A Review Paper on Non-Thermal Plasma Catalysis for CH4 and CO2 Reforming into Value Added Chemicals and Fuels
Abstract
:1. Introduction
2. Methane-to-Energy Conversion
2.1. Sustainable Technologies Developed for CH4 Conversion
2.1.1. Solar-Energy-Derived Methane Conversion
2.1.2. Microbe-Driven CH4 Conversion
2.1.3. Nuclear-Driven Methane Conversion
2.1.4. Tribochemical-Driven Methane Conversion
2.1.5. Geothermal-Driven Methane Conversion
2.2. Energy Efficiency
3. Plasma Technology for CH4-to-Energy Conversion
3.1. CH4 Conversion to Energy or Oxygenated Products
3.2. Non-Oxidative CH4 Conversion
3.3. Partial Oxidation of CH4
3.4. CH4 Conversion to Syngas
3.5. Plasma Coupling of CH4 and CO2
4. Plasma-Catalysis for Energy Production
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Iaquaniello, G.; Salladini, A.; Palo, E.; Centi, G. Catalytic partial oxidation coupled with membrane purification to improve resource and energy efficiency in syngas production. ChemSusChem 2015, 8, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Khanna, K. How Methanogenic Archaea Contribute to Climate Change; American Society for Microbiology: Washington, DC, USA, 2022. [Google Scholar]
- Hayhoe, K.; Kheshgi, H.S.; Jain, A.K.; Wuebbles, D.J. Substitution of natural gas for coal: Climatic effects of utility sector emissions. Clim. Change 2002, 54, 107–139. [Google Scholar] [CrossRef]
- Kargbo, D.M.; Wilhelm, R.G.; Campbell, D.J. Natural gas plays in the Marcellus shale: Challenges and potential opportunities. Environ. Sci. Technol. 2010, 44, 5679–5684. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.-G.; Li, X.-S. Research progress on methane production from natural gas hydrates. RSC Adv. 2015, 5, 54672–54699. [Google Scholar] [CrossRef]
- Ceri, H.; Conrad, S.; Hermans, I. Oxidative methane upgrading. ChemSusChem 2012, 5, 1668–1686. [Google Scholar]
- Webb, J.R.; Tamara, B.; Brent, G.T. Catalytic oxy-functionalization of methane and other hydrocarbons: Fundamental advancements and new strategies. ChemSusChem 2011, 4, 37–49. [Google Scholar] [CrossRef]
- Ashik, U.P.M.; Wan Daud, W.M.A.; Abbas, H.F. Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane–A review. Renew. Sustain. Energy Rev. 2015, 44, 221–256. [Google Scholar] [CrossRef]
- Kondratenko, E.V.; Peppel, T.; Seeburg, D.; Kondratenko, V.A.; Kalevaru, N.; Martin, A.; Wohlrab, S. Methane conversion into different hydrocarbons or oxygenates: Current status and future perspectives in catalyst development and reactor operation. Catal. Sci. Technol. 2017, 7, 366–381. [Google Scholar] [CrossRef]
- Mierczynski, P.; Vasilev, K.; Mierczynska, A.; Maniukiewicz, W.; Ciesielski, R.; Rogowski, J.; Szynkowska, I.M.; Trifonov, A.Y.; Dubkov, S.V.; Gromov, D.G.; et al. The effect of gold on modern bimetallic Au–Cu/MWCNT catalysts for the oxy-steam reforming of methanol. Catal. Sci. Technol. 2016, 6, 4168–4183. [Google Scholar] [CrossRef]
- Olah, G.A.; Richard, H.S. Chemistry in super acids. I. Hydrogen exchange and polycondensation of methane and alkanes in FSO3H-SbF5 (“magic acid”) solution. Protonation of alkanes and the intermediacy of CH5+ and related hydrocarbon ions. The high chemical reactivity of “paraffins” in ionic solution reactions. J. Am. Chem. Soc. 1968, 90, 2726–2727. [Google Scholar]
- Olah, G.A.; Gilles, K.; Schlosberg, R.H. Super acids. III. Protonation of alkanes and intermediacy of alkanonium ions, pentacoordinated carbon cations of CH5+ type. Hydrogen exchange, protolytic cleavage, hydrogen abstraction; polycondensation of methane, ethane, 2, 2-dimethylpropane and 2, 2, 3, 3-tetramethylbutane in FSO3H-SbF5. J. Am. Chem. Soc. 1969, 91, 3261–3268. [Google Scholar]
- Howarth, R.W.; Santoro, R.; Ingraffea, A. Methane and the greenhouse-gas footprint of natural gas from shale formations: A letter. Clim. Change 2011, 106, 679–690. [Google Scholar] [CrossRef]
- Yu, B.; Liang-Nian, H. Upgrading carbon dioxide by incorporation into heterocycles. ChemSusChem 2015, 8, 52–62. [Google Scholar] [CrossRef]
