A heterostructural MoS2QDs@UiO-66 nanocomposite for the highly efficient photocatalytic degradation of methylene blue under visible light and simulated sunlight. RSC Adv. 2023, 13, 34598–34609. [Google Scholar] [CrossRef]
- Sakfali, J.; Chaabene, S.B.; Akkari, R.; Dappozze, F.; Berhault, G.; Guillard, C.; Zina, M.S. High photocatalytic activity of aerogel tetragonal and monoclinic ZrO2 samples. J. Photochem. Photobiol. A Chem. 2022, 430, 113970. [Google Scholar] [CrossRef]
- Simon, S.M.; George, G.; Sajna, M.S.; Prakashan, V.P.; Jose, T.A.; Vasudevan, P.; Saritha, A.C.; Biju, P.R.; Joseph, C.; Unnikrishnan, N.V. Recent advancements in multifunctional applications of sol-gel derived polymer incorporated TiO2-ZrO2 composite coatings: A comprehensive review. Appl. Surf. Sci. Adv. 2021, 6, 100173. [Google Scholar] [CrossRef]
- Rafieerad, A.; Amiri, A.; Sequiera, G.L.; Yan, W.; Chen, Y.; Polycarpou, A.A.; Dhingra, S. Development of fluorine-free tantalum carbide MXene hybrid structure as a biocompatible material for supercapacitor electrodes. Adv. Funct. Mater. 2021, 31, 2100015. [Google Scholar] [CrossRef] [PubMed]
- Kannan, K.; Radhika, D.; Nesaraj, A.S.; Sadasivuni, K.K.; Reddy, K.R.; Kasai, D.; Raghu, A.V. Photocatalytic, antibacterial and electrochemical properties of novel rare earth metal oxides-based nanohybrids. Mater. Sci. Energy Technol. 2020, 3, 853–861. [Google Scholar] [CrossRef]
- Zhao, C.-X.; Liu, J.-N.; Wang, J.; Ren, D.; Li, B.-Q.; Zhang, Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 2021, 50, 7745–7778. [Google Scholar] [CrossRef]
- Da, Y.; Li, X.; Zhong, C.; Deng, Y.; Han, X.; Hu, W. Advanced characterization techniques for identifying the key active sites of gas-involved electrocatalysts. Adv. Funct. Mater. 2020, 30, 2001704. [Google Scholar] [CrossRef]
- Hanafi, M.F.; Sapawe, N. An overview of recent developments on semiconductor catalyst synthesis and modification used in photocatalytic reaction. Mater. Today Proc. 2020, 31, A151–A157. [Google Scholar] [CrossRef]
- Kubiak, A.; Siwińska-Ciesielczyk, K.; Jesionowski, T. Titania-based hybrid materials with ZnO, ZrO2 and MoS2: A review. Materials 2018, 11, 2295. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Liu, M.; Luo, H.; Deng, L.; Huang, L.; Wei, S.; Zhou, C.; Xu, Y. Molybdenum Disulfide Quantum Dots Prepared by Bipolar-Electrode Electrochemical Scissoring. Nanomaterials 2019, 9, 906. [Google Scholar] [CrossRef]
- Sharaf, I.M.; Laifi, J.; Alraddadi, S.; Saad, M.; Koubesy, M.S.I.; Elewa, N.N.; Almohiy, H.; Ismail, Y.M.; Soldatov, A.; Aboraia, A.M. Unraveling the effect of Cu doping on the structural and morphological properties and photocatalytic activity of ZrO2. Heliyon 2024, 10, e23848. [Google Scholar] [CrossRef]
- Mishra, K.; Devi, N.; Siwal, S.S.; Gupta, V.K.; Thakur, V.K. Hybrid semiconductor photocatalyst nanomaterials for energy and environmental applications: Fundamentals, designing, and prospects. Adv. Sustain. Syst. 2023, 7, 2300095. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Zhou, Q.; Liang, X.; Liu, D. Facile synthesis of novel gully-like double-sized mesoporous structural Sr-doped ZrO2–TiO2 composites with improved photocatalytic efficiency. J. Solid State Chem. 2019, 269, 375–385. [Google Scholar] [CrossRef]
- Wang, Z.; Nayak, P.K.; Caraveo-Frescas, J.A.; Alshareef, H.N. Recent developments in p-Type oxide semiconductor materials and devices. Adv. Mater. 2016, 28, 3831–3892. [Google Scholar] [CrossRef] [PubMed]