- Guo, X.; Fang, G.; Li, G.; Ma, H.; Fan, H.; Yu, L.; Ma, C.; Wu, X.; Deng, D.; Wei, M.; et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 2014, 344, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, T.V.; Erhan, A.; Wayne, G.D. Nonoxidative activation of methane. Catal. Rev. 2003, 45, 151–203. [Google Scholar] [CrossRef]
- Holmen, A. Direct conversion of methane to fuels and chemicals. Catal. Today 2009, 142, 2–8. [Google Scholar] [CrossRef]
- Alvarez-Galvan, M.C.; Mota, N.; Ojeda, M.; Rojas, S.; Navarro, R.M.; Fierro, J.L. Direct methane conversion routes to chemicals and fuels. Catal. Today 2011, 171, 15–23. [Google Scholar] [CrossRef]
- Annapragada, A.V.; Erdogan, G. Fe P0 catalysts for methane utilization—Catalyst development and identification. J. Catal. 1990, 123, 130–146. [Google Scholar] [CrossRef]
- Horn, R.; Robert, S. Methane activation by heterogeneous catalysis. Catal. Lett. 2015, 145, 23–39. [Google Scholar] [CrossRef]
- Da Silva, M.J. Synthesis of methanol from methane: Challenges and advances on the multi-step (syngas) and one-step routes (DMTM). Fuel Process. Technol. 2016, 145, 42–61. [Google Scholar] [CrossRef]
- Ismagilov, Z.R.; Matus, E.V.; Kerzhentsev, M.A.; Tsikoza, L.T.; Ismagilov, I.Z.; Dosumov, K.D.; Mustafin, A.G. Methane conversion to valuable chemicals over nanostructured Mo/ZSM-5 catalysts. Pet. Chem. 2011, 51, 174–186. [Google Scholar] [CrossRef]
- Specchia, S. Fuel processing activities at European level: A panoramic overview. Int. J. Hydrogen Energy 2014, 39, 17953–17968. [Google Scholar] [CrossRef]
- Baig, S.; Sajjadi, B. Non-thermal plasma enhanced catalytic conversion of methane into value added chemicals and fuels. J. Energy Chem. 2024, 97, 265–301. [Google Scholar] [CrossRef]
- Qin, W.; Wu, H.; Chen, Q.; Sun, J.; Liu, N.; Liu, B.; Zhang, M. From electric field catalysis to plasma catalysis: A combined experimental study and kinetic modeling to understand the synergistic effects in methane dry reforming. Chem. Eng. J. 2025, 508, 161015. [Google Scholar] [CrossRef]
- Gharahshiran, V.S.; Zheng, Y. Synergistic plasma and platinum catalysts interactions in CO2 reforming of propane at room temperature: The role of supports. Chem. Eng. J. 2024, 499, 156492. [Google Scholar] [CrossRef]
- Kim, J.; Abbott, M.S.; Go, D.B.; Hicks, J.C. Enhancing C–H bond activation of methane via temperature-controlled, catalyst–plasma interactions. ACS Energy Lett. 2016, 1, 94–99. [Google Scholar] [CrossRef]
- Feng, G.; Zhao, Y.; Ma, C.; Chen, W.; Li, T.; Zhao, X.; Li, G.; Dong, X.; Song, Y.; Wei, W.; et al. Solar driven efficient direct conversion of methane to multicarbon oxygenates. J. Mater. Chem. A 2022, 10, 7856–7868. [Google Scholar] [CrossRef]
- Abuseada, M.; Fisher, T.S. Continuous solar-thermal methane pyrolysis for hydrogen and graphite production by roll-to-roll processing. Appl. Energy 2023, 352, 121872. [Google Scholar] [CrossRef]
- Agrafiotis, C.; von Storch, H.; Roeb, M.; Sattler, C. Solar thermal reforming of methane feedstocks for hydrogen and syngas production—A review. Renew. Sustain. Energy Rev. 2014, 29, 656–682. [Google Scholar] [CrossRef]
- Lee, J.; Yang, J.; Moon, J.H. Solar cell-powered electrochemical methane-to-methanol conversion with CuO/CeO2 catalysts. ACS Energy Lett. 2021, 6, 893–899. [Google Scholar] [CrossRef]
- Liang, H.; Wang, F.; Yang, L.; Cheng, Z.; Shuai, Y.; Tan, H. Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system. Renew. Sustain. Energy Rev. 2021, 141, 110785. [Google Scholar] [CrossRef]
- Hameed, A.; Ismail, I.M.; Aslam, M.; Gondal, M.A. Photocatalytic conversion of methane into methanol: Performance of silver impregnated WO3. Appl. Catal. A Gen. 2014, 470, 327–335. [Google Scholar] [CrossRef]
- Li, A.; Ming, T.; Xiong, H.; Wu, Y.; Shi, T.; Li, W.; de Richter, R.; Chen, Y.; Tang, X.; Yuan, Y. A high-performance solar chimney in building integrated with photocatalytic technology for atmospheric methane removal. Solar Energy 2023, 260, 126–136. [Google Scholar] [CrossRef]
- Dong, C.; Marinova, M.; Tayeb, K.B.; Safonova, O.V.; Zhou, Y.; Hu, D.; Chernyak, S.; Corda, M.; Zaffran, J.; Khodakov, A.Y.; et al. Direct photocatalytic synthesis of acetic acid from methane and CO at ambient temperature using water as oxidant. J. Am. Chem. Soc. 2023, 145, 1185–1193. [Google Scholar] [CrossRef]
- Ma, J.; Jiang, B.; Li, L.; Yu, K.; Zhang, Q.; Lv, Z.; Tang, D. A high temperature tubular reactor with hybrid concentrated solar and electric heat supply for steam methane reforming. Chem. Eng. J. 2022, 428, 132073. [Google Scholar] [CrossRef]
- Hwang, I.Y.; Nguyen, A.D.; Nguyen, T.T.; Nguyen, L.T.; Lee, O.K.; Lee, E.Y. Biological conversion of methane to chemicals and fuels: Technical challenges and issues. Appl. Microbiol. Biotechnol. 2018, 102, 3071–3080. [Google Scholar] [CrossRef]
- Sahoo, K.K.; Goswami, G.; Das, D. Biotransformation of methane and carbon dioxide into high-value products by methanotrophs: Current state of art and future prospects. Front. Microbiol. 2021, 12, 636486. [Google Scholar] [CrossRef]
- Guo, S.; Nguyen, D.T.; Chau, T.H.; Fei, Q.; Lee, E.Y. Systems Metabolic Engineering of Methanotrophic Bacteria for Biological Conversion of Methane to Value-Added Compounds. In One-Carbon Feedstocks for Sustainable Bioproduction; Springer International Publishing: Cham, Switzerland, 2022; pp. 91–126. [Google Scholar]
- Patel, S.K.; Gupta, R.K.; Kondaveeti, S.; Otari, S.V.; Kumar, A.; Kalia, V.C.; Lee, J.K. Conversion of biogas to methanol by methanotrophs immobilized on chemically modified chitosan. Bioresour. Technol. 2020, 315, 123791. [Google Scholar] [CrossRef]
- Orhan, M.F.; Dincer, I.; Rosen, M.A.; Kanoglu, M. Integrated hydrogen production options based on renewable and nuclear energy sources. Renew. Sustain. Energy Rev. 2012, 16, 6059–6082. [Google Scholar] [CrossRef]
- Kugler, K.; Niessen, H.F.; Roth-Kamat, M.; Bocker, D.; Ruter, B.; Theis, K.A. Transport of nuclear heat by means of chemical energy. Nucl. Eng. Des. 1975, 34, 65. [Google Scholar] [CrossRef]
- Nakagawa, S.; Tachibana, Y.; Takamatsu, K.; Ueta, S.; Hanawa, S. Performance test of HTTR. Nucl. Eng. Des. 2004, 233, 291–300. [Google Scholar] [CrossRef]
- Shirani, A.; Gu, J.; Wei, B.; Lee, J.; Aouadi, S.M.; Berman, D. Tribologically enhanced self-healing of niobium oxide surfaces. Surf. Coat. Technol. 2019, 364, 273–278. [Google Scholar] [CrossRef]
- Aouadi, S.M.; Gu, J.; Berman, D. Self-healing ceramic coatings that operate in extreme environments: A review. J. Vac. Sci. Technol. A 2020, 38, 050802. [Google Scholar] [CrossRef]
- Ramirez, G.; Eryilmaz, O.L.; Fatti, G.; Righi, M.C.; Wen, J.; Erdemir, A. Tribochemical conversion of methane to graphene and other carbon nanostructures: Implications for friction and wear. ACS Appl. Nano Mater. 2020, 3, 8060–8067. [Google Scholar] [CrossRef]
- Chen, L.; Wu, J.; Lu, Z.; Shang, L.; Zhang, G.; Xue, Q. Probing the lubrication of shear-induced self-assembled layer on amorphous carbon films in methane atmosphere. Tribol. Lett. 2022, 70, 18. [Google Scholar] [CrossRef]
- Palau, J.; Assadi, A.A.; Penya-roja, J.M.; Bouzaza, A.; Wolbert, D.; Martínez-Soria, V. Isovaleraldehyde degradation using UV photocatalytic and dielectric barrier discharge reactors, and their combinations. J. Photochem. Photobiol. A Chem. 2015, 299, 110–117. [Google Scholar] [CrossRef]
- Kobashi, K.; Nishimura, K.; Kawate, Y.; Horiuchi, T. Synthesis of diamonds by use of microwave plasma chemical-vapor deposition: Morphology and growth of diamond films. Phys. Rev. B 1988, 38, 4067. [Google Scholar] [CrossRef] [PubMed]
- Jody, B.J.; Doctor, R.D.; Petchsingto, T.; Snyder, S.W. Concept for production of chemicals and power using geothermal energy. Appl. Therm. Eng. 2013, 58, 564–569. [Google Scholar] [CrossRef]
- Li, K.; Garrison, G.; Zhu, Y.; Moore, M.; Liu, C.; Hepper, J.; Bandt, L.; Horne, R.; Petty, S. Thermoelectric power generator: Field test at Bottle Rock geothermal power plant. J. Power Sources 2021, 485, 229266. [Google Scholar] [CrossRef]
- Assareh, E.; Alirahmi, S.M.; Ahmadi, P. A Sustainable model for the integration of solar and geothermal energy boosted with thermoelectric generators (TEGs) for electricity, cooling and desalination purpose. Geothermics 2021, 92, 102042. [Google Scholar]