- Selvam, N.C.S.; Manikandan, A.; Kennedy, L.J.; Vijaya, J.J. Comparative investigation of zirconium oxide (ZrO2) nano and microstructures for structural, optical and photocatalytic properties. J. Colloid Interface Sci. 2013, 389, 91–98. [Google Scholar] [CrossRef]
- Gatti, T.; Lamberti, F.; Mazzaro, R.; Kriegel, I.; Schlettwein, D.; Enrichi, F.; Lago, N.; Di Maria, E.; Meneghesso, G.; Vomiero, A. Opportunities from doping of non-critical metal oxides in last generation light-conversion devices. Adv. Energy Mater. 2021, 11, 2101041. [Google Scholar] [CrossRef]
- Zhang, Y.; Jie, W.; Chen, P.; Liu, W.; Hao, J. Ferroelectric and piezoelectric effects on the optical process in advanced materials and devices. Adv. Mater. 2018, 30, 1707007. [Google Scholar] [CrossRef]
- Wang, W.; Tadé, M.O.; Shao, Z. Research progress of perovskite materials in photocatalysis-and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 2015, 44, 5371–5408. [Google Scholar] [CrossRef]
- Kumari, N.; Sareen, S.; Verma, M.; Sharma, S.; Sharma, A.; Sohal, H.S.; Mehta, S.K.; Park, J.; Mutreja, V. Zirconia-based nanomaterials: Recent developments in synthesis and applications. Nanoscale Adv. 2022, 4, 4210–4236. [Google Scholar] [CrossRef]
- Batool, S.S.; Saleem, R.; Khan, R.R.M.; Saeed, Z.; Pervaiz, M.; Summer, M. Enhancing photocatalytic performance of zirconia-based nanoparticles: A comprehensive review of factors, doping strategies, and mechanisms. Mater. Sci. Semicond. Process. 2024, 178, 108419. [Google Scholar] [CrossRef]
- Zhang, S.; Li, B.; Wang, X.; Zhao, G.; Hu, B.; Lu, Z.; Wen, T.; Chen, J.; Wang, X. Recent developments of two-dimensional graphene-based composites in visible-light photocatalysis for eliminating persistent organic pollutants from wastewater. Chem. Eng. J. 2020, 390, 124642. [Google Scholar] [CrossRef]
- Porcu, S.; Secci, F.; Ricci, P.C. Advances in hybrid composites for photocatalytic applications: A review. Molecules 2022, 27, 6828. [Google Scholar] [CrossRef]
- Chatterjee, D.; Dasgupta, S. Visible light induced photocatalytic degradation of organic pollutants. J. Photochem. Photobiol. C Photochem. Rev. 2005, 6, 186–205. [Google Scholar] [CrossRef]
- Gurushantha, K.; Anantharaju, K.S.; Renuka, L.; Sharma, S.C.; Nagaswarupa, H.P.; Prashantha, S.C.; Vidya, Y.S.; Nagabhushana, H. New green synthesized reduced graphene oxide–ZrO2 composite as high performance photocatalyst under sunlight. RSC Adv. 2017, 7, 12690–12703. [Google Scholar] [CrossRef]
- Li, Z.; Li, K.; Du, P.; Mehmandoust, M.; Karimi, F.; Erk, N. Carbon-based photocatalysts for hydrogen production: A review. Chemosphere 2022, 308, 135998. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.; Elhakeem, A.; Kaytbay, S.; Ahmed, A. A comprehensive review on the thermal, electrical, and mechanical properties of graphene-based multi-functional epoxy composites. Adv. Compos. Hybrid Mater. 2022, 5, 547–605. [Google Scholar] [CrossRef]
- Sambyal, S.; Sharma, R.; Mandyal, P.; Balou, S.; Gholami, P.; Fang, B.; Shandilya, P.; Priye, A. Advancement in two-dimensional carbonaceous nanomaterials for photocatalytic water detoxification and energy conversion. J. Environ. Chem. Eng. 2023, 11, 109517. [Google Scholar] [CrossRef]
- Liu, X.; Li, S.; Yu, J.; Zhu, Y.; Lin, K.; Wang, B.; Cai, R.; Ekren, D.; Lewis, D.; Kinloch, I.A. Enhancing the thermoelectric properties of TiO2-based ceramics through addition of carbon black and graphene oxide. Carbon 2024, 216, 118509. [Google Scholar] [CrossRef]