- Gu, R.; Ding, J.; Wang, Y.; Yuan, Q.; Wang, W.; Lu, J. Heat transfer and storage performance of steam methane reforming in tubular reactor with focused solar simulator. Appl. Energy 2019, 233, 789–801. [Google Scholar] [CrossRef]
- Luo, L.; Gong, Z.; Xu, Y.; Ma, J.; Liu, H.; Xing, J.; Tang, J. Binary Au–Cu reaction sites decorated ZnO for selective methane oxidation to C1 oxygenates with nearly 100% selectivity at room temperature. J. Am. Chem. Soc. 2021, 144, 740–750. [Google Scholar] [CrossRef] [PubMed]
- Conrado, R.J.; Gonzalez, R. Envisioning the bioconversion of methane to liquid fuels. Science 2014, 343, 621–623. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Weng, G.M. Sustainable Energy Resources for Driving Methane Conversion. Adv. Energy Mater. 2023, 13, 2301734. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Baltrusaitis, J.; Jansen, I.; Christus, J.S. Renewable energy based catalytic CH4 conversion to fuels. Catal. Sci. Technol. 2014, 4, 2397–2411. [Google Scholar] [CrossRef]
- Wang, B.; Albarracín-Suazo, S.; Pagán-Torres, Y.; Nikolla, E. Advances in methane conversion processes. Catal. Today 2017, 285, 147–158. [Google Scholar] [CrossRef]
- George, A.; Shen, B.; Craven, M.; Wang, Y.; Kang, D.; Wu, C.; Tu, X. A Review of Non-Thermal Plasma Technology: A novel solution for CO2 conversion and utilization. Renew. Sustain. Energy Rev. 2021, 135, 109702. [Google Scholar] [CrossRef]
- Puliyalil, H.; Jurković, D.L.; Dasireddy, V.D.; Likozar, B. A review of plasma-assisted catalytic conversion of gaseous carbon dioxide and methane into value-added platform chemicals and fuels. RSC Adv. 2018, 8, 27481–27508. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, C.; Bai, H.; Zhang, S.; Ostrikov, K.K.; Shao, T. Energy pooling mechanism for catalyst-free methane activation in nanosecond pulsed non-thermal plasmas. Chem. Eng. J. 2020, 396, 125185. [Google Scholar] [CrossRef]
- Khalifeh, O.; Mosallanejad, A.; Taghvaei, H.; Rahimpour, M.R.; Shariati, A. Decomposition of methane to hydrogen using nanosecond pulsed plasma reactor with different active volumes.; voltages and frequencies. Appl. Energy 2016, 169, 585–596. [Google Scholar] [CrossRef]
- Lotfalipour, R.; Ghorbanzadeh, A.M.; Mahdian, A. Methane conversion by repetitive nanosecond pulsed plasma. J. Phys. D Appl. Phys. 2014, 47, 365201. [Google Scholar] [CrossRef]
- Mei, D.; Duan, G.; Fu, J.; Liu, S.; Zhou, R.; Zhou, R.; Fang, Z.; Cullen, P.J.; Ostrikov, K.K. CO2 reforming of CH4 in single and double dielectric barrier discharge reactors: Comparison of discharge characteristics and product distribution. J. CO2 Util. 2021, 53, 101703. [Google Scholar] [CrossRef]
- Yap, D.; Tatibouët, J.M.; Batiot-Dupeyrat, C. Carbon dioxide dissociation to carbon monoxide by non-thermal plasma. J. CO2 Util. 2015, 12, 54–61. [Google Scholar] [CrossRef]
- Alawi, N.M.; Barifcani, A.; Abid, H.R. Optimisation of CH4 and CO2 conversion and selectivity of H2 and CO for the dry reforming of methane by a microwave plasma technique using a B ox–B ehnken design. Asia-Pac. J. Chem. Eng. 2018, 13, e2254. [Google Scholar] [CrossRef]
- Scapinello, M.; Martini, L.M.; Dilecce, G.; Tosi, P. Conversion of CH4/CO2 by a nanosecond repetitively pulsed discharge. J. Phys. D Appl. Phys. 2016, 49, 075602. [Google Scholar] [CrossRef]
- Slaets, J.; Aghaei, M.; Ceulemans, S.; Van Alphen, S.; Bogaerts, A. CO2 and CH4 conversion in “real gas mixtures in a gliding arc plasmatron: How do N2 and O2 affect the performance? Green Chem. 2020, 22, 1366–1377. [Google Scholar] [CrossRef]
- Wang, X.; Ning-Shi-Ya, N.; Qian, T.C.; Zhou, S. Plasma-Assisted Dry Reforming of Methane over the Ti–Ni Catalysts. Ind. Eng. Chem. Res. 2025, 64, 2626–2635. [Google Scholar] [CrossRef]
- Rutberg, P.G.; Nakonechny, G.V.; Pavlov, A.V.; Popov, S.D.; Serba, E.O.; Surov, A.V. AC plasma torch with a H2O/CO2/CH4 mix as the working gas for methane reforming. J. Phys. D Appl. Phys. 2015, 48, 245204. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Nasonova, A.; Nah, I.W.; Kim, K.S. Analysis on CO2 reforming of CH4 by corona discharge process for various process variables. J. Ind. Eng. Chem. 2015, 32, 58–62. [Google Scholar] [CrossRef]
- Chun, S.M.; Hong, Y.C.; Choi, D.H. Reforming of methane to syngas in a microwave plasma torch at atmospheric pressure. J. CO2 Util. 2017, 19, 221–229. [Google Scholar] [CrossRef]
- Montesano, C.; Faedda, M.; Martini, L.M.; Dilecce, G.; Tosi, P. CH4 reforming with CO2 in a nanosecond pulsed discharge. The importance of the pulse sequence. J. CO2 Util. 2021, 49, 101556. [Google Scholar] [CrossRef]
- Wanten, B.; Maerivoet, S.; Vantomme, C.; Slaets, J.; Trenchev, G.; Bogaerts, A. Dry reforming of methane in an atmospheric pressure glow discharge: Confining the plasma to expand the performance. J. CO2 Util. 2022, 56, 101869. [Google Scholar] [CrossRef]
- Zhu, B.; Li, X.S.; Liu, J.L.; Zhu, X.; Zhu, A.M. Kinetics study on carbon dioxide reforming of methane in kilohertz spark-discharge plasma. Chem. Eng. J. 2015, 264, 445–452. [Google Scholar] [CrossRef]
- Wu, A.; Yan, J.; Zhang, H.; Zhang, M.; Du, C.; Li, X. Study of the dry methane reforming process using a rotating gliding arc reactor. Int. J. Hydrogen Energy 2014, 39, 17656–17670. [Google Scholar] [CrossRef]
- Iwarere, S.A.; Rohani, V.J.; Ramjugernath, D.; Fulcheri, L. Dry reforming of methane in a tip–tip arc discharge reactor at very high pressure. Int. J. Hydrogen Energy 2015, 40, 3388–3401. [Google Scholar] [CrossRef]
- Mohanta, A.; Lanfant, B.; Asfaha, M.; Leparoux, M. Methane dissociation process in inductively coupled Ar/H2/CH4 plasma for graphene nano-flakes production. Appl. Phys. Lett. 2017, 110, 093109. [Google Scholar] [CrossRef]
- Wu, A.; Li, X.; Yan, J.; Yang, J.; Du, C.; Zhu, F.; Qian, J. Co-generation of hydrogen and carbon aerosol from coalbed methane surrogate using rotating gliding arc plasma. Appl. Energy 2017, 195, 67–79. [Google Scholar] [CrossRef]
- Lee, D.H.; Song, Y.H.; Kim, K.T.; Lee, J.O. Comparative study of methane activation process by different plasma sources. Plasma Chem. Plasma Process. 2013, 33, 647–661. [Google Scholar] [CrossRef]
- Indarto, A. A review of direct methane conversion to methanol by dielectric barrier discharge. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1038–1043. [Google Scholar] [CrossRef]
- Deluga, G.A.; Salge, J.R.; Schmidt, L.D.; Verykios, X.E. Renewable hydrogen from ethanol by autothermal reforming. Science 2004, 303, 993–997. [Google Scholar] [CrossRef] [PubMed]
- Paulmier, T.; Fulcheri, L. Use of non-thermal plasma for hydrocarbon reforming. Chem. Eng. J. 2005, 106, 59–71. [Google Scholar] [CrossRef]
- Indarto, A.; Choi, J.W.; Lee, H.; Song, H.K. Kinetic modeling of plasma methane conversion using gliding arc. J. Nat. Gas. Chem. 2005, 14, 13–21. [Google Scholar]
- Petitpas, G.; Rollier, J.D.; Darmon, A.; Gonzalez-Aguilar, J.; Metkemeijer, R.; Fulcheri, L. A comparative study of non-thermal plasma assisted reforming technologies. Int. J. Hydrogen Energy 2007, 32, 2848–2867. [Google Scholar] [CrossRef]
- Luche, J.; Aubry, O.; Khacef, A.; Cormier, J.M. Syngas production from methane oxidation using a non-thermal plasma: Experiments and kinetic modeling. Chem. Eng. J. 2009, 149, 35–41. [Google Scholar] [CrossRef]
- Gao, B.; Cao, G.; Feng, Y.; Jiao, Y.; Li, C.; Zhao, J.; Fang, Y. CO2 Reforming of Biomass Gasification Tar over Ni-Fe-Based Catalysts in a DBD Plasma Reactor. Molecules 2025, 30, 1032. [Google Scholar] [CrossRef]
- Jiao, H.; Wang, G.-C. AComprehensive Theoretical Study of the Mechanism for Dry Reforming of Methane on a Ni4/ZrO2(101) Catalyst Under External Electric Fields: The Role of Interface and Oxygen Vacancy. ACS Catal. 2025, 15, 3846–3859. [Google Scholar] [CrossRef]
- Assadi, A.A.; Bouzaza, A.; Lemasle, M.; Wolbert, D. Removal of trimethylamine and isovaleric acid from gas streams in a continuous flow surface discharge plasma reactor. Chem. Eng. Res. Des. 2015, 93, 640–651. [Google Scholar] [CrossRef]
- Cleiren, E.; Heijkers, S.; Ramakers, M.; Bogaerts, A. Dry reforming of methane in a gliding arc plasmatron: Towards a better understanding of the plasma chemistry. ChemSusChem 2017, 10, 4025–4036. [Google Scholar] [CrossRef]