- Purohit, S.; Yadav, K.L.; Satapathi, S. Metal halide perovskite heterojunction for photocatalytic hydrogen generation: Progress and future opportunities. Adv. Mater. Interfaces 2022, 9, 2200058. [Google Scholar] [CrossRef]
- Singh, B.R.; Shoeb, M.; Khan, W.; Naqvi, A.H. Synthesis of graphene/zirconium oxide nanocomposite photocatalyst for the removal of rhodamineB dye from aqueous environment. J. Alloys Compd. 2015, 651, 598–607. [Google Scholar] [CrossRef]
- Sikdar, S.; Banu, A.; Ali, S.; Barman, S.; Kalar, P.L.; Das, R. Micro-structural Analysis and Photocatalytic Properties of Green Synthesized t-ZrO2 Nanoparticles. ChemistrySelect 2022, 7, e202103953. [Google Scholar] [CrossRef]
- Shinde, H.M.; Bhosale, T.T.; Gavade, N.L.; Babar, S.B.; Kamble, R.J.; Shirke, B.S.; Garadkar, K.M. Biosynthesis of ZrO2 nanoparticles from Ficus benghalensis leaf extract for photocatalytic activity. J. Mater. Sci. Mater. Electron. 2018, 29, 14055–14064. [Google Scholar] [CrossRef]
- Dhandapani, C.; Narayanasamy, R.; Karthick, S.N.; Hemalatha, K.V.; Selvam, S.; Hemalatha, P.; Kumar, M.S.; Kirupha, S.D.; Kim, H.J. Drastic photocatalytic degradation of methylene blue dye by neodymium doped zirconium oxide as photocatalyst under visible light irradiation. Optik 2016, 127, 10288–10296. [Google Scholar] [CrossRef]
- Aljawrneh, B.; Ocak, Y.S.; Albiss, B.A.; Dwiri, A.; Tawalbeh, M.; Al-Othman, A. ZrO2 nanoparticles for effective dye degradation in wastewater: Synthesis, characterization, and photocatalytic performance under sunlight. J. Alloys Compd. 2024, 1008, 176522. [Google Scholar] [CrossRef]
Catalyst | Synthesis Method | Dye | Irradiation Source | Efficiency, % | References |
---|---|---|---|---|---|
t-ZrO2 | Green method | MB | UV light | 68 | [38] |
ZrO2 | Biogenic | MO | UV light | 69 | [39] |
Nd-ZrO2 | Polymer assisted | MB | Visible light | 68 | [40] |
ZrO2 NPs | Hydrothermal | MB | Sunlight | 80 | [41] |
ZrO2 | Sol–gel combustion | MB | Sunlight | 65 | Our work |
ZrO2@4%RGO | Sol–gel combustion | MB | Sunlight | 82 | Our work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farghly, N.; Abu El-Oyoun, M.; Abousehly, A.; Alkallas, F.H.; Trabelsi, A.B.G.; Shaaban, E.R.; Aboraia, A.M. Investigating the Photocatalytic Properties of Reduced Graphene Oxide-Coated Zirconium Dioxide and Their Impact on Structural and Morphological Features. Catalysts 2025, 15, 289. https://doi.org/10.3390/catal15030289
Farghly N, Abu El-Oyoun M, Abousehly A, Alkallas FH, Trabelsi ABG, Shaaban ER, Aboraia AM. Investigating the Photocatalytic Properties of Reduced Graphene Oxide-Coated Zirconium Dioxide and Their Impact on Structural and Morphological Features. Catalysts. 2025; 15(3):289. https://doi.org/10.3390/catal15030289
Chicago/Turabian StyleFarghly, Norhan, M. Abu El-Oyoun, A. Abousehly, Fatemah H. Alkallas, Amira Ben Gouider Trabelsi, E. R. Shaaban, and Abdelaziz Mohamed Aboraia. 2025. "Investigating the Photocatalytic Properties of Reduced Graphene Oxide-Coated Zirconium Dioxide and Their Impact on Structural and Morphological Features" Catalysts 15, no. 3: 289. https://doi.org/10.3390/catal15030289
APA StyleFarghly, N., Abu El-Oyoun, M., Abousehly, A., Alkallas, F. H., Trabelsi, A. B. G., Shaaban, E. R., & Aboraia, A. M. (2025). Investigating the Photocatalytic Properties of Reduced Graphene Oxide-Coated Zirconium Dioxide and Their Impact on Structural and Morphological Features. Catalysts, 15(3), 289. https://doi.org/10.3390/catal15030289