- Lin, S.S.; Li, P.R.; Jiang, H.B.; Diao, J.F.; Xu, Z.N.; Guo, G.C. Plasma promotes dry reforming reaction of CH4 and CO2 at room temperature with highly dispersed NiO/γ-Al2O3 catalyst. Catalysts 2021, 11, 1433. [Google Scholar] [CrossRef]
- Martini, L.M.; Dilecce, G.; Guella, G.; Maranzana, A.; Tonachini, G.; Tosi, P. Oxidation of CH4 by CO2 in a dielectric barrier discharge. Chem. Phys. Lett. 2014, 593, 55–60. [Google Scholar] [CrossRef]
- Liu, J.L.; Li, Z.; Liu, J.H.; Li, K.; Lian, H.Y.; Li, X.S.; Zhu, X.; Zhu, A.M. Warm-plasma catalytic reduction of CO2 with CH4. Catal. Today 2019, 330, 54–60. [Google Scholar] [CrossRef]
- Xin, Z.; Li, X.; Zheng, Z.; Hu, Y.; Cao, R.; Sun, A.; Zhao, F.; Yu, W. Study on the kinetics and energy transfer during ignition of methane excited by NRP-SDBD non-equilibrium plasma. J. Energy Inst. 2025, 118, 101929. [Google Scholar] [CrossRef]
- Hrycak, B.; Czylkowski, D.; Jasiński, M.; Dors, M.; Mizeraczyk, J. Hydrogen production via synthetic biogas reforming in atmospheric-pressure microwave (915 MHz) plasma at high gas-flow output. Plasma Chem. Plasma Process. 2019, 39, 695–711. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Y.; Zhang, S.; Sun, H.; Li, J.; Shao, T. Nanosecond pulsed plasma assisted dry reforming of CH4: The effect of plasma operating parameters. Appl. Energy 2019, 243, 132–144. [Google Scholar] [CrossRef]
- Vakili, R.; Gholami, R.; Stere, C.E.; Chansai, S.; Chen, H.; Holmes, S.M.; Jiao, Y.; Hardacre, C.; Fan, X. Plasma-assisted catalytic dry reforming of methane (DRM) over metal-organic frameworks (MOFs)-based catalysts. Appl. Catal. B Environ. 2020, 260, 118195. [Google Scholar] [CrossRef]
- Chung, W.C.; Tsao, I.Y.; Chang, M.B. Novel plasma photocatalysis process for syngas generation via dry reforming of methane. Energy Convers. Manag. 2018, 164, 417–428. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Kim, K.S. Combination of plasmas and catalytic reactions for CO2 reforming of CH4 by dielectric barrier discharge process. Catal. Today 2015, 256, 88–95. [Google Scholar] [CrossRef]
- Khoja, A.H.; Tahir, M.; Amin, N.A. Cold plasma dielectric barrier discharge reactor for dry reforming of methane over Ni/ɤ-Al2O3-MgO nanocomposite. Fuel Process. Technol. 2018, 178, 166–179. [Google Scholar] [CrossRef]
- Tu, X.; Whitehead, J.C. Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: Understanding the synergistic effect at low temperature. Appl. Catal. B Environ. 2012, 125, 439–448. [Google Scholar] [CrossRef]
- Mei, D.; Ashford, B.; He, Y.L.; Tu, X. Plasma-catalytic reforming of biogas over supported Ni catalysts in a dielectric barrier discharge reactor: Effect of catalyst supports. Plasma Process. Polym. 2017, 14, 1600076. [Google Scholar] [CrossRef]
- Wang, C.; Jie, X.; Qiu, Y.; Zhao, Y.; Al-Megren, H.A.; Alshihri, S.; Edwards, P.P.; Xiao, T. The importance of inner cavity space within Ni@ SiO2 nanocapsule catalysts for excellent coking resistance in the high-space-velocity dry reforming of methane. Appl. Catal. B Environ. 2019, 259, 118019. [Google Scholar] [CrossRef]
- Li, Z.; Das, S.; Hongmanorom, P.; Dewangan, N.; Wai, M.H.; Kawi, S. Silica-based micro-and mesoporous catalysts for dry reforming of methane. Catal. Sci. Technol. 2018, 8, 2763–2778. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, W.; Li, S.; Wu, G.; Ma, X.; Wang, X.; Gong, J. Sintering-resistant Ni-based reforming catalysts obtained via the nanoconfinement effect. Chem. Commun. 2013, 49, 9383–9385. [Google Scholar] [CrossRef]
- Ashok, J.; Kawi, S. Nickel–iron alloy supported over iron–alumina catalysts for steam reforming of biomass tar model compound. ACS Catal. 2014, 4, 289–301. [Google Scholar] [CrossRef]
- Banos, R.; Manzano-Agugliaro, F.; Montoya, F.G.; Gil, C.; Alcayde, A.; Gómez, J. Optimization methods applied to renewable and sustainable energy: A review. Renew. Sustain. Energy Rev. 2011, 15, 1753–1766. [Google Scholar] [CrossRef]
- Abdulrasheed, A.; Jalil, A.A.; Gambo, Y.; Ibrahim, M.; Hambali, H.U.; Hamid, M.Y. A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renew. Sustain. Energy Rev. 2019, 108, 175–193. [Google Scholar] [CrossRef]
- Dębek, R.; Radlik, M.; Motak, M.; Galvez, M.E.; Turek, W.; Da Costa, P.; Grzybek, T. Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature–on the effect of basicity. Catal. Today 2015, 257, 59–65. [Google Scholar] [CrossRef]
- Dębek, R.; Motak, M.; Galvez, M.E.; Grzybek, T.; Da Costa, P. Influence of Ce/Zr molar ratio on catalytic performance of hydrotalcite-derived catalysts at low temperature CO2 methane reforming. Int. J. Hydrogen Energy 2017, 42, 23556–23567. [Google Scholar] [CrossRef]
- Li, Z.; Mo, L.; Kathiraser, Y.; Kawi, S. Yolk–satellite–shell structured Ni–yolk@ Ni@ SiO2 nanocomposite: Superb catalyst toward methane CO2 reforming reaction. ACS Catal. 2014, 4, 1526–1536. [Google Scholar] [CrossRef]
- Li, Z.; Yasotha, K.; Sibudjing, K. Facile synthesis of high surface area yolk–shell Ni@ Ni embedded SiO2 via Ni phyllosilicate with enhanced performance for CO2 reforming of CH4. ChemCatChem 2015, 7, 160–168. [Google Scholar] [CrossRef]
- Li, Z.; Kathiraser, Y.; Ashok, J.; Oemar, U.; Kawi, S. Simultaneous tuning porosity and basicity of nickel@ nickel–magnesium phyllosilicate core–shell catalysts for CO2 reforming of CH4. Langmuir 2014, 30, 14694–14705. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Sibudjing, K. Multi-Ni@ Ni phyllosilicate hollow sphere for CO2 reforming of CH4: Influence of Ni precursors on structure, sintering, and carbon resistance. Catal. Sci. Technol. 2018, 8, 1915–1922. [Google Scholar] [CrossRef]
- Li, Z.; Kawi, S. Facile Synthesis of Multi-Ni-Core@ Ni Phyllosilicate@ CeO2 Shell Hollow Spheres with High Oxygen Vacancy Concentration for Dry Reforming of CH4. ChemCatChem 2018, 10, 2994–3001. [Google Scholar] [CrossRef]
- Kobayashi, T.; Furuya, T.; Fujitsuka, H.; Tago, T. Synthesis of Birdcage-type zeolite encapsulating ultrafine Pt nanoparticles and its application in dry reforming of methane. Chem. Eng. J. 2019, 377, 120203. [Google Scholar] [CrossRef]
- Neyts, E.C.; Bogaerts, A. Understanding plasma catalysis through modelling and simulation—A review. J. Phys. D Appl. Phys. 2014, 47, 224010. [Google Scholar] [CrossRef]
- Yap, D.; Tatibouët, J.-M.; Batiot-Dupeyrat, C. Catalyst assisted by non-thermal plasma in dry reforming of methane at low temperature. Catal. Today 2018, 299, 263–271. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, B.; Zhu, A.; Gong, W.; Liu, C. The simultaneous activation of methane and carbon dioxide to C2 hydrocarbons under pulse corona plasma over La2O3/γ-Al2O3 catalyst. Catal. Today 2002, 72, 223–227. [Google Scholar] [CrossRef]
- Bouchoul, N.; Fourré, E.; Tatibouët, J.M.; Batiot-Dupeyrat, C. Plasma-catalytic dry reforming of CH4 over calcium oxide: Catalyst structural and textural modifications. Plasma Chem. Plasma Process. 2019, 39, 713–727. [Google Scholar] [CrossRef]
- Hu, X.; Jia, X.; Zhang, X.; Liu, Y.; Liu, C.J. Improvement in the activity of Ni/ZrO2 by cold plasma decomposition for dry reforming of methane. Catal. Commun. 2019, 128, 105720. [Google Scholar] [CrossRef]
Sustainable Energy Source | Sustainability | Energy Efficiency | Product | Ref. | |
---|---|---|---|---|---|
Solar energy | Photothermal | Low | 11.4% | H2, CO | [55] |
Photocatalysis | High | 14.1% | CH3OH, CH3OOH, HCHO, CO2 | [56] | |
Bioenergy | High | 80% | CH3OH, H2O, H2 | [57] |
Gas Mixture | Flow Rate | Reactor Setup | Plasma Type | Parameters of Plasma | Conversion | Product Selectivity | Ref. |
---|---|---|---|---|---|---|---|
Ar/CH4 | Q = 0.1 L/min | Vaccum chamber cylinder | Nanosecond pulsed non-thermal discharge | Vapp = 1 kV | CH4 (11%) | H2 (70%) C2H2 (21%) C2H4 (20%) C2H6 (6%) | [62] |
Ar/CH4 | Q = 0.11 L/min | DBD tubular reactor | Nanosecond pulsed non-thermal discharge | Vapp = 12 kV f = 10 kHz | CH4 (87.2%) | H2 (80%) | [63] |
CH4 | Q = 0.4 L/min | DBD tubular reactor | Nanosecond pulsed non-thermal discharge | Vapp = 21 kV f = 22 kHz | CH4 (60%) | H2 (nd) | [64] |
CO2/CH4 1:1 | Q = 0.05 L/min | Single DBD tubular reactor | DBD plasma discharge | Power = 75 W | CO2 (24.1%) CH4 (49.2%) | CO (39.8%) H2 (31.3%) | [65] |
Ar/CO2/CH4 1:1 | Q = 1.92 L/min | Cylindrical multi-electrode DBD reactor | DBD plasma discharge | Power = 60 W f = 17.1 kHz | CH4 (17%) CO2 (12%) | H2 CO C2H4 C2H6 | [66] |
N2/CH4/CO2 | QCH4 = 0.19 L/min QCO2 = 0.38 L/min | Box–Behnken design | Microwave plasma | nd | CH4 (84.91%) CO2 (44.40%) | H2 (51.31%) CO (61%) | [67] |
CH4/CO2 1:1 | nd | Glass tube reactor (plane to plane electrode) | Nanosecond pulsed discharge | SED = 10 kJ/dm3 | CH4 (50%) CO2 (40%) | CO H2 C2H2 | [68] |
CH4/CO2/O2, N2 (10%, 10%, 9%, 71%) | Q = 10 L/min | Sophisticated shape reactor (with cathode and anode) | Gliding arc plasma | Power = 364 W | CH4 (93%) CO2 (44%) | H2 CO | [69] |
CH4/CO2 1:1 | Q = 0.05 L/min | Cylindrical quartz DBD reactor | Nanosecond Pulsed DBD | Power = 62.7 W | CH4 (39.6%) CO2(22.9%) | H2 (46.7%) CO (68.6%) | [70] |
H2O/CO2/CH4 | nd | nd | Electric-arc plasma torch | Power = 90,000 W | CH4 (94–96%) | nd | [71] |
CO2/CH4 1:1 | Q = 0.6 L/min | Cylinder-wire-type reactor | Corona discharge plasma | Vapp = 12 kV F = 900 Hz | CH4 (30.1%) CO2 (27.8%) | CO (29.1%) H2 (55.1%) | [72] |
CO2/CH4 1:1 | Q = 30 L/min | Nd | Microwave plasma torch | Power = 6000 W f = 2.45 GHz | CH4 (96.4%) CO2 (68.4%) | H2 CO | [73] |
CO2/CH4 1:1 | nd | Pin-to-pin configuration reactor | Nanosecond pulsed discharge. | SED = 6.5 kj/dm3 | CH4 (40%) CO2 (30%) | CO (68%) H2 (77%) | [74] |
CH4/CO2 (25%, 75%) | Q = 0.5 L/min | Cylindrical pin-to-plate reactor | Confined atmospheric pressure glow discharge plasma | SED = 16 kJ/L | CH4 (94%) CO2 (64%) | CO (95%) H2 (10%) | [75] |
CO2/CH4 1:1 | Q = 0.15 L/min | Tubular reactor | Kilohertz spark-discharge plasma | SED = 725 kJ/mol | CH4 (77%) CO2 (70%) | CO (80%) H2 (78%) | [76] |
CO2/CH4 1:1 | Q = 12.5 L/min | Cylindrical-shaped reactor | Rotating gliding arc | Power = 471 W | CH4 (36%) CO2 (70%) | CO (29.1%) H2 (27.1%) | [77] |
CO2/CH4 1.8:1 | - | Tip–tip plasma batch-reactor | Arc discharge reactor at very high pressure | SED = 7450 kJ/mol | CH4 (46%) CO2 (45.2%) | H2 (43.63%) CO (26.99%) | [78] |
Type of Plasma Source | Plasma Power | Feed Flow Rate | Feed Flow Ratio | CH4 Conversion | CO2 Conversion | H2 Production | CO Production | Catalyst | Reference |
---|---|---|---|---|---|---|---|---|---|
W | mL/min | CH4/CO2 | % | % | % | % | |||
Gliding arc | 128 | 2000 | 1:2 | 39 | 25 | 65 | 88 | None | [94] |
Microwave | 6000 | 30,000 | 1:1 | 96 | 68 | _ | _ | None | [95] |
Microwave | 7500 | 278 | 2:3 | 61 | _ | 63 | _ | None | [96] |
Pulsed DBD | 55.7 | 50 | 1:1 | 39.6 | 22 | 42 | 51 | None | [97] |
DBD | 11 | 100 | 1:1 | 56 | 43 | 62 | 64 | PtUiO-67 | [98] |
GAD | 128 | 2670 | 1:1 | 94 | 91 | 97 | 95 | Ni/CeO2/Al2O3 | [99] |
DBD | 67.5 | 600 | 1:1 | 31 | 34 | 60 | 53 | Zeolite | [100] |
DBD | 100 | 20 | 1:1 | 74.5 | 73 | 47 | 48 | 10%Ni//γ Al2O3–MgO | [101] |
AC DBD | 50 | 50 | 1:1 | 56.4 | 30.2 | 31 | 52 | 10%Ni/Al2O3 | [102] |
Pulsed corona | 30 | 25 | 2:1 | 25 | 22 | _ | 18 | La2O3/γ-Al2O3 | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohandoss, S.; Mohan, H.; Balasubramaniyan, N.; Assadi, A.A.; Khezami, L.; Loganathan, S. A Review Paper on Non-Thermal Plasma Catalysis for CH4 and CO2 Reforming into Value Added Chemicals and Fuels. Catalysts 2025, 15, 287. https://doi.org/10.3390/catal15030287
Mohandoss S, Mohan H, Balasubramaniyan N, Assadi AA, Khezami L, Loganathan S. A Review Paper on Non-Thermal Plasma Catalysis for CH4 and CO2 Reforming into Value Added Chemicals and Fuels. Catalysts. 2025; 15(3):287. https://doi.org/10.3390/catal15030287
Chicago/Turabian StyleMohandoss, Subash, Harshini Mohan, Natarajan Balasubramaniyan, Amine Aymen Assadi, Lotfi Khezami, and Sivachandiran Loganathan. 2025. "A Review Paper on Non-Thermal Plasma Catalysis for CH4 and CO2 Reforming into Value Added Chemicals and Fuels" Catalysts 15, no. 3: 287. https://doi.org/10.3390/catal15030287
APA StyleMohandoss, S., Mohan, H., Balasubramaniyan, N., Assadi, A. A., Khezami, L., & Loganathan, S. (2025). A Review Paper on Non-Thermal Plasma Catalysis for CH4 and CO2 Reforming into Value Added Chemicals and Fuels. Catalysts, 15(3), 287. https://doi.org/10.3390/catal15030